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Quantum entanglement between many qubits plays a crucial role in quantum algorithms. The structure of this entangleme
described by bipartite entanglement measures. It is thus important to develop ways to characterize and evaluate such entanglemern
consider an operational measure of multipartite entanglement and demonstrate its relevance to quantum algorithms.

Consider a quantum algorithm A which is
designed to operate on an initial state |i>,
and result in a final state |f>. The operation
of such an algorithm can be described as
Ali> = >,

In general, the algorithm is applied to any
initial state In>. In order to define an
entanglement monotone, we introduce a set of
local unitary operators, which are applied to
the initial state In> before applying the

algorithm. The aim of these local unitary SIICC(?SS probability of a quantum measure as a function of the 0.6
operators is to maximize the probability of algorithm: number of iterations, for different - _
success of the algorithm. number of quantum bits in the 0.5 — 9

Applying these operators to the initial state is
equivalent to applying these operators (to the
left) on the original initial state of the
algorithm |i> (see box on the right).

We assume without loss of generality that

, . , Ca , , , , exactly at the time when the 02 —
any algorithm is designed so that |i> is a 1f ﬁhe algorithm is applied to a dlfferent measurement is performed. ! ]
tensor product state. This leads to the initial state [n>, then the probability of Also, it is seen that the maximal 0.1H -

realization that the unitary operators simply
change |i> to another tensor product state,
and so we get that the maximal probability of
success 18

P =maxl<tIn>|?

max

where the maximization is over all tensor

Requirements for entanglement
measures:

1. Invariant under local unitary operations

2. Cannot increase under local operations.
3. Vanishes for non-entangled states.

If algorithm A has an initial state |i> and
a final state |[f>, then the operation of the
algorithm can be described as

Ali> = |f>.

obtaining the correct result is
Pr(|n>)=|<f|A|n>|%,

If |f> is a computational basis state, then
this in turn translates to

NN

Here we use the Groverian measure, to evaluate the entanglement of the quantum states
obtained during the simulation of quantum algorithms. This is of interest since it is believed that
entanglement plays an important role in the speedup obtained by quantum algorithms over their

classical counterparts.
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Grover's search algorithm:

Grover's search algorithm is an iterative algorithm, which finds a marked state in an
unsorted list, in time which is a square root of the time it takes classically.

This figure shows the evolution

quantum register (6 to 12).

It can be seen that during the
operation of the algorithm
entanglement is created, and
then removed. It returns to zero

Groverian Entanglement

used in the algorithm.
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Shor's factorization algorithm:

product  states | t>. The  Groverian Pr(jn>)=|<ijn>|".
entanglement measure is defined as Shor's algorithm finds the prime factors of any integer, in time which is polynomial in
G(In>) =(1-P_ )" the number of bits needed to store the integer. The best known classical algorithm
which is easily proved to be an entanglement for this task 1s exponentially slower.
HHEASTES. The algorithm is comprised of 3 parts. The first is the preprocessing stage, where
a classical algorithm is performed using quantum parallelism The second part is
a discrete Fourier transform, and the third is measurement and classical processing.
Checking the development of entanglement during the Fourier transform, almost no
— Y change in the entanglement is seen. -
— 10, The Figure on the right shows the entanglement o o
created during the preprocessing stage of the = )
U algorithm, as a function of the integer which is 5
s . U Measure being factorized. Since the preprocessing stage %“'ﬂ-f’ -
G involves guessing another integer, every integer 5
N has several different dots in the Figure. 3 ouf -
An exponential fit, which is an upper bound of the :
U, dots in the Figure, is also shown. This indicates S oo i
] that indeed the entanglement created during
" Shor's algorithm approaches 1 exponentially. -
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It is tempting to relate to the Qroverian entanglement measure as de?ﬁned above as a How entangled is a state? The connection to bipartite
/ property of the quantum state, without the need to define any partitioning. However, the entanglement:
/ truth is that the Groverian measure as defined above relates to each quantum bit as a Entanglement is considered to be a
/ separate partition. In the context of quantum algorithms it is indeed a natural way of resource in many aspects, especially When defining a multipartite
/ partitioning the state, but there may be cases where this partitioning is not the natural in encryption and communication entanglement measure, it must be
/ one. protocols. consistent with existing bipartite
/ entanglement measures.
/ In order to be able to modify the Groverian measure to different partitioning we need to Given a pure quantum state, 1t 1s ,
/ : : » . : : therefore of interest to know how Let us consider a state |n> where
re-examine the meaning of “local operation”. The locality of the operations comes from the L. : ) " ) :
/ oot Dot th ; d onlv within th tition. Theref 11 d to do ; entangled it is. This question depend, two partitions are defined. Using
act that 1hey are periormed only within the partition. LLerelore, all we need 1o 0o 1s of course, on the partitioning. Schmidt decomposition, it is possible
changej the definition of the; local umt.ary ope.rators S0 that t‘h.ey may operate on tbe whole Using the Groverian measure it is to write this state as a single sum over
partition, and not on single qubits. Using this definition, we can examine the possible to find the m-partitioning basis states from each partition,
entanglement of any desired partitioning. that gives the most entanglement. multiplied by their eigenvalue.
This means finding the partitioning to
m groups that maximizes the probability >Vp, [u>,|u>_
of success of the quantum algorithm.
. . - Since these basis vectors are
— It is clear that using m-1 partitions orthonormal, the best the maximization
U, it is possible to achieve at least the process can do is match the two basis
same as with m partitions. This can be states with the maximal eigenvalue.
seen by taking two of the m
- partitions and considering them as a The maximization process therefore
. Measure single partition. simply gives the maximal eigenvalue
[¥> Us | | of the reduced density matrix of the
_ This procedure may be useful in partition, also know as the largest
determining suitable states for many Schmidt coefficient, which is a
U party quantum communication, . known bipartite entanglement
—1 s which may use more than just bipartite measure.
entanglement
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