next_inactive up previous


Model and Definitions


\begin{displaymath}
S=S_{e}+S_{u}+S_{f}+S_{b}\end{displaymath}

\begin{eqnarray*}
S_{e} & = & \sum _{\alpha =c,s}\frac{1}{2\pi K_{\alpha }}\int ...
..._{c}(x,\tau ')\right)D_{\xi }\left(u(x,\tau )-u(x,\tau ')\right)
\end{eqnarray*}



String models:

  1. Rigid String $\sigma =0\quad \int dx\rho =m$
  2. Flactuating (Gaussian) String $n=1\quad \omega _{0}=0$
  3. Very Floppy String $n>1\quad \omega _{0}=0$
  4. Stationary (G&S) String $\rho =\sigma =\omega _{0}=0$

Correlation functions

\begin{eqnarray*}
G_{u}(x,\tau ) & = & \left\langle u(x,\tau )u(0,0)\right\rangl...
...lpha }(x,\tau )}e^{-i\sqrt{2}\phi _{\alpha }(0,0)}\right\rangle
\end{eqnarray*}



Dimensionless parameters

\begin{eqnarray*}
D_{b}(\lambda ) & = & \frac{2D_{\xi }\alpha }{\pi v_{s}^{2}}\l...
...sqrt{\pi \epsilon }}\\
\mathcal{L} & = & \frac{L}{2\pi \alpha }
\end{eqnarray*}



$\epsilon $ and $\eta $ are dimensionless parameters associated with the string

realization $\epsilon $ $\eta $ $D_{b}$ $D_{f}$
         
Rigid String $\frac{1}{\mathcal{M}}=\frac{1}{2m\omega _{0}}$ $\varpi =\frac{\alpha \omega _{0}}{v_{s}}$ $\frac{2D_{\xi }\alpha }{\pi v_{s}^{2}}\left(\frac{v_{s}}{v_{c}}\right)^{K_{c}}\sqrt{\frac{m\omega _{0}}{2\pi }}$ $\frac{2D_{\eta }\alpha }{\pi v_{c}^{2}}\sqrt{\frac{m\omega _{0}}{2\pi }}$
         
         
Flactuating String $\epsilon =\frac{1}{2\pi \sqrt{\rho \sigma }}=\frac{v_{u}}{2\pi \sigma }$ $\eta =\frac{v_{u}}{v_{s}}$ $\frac{2D_{\xi }\alpha }{\pi v_{s}^{2}}\left(\frac{v_{s}}{v_{c}}\right)^{K_{c}}\sqrt{\frac{\sigma }{2v_{u}}}$ $\frac{2D_{\eta }\alpha }{\pi v_{c}^{2}}\sqrt{\frac{\sigma }{2v_{u}}}$
         
         
Very Floppy String $\epsilon =\frac{1}{2\pi \sqrt{\rho \sigma }}=\frac{v_{u}}{2\pi \sigma }$ $\eta =\frac{v_{u}}{v_{s}}$ $\frac{2D_{\xi }\alpha }{\pi v_{s}^{2}}\left(\frac{v_{s}}{v_{c}}\right)^{K_{c}}\frac{1}{2}\sqrt{\frac{n-1}{\pi \epsilon \eta ^{1-\frac{1}{n}}}}$ $\frac{2D_{\eta }\alpha }{\pi v_{c}^{2}}\frac{1}{2}\sqrt{\frac{n-1}{\pi \epsilon \eta ^{1-\frac{1}{n}}}}$
         
         
Stationary String $1$ $1$ $\frac{2D_{\xi }\alpha }{\pi v_{s}^{2}}\left(\frac{v_{s}}{v_{c}}\right)^{K_{c}}$ $\frac{2D_{\eta }\alpha }{\pi v_{c}^{2}}$
         

Free Correlators

\begin{eqnarray*}
G_{\alpha o}(x,\tau ) & = & -\frac{K_{\alpha }}{4}\ln \frac{x^...
...}-\left(\frac{v_{u}\tau }{\alpha }\right)^{1-\frac{1}{n}}\right]
\end{eqnarray*}



