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We show quantitatively that regulation by small RNA (sRNA) 1s advantageous when fast responses to external signals are needed, which 1s consistent with
experimental data about its involvement 1n stress responses. We integrate the network of SRNA regulation in E. coli with the transcription regulation network,
uncovering mixed regulatory circuits consisting of both transcriptional and post-transcriptional regulations. Analysis of one such regulatory circuit, a feed-torward
loop of OmpR-MicF-ompF, demonstrates 1ts advantages: tight repression, guaranteed by the combination of transcriptional and post-transcriptional regulations,
and fast recovery upon the end of the external signal. Another regulatory circuit is the genetic mixed feedback loop, where gene a regulates gene b by
transcriptional regulation, while gene b regulates gene a by either protein-protein interaction or small non-coding RNA-mRNA interaction. Mixed feedback loops
tend to exhibit bi-stability or oscillations. These loops are analysed using deterministic and stochastic methods, shedding more light on the possible roles of SRNA
regulation.
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Repression of a single gene. Shown is the copy number of a regulated protein C vs. time after applying negative regulation on One sRNA gene may be responsible for the regulation of many genes. Shown is the copy number of each of the n protein
gene ¢ using transcriptional regulation (dashed line), post-translation regulation by protein-protein interaction (dashed-dotted types regulated by a single SRNA-producing gene vs. n. Here, the production of the sSRNA is 50 times faster than that of
line), and post—transcriptional regulation by SRNA (solid line). (A) In the initial state the pI‘OdllCtS of both the regulating and each of the target mRNAs. In this case, as ]ong as n<50, the regu]ation 1is effective. It gradua]]y weakens as n exceeds 50,
the target genes are present in the cell. In this case the post-translation regulation by protein-protein interaction provides much and the copy number of each of the target proteins increases.

faster response than the two other mechanisms. (B) In the initial state the protein product of the target gene is present but the

regulator is not. In this case the response achieved by post-transcriptional regulation by sRNA is initially faster but eventually

slower than that achieved by protein-protein interaction.

Deterministic Vs. Stochastic Simulation Network Modules Involving sSRNA Regulation

Example: positive-negative mixed feedback loop

On the left, the SRNA-target network is shown. Nodes represent SRNAs and their experimentally
proven targets (see Supplementary Material for references). sSRNAs are in pink circles, protein

Rate equations represent the average concentration of different molecular species, but disregard the stochastic coding genes in orange circles and genes coding transcriptional regulators in blue circles. Arrows
nature of the systems they represent, as well as the fact that the number of copies of any species is discrete. In @ represent activation while truncated arrows represent inhibition.
order to take these properties into account, we apply two methods. The first is to use master equations, which are Below, examples of interesting mixed regulatory circuits extracted from the complete network,

involving transcriptional regulation and post-transcriptional regulation by sRNA.

(A) Shows a feed-forward loop. Under high osmolarity, OmpR activates transcription of the
sRNA gene micF, which represses the translation of the porin coding gene ompF. OmpR also
inhibit directly the transcription of ompF (left). Under the same conditions, OmpR represses
transcription of the sRNA gene micC, which inhibits the translation of the porin coding gene
ompC. OmpR also activates directly the transcription of ompC (right).

(B) Presents two mixed feedback loops. The transcription factor Fur inhibits transcription of the

equations representing the time dependant probability of having a specific copy number for each species. The
second method applied is Monte-Carlo simulations. This is an iterative simulation method, in which the state of the
system is modelled as a function of time.
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