1st order perturbation:

\begin{eqnarray*}
\delta R_{c} & = & \frac{1}{8\left(\pi \alpha \right)^{2}}\sum...
...e \partial _{x}\phi _{3}\partial _{x}\phi _{4}\right\rangle _{c}
\end{eqnarray*}



where $d[3,4]=dx_{3}d\tau _{3}dx_{4}d\tau _{4}\delta (x_{3}-x_{4})$ and $\phi _{i}=\phi (x_{i},\tau _{i})$

Average results

\begin{eqnarray*}
\left\langle e^{i\epsilon _{3}\sqrt{2}\phi _{3}}e^{-i\epsilon ...
...\frac{x_{1}-x_{4}}{\left\vert r_{1}-r_{4}\right\vert^{2}}\right)
\end{eqnarray*}



\begin{eqnarray*}
\left\langle D_{\xi ,\eta }(u_{3}-u_{4})\right\rangle _{u} & =...
...{0}(2,3)\right)e^{-\lambda ^{2}\left(G_{0}(0)-G_{0}(3,4)\right)}
\end{eqnarray*}



Electrons

\begin{eqnarray*}
\frac{\delta R_{c}}{R_{c0}} & = & 1+\frac{K_{c}^{2}\epsilon ^{...
...da ^{2}\left(G_{0}(0)-G_{0}(3,4)\right)}\left(I_{+}-I_{-}\right)
\end{eqnarray*}



\begin{eqnarray*}
I_{\pm }(r_{1}-r_{2}) & = & \int d^{2}R\ln \left\vert r_{1}-R\...
..._{+}(r) & = & 2\pi \ln r\\
I_{-}(r) & = & \pi \cos 2\theta _{r}
\end{eqnarray*}



Rigid String Correlations

\begin{eqnarray*}
\delta G_{u}(r) & = & 4\sqrt{\pi }\frac{\mathcal{L}}{\mathcal{...
...{\varpi }{\alpha }\left(\left\vert r\right\vert-x\right)}\right]
\end{eqnarray*}



with $f_{b}\left(\left\vert x\right\vert,\lambda \right)=\left\vert\frac{x}{\alpha }\...
...}{\mathcal{M}}\left(1-e^{-\varpi \left\vert x\right\vert/\alpha }\right)\right]$

Fluctuating String Correlations

\begin{eqnarray*}
\delta G_{u} & = & \frac{1}{2\sqrt{\pi }}\epsilon ^{\frac{5}{2...
...\alpha }\right)^{-\lambda ^{2}\epsilon }\left(I_{+}-I_{-}\right)
\end{eqnarray*}



Flow Equations

\begin{eqnarray*}
G_{\alpha } & = & -K_{\alpha eff}\ln \frac{r}{\alpha }-d_{eff}...
...& = & -\epsilon _{eff}\ln \frac{r}{\alpha }-b_{eff}\cos 2\theta
\end{eqnarray*}



Electrons flow

\begin{eqnarray*}
\frac{dK_{c}}{dl} & = & -\sqrt{\pi }K_{c}^{2}\frac{v_{c}}{v_{s...
...D_{b}(\lambda )e^{-\lambda ^{2}\left(G_{0}(0)-G_{0}(3,4)\right)}
\end{eqnarray*}



Rigid String flow

\begin{eqnarray*}
\frac{d\varpi }{dl} & = & \varpi +4\sqrt{\pi }\frac{\mathcal{L...
...}(\lambda )\\
\frac{dD_{f}(\lambda )}{dl} & = & D_{f}(\lambda )
\end{eqnarray*}



when $D(\lambda )$is constant

\begin{eqnarray*}
\frac{d\varpi }{dl} & = & \varpi +\mathcal{L}\left(D_{b}+K_{c}...
...} & = & -\frac{1}{2}K_{s}^{2}\frac{D_{b}}{\sqrt{1-e^{-\varpi }}}
\end{eqnarray*}



Fluctuatin String flow

Define

\begin{eqnarray*}
\mathcal{D}_{b,f}(u) & = & \epsilon \int \frac{d\lambda }{2\pi }e^{i\lambda u-\lambda ^{2}\epsilon \ln \eta }D_{b,f}(\lambda )
\end{eqnarray*}



\begin{eqnarray*}
\frac{d\epsilon }{dl} & = & \sqrt{\pi }\eta \epsilon ^{\frac{3...
...
\frac{dK_{s}}{dl} & = & -\frac{1}{2}K_{s}^{2}\mathcal{D}_{b}(0)
\end{eqnarray*}



Very Floppy String flow

\begin{eqnarray*}
\frac{dD_{b}(\lambda )}{dl} & = & \left(\frac{3}{2}+\frac{1}{2...
...{f}\right)\\
\frac{dK_{s}}{dl} & = & -\frac{1}{2}K_{s}^{2}D_{b}
\end{eqnarray*}



Non interaction point

\begin{eqnarray*}
S_{I} & = & -\int dxd\tau d\tau '\left[\psi _{R}^{\dagger }\ps...
...dagger }\psi _{L}(x,\tau ')D_{\eta }(u(\tau )-u(\tau '))\right]=
\end{eqnarray*}



averaging over the string degreed of freedom, $\left\langle D(u-u')\right\rangle =f(\tau -\tau ')$, and seperating elastic and inelastic terms

\begin{eqnarray*}
\left\langle S_{I}\right\rangle _{u} & = & -\oint dxd\tau d\ta...
... _{R}^{\dagger }\psi _{R}(x,T)\psi _{L}^{\dagger }\psi _{L}(x,T)
\end{eqnarray*}



Define


\begin{displaymath}
F_{b,f}(l)=\int _{0}^{1}drf(r)=\frac{v_{s}}{\alpha }\int _{0}^{\alpha /v_{s}}d\tau f(\tau )\end{displaymath}

Then the $g_{1}$ process is modifed by

\begin{eqnarray*}
g_{1\perp } & = & g_{1\perp }^{in}-\frac{2\alpha }{v_{s}}F_{b}...
...rt\vert}-g_{2\perp } & = & g_{c}^{in}-\frac{\alpha }{v_{s}}F_{f}
\end{eqnarray*}



at the noninteracting point $v_{s}=v_{F}\quad D=\frac{D}{\pi v_{F}^{2}\sqrt{\pi \epsilon }}\quad \dot{y}=-Df(1)$, therefore


\begin{displaymath}
\frac{1}{\pi v_{F}}\frac{dg_{1\perp }^{in}}{dl}=\frac{dy}{dl}+\frac{d}{dl}(DF)=-Df(1)+\frac{d}{dl}(DF)\end{displaymath}

The string flauctuaions is of the form $f(r)=g(\eta r)$, therefore

\begin{eqnarray*}
\frac{d\eta }{dl} & = & \eta \\
\frac{df}{d\eta } & = & \frac{r}{\eta }\frac{df}{dr}
\end{eqnarray*}



suppose also that r $f(r)\rightarrow 0$ as $r\rightarrow 0$ then

\begin{eqnarray*}
\frac{dF}{dl} & = & \int _{0}^{1}\frac{df}{d\eta }\frac{d\eta ...
...DF) & = & \frac{dD}{dl}F+D\frac{dF}{dl}=D(F+\frac{dF}{dl})=Df(1)
\end{eqnarray*}



thus we get


\begin{displaymath}
\frac{dg_{1\perp }^{in}}{dl}=0\end{displaymath}

About this document ...

This document was generated using the LaTeX2HTML translator Version 2002 (1.62)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html -split 2 rgSummary2.tex

The translation was initiated by Uri London on 2005-01-12



next_inactive up previous
Uri London 2005-01-12