
Solving Nonlinear Parabolic Equations

Rong Jiang

October 16, 2003

Contents

1 Problem 2

2 Approach 2
2.1 Finite Difference and Crank-Nicolson Method 2
2.2 Newton’s Linearization Method . 3
2.3 1D Case . 3
2.4 2D Case . 4
2.5 Richardson Extrapolation and Convergence Rate 4

3 Results 5
3.1 Running time(2D case) . 5
3.2 Newton Iterations . 5
3.3 Order of accuracy vs h and k . 6

4 Discussion 7

A Examples 8
A.1 1D case . 8
A.2 2D case . 10

B Commands 12

C Codes 14
C.1 1D Solver: NLP1() . 15
C.2 2D Solver: NLP2() . 16
C.3 Vector Comparisons . 21

List of Tables

1 Running time in 2D case. 5
2 Running time of Newton iteration in 2D case. 6
3 Order of accuracy for h and k in 1D case. 7
4 Order of accuracy for h and k in 2D case. 7

List of Figures

1 Runing time in 2D case . 6

1

1 Problem

In this project1, we first consider a nonlinear parabolic problem of the form

ut = (u2)xx, t ∈ [0, 1], x ∈ (0, 1) (1)

where the initial conditions and Dirichlet boundary conditions correspond to the exact solution
given implicitly by (2u−3)+log(u−1/2) = 2(2t−x). We solve this 1-dim problem numerically
using Newton’s Linearization Method with Crank-Nicolson Method. In the meanwhile, we
vary both the spatial stepsize h and the temporal stepsize k, and derive the dependencies of
accuracy vs.h and k, as well as the running time.

Secondly, we generalize to the 2-dim parabolic problem of the form

ut = ∆(u2), t ∈ [0, 1], (x, y) ∈ (0, 1)2. (2)

Here the initial and boundary conditions are given by the function, u(t, x, y) = sin x sin y exp(−2t).

2 Approach

2.1 Finite Difference and Crank-Nicolson Method

Given a function U(x), we have2 below the forward-difference formula for the first derivative
and the central-difference formula for the second derivative, respectively:

U ′(x) ' [U(x + h)− U(x)]/h, (3)

U ′′(x) ' [U(x + h)− 2U(x) + U(x − h)]/h2. (4)

We can apply the above approximations for eqn (1) and (2), which gives rise to two kinds
of methods, explicit or implicit. The explicit method is computationally simple, however, it
has one serious drawback, that is, we require for the stability that λ = k/h2 ≤ 1/2, where
k = δt and h = δx. To avoid restriction from stability, we apply the Crank-Nicolson implicit
method. For simplicity, we first concern 1D case. We consider the partial differential equation
as being satisfied at the midpoint {ih, (j + 1/2)k} and replaced ∂2U/∂x2 by the mean of its
central-difference approximation at the jth and (j + 1)th time-levels. In other words, we
approximate the equation (

∂U

∂t

)
i,j+ 1

2

=

(
∂2U

∂x2

)
i,j+ 1

2

(5)

by
ui,j+1 − ui,j

k
=

1

2

{
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

h2
+

ui+1,j − 2ui,j + ui−1,j

h2

}
. (6)

Therefore, we need to solve a system of linear equations for u at the (j + 1)th time-level
given computed u at the jth time-level.

1This is the term project in math600, Special Topics in Numerical Analysis, given by Professor
Proskurowski, USC, Summer 2003.

2See Smith [1], page 7 and 20.

2

2.2 Newton’s Linearization Method

Supppose we have a system of N (nonlinear) equations3 in the N dependent variables u1, u2, . . . , uN :

fi(u1, u2, . . . , uN) = 0, i = 1(1)N, (7)

Let Vi be a known approximation to the exact solution value ui, i = 1(1)N . Put ui = Vi+εi and
substitute into eqn (7). Then by Taylor’s expansion to the first-order terms in εi, i = 1(1)N ,

fi(V1, V2, . . . , VN) +

[
∂fi

∂u1

ε1 +
∂fi

∂u2

ε2 + . . . +
∂fi

∂uN

εN

]
ui=Vi

= 0, (8)

The subscript notation on the second bracket indicates that the dependent variables u1, u2, . . . , uN

appearing in the coefficients of ε1, ε2, . . . , εN are replaced by V1, V2, . . . , VN respectively after
the differentiations. We solve (8) for ε’s then update Vi = Vi + εi, and repeat this until we
reach certain degree of accuracy, say ||ε|| < 10−8. In addition, it usually takes 2 or 3 Newton
iterations at each time-level.

2.3 1D Case

For the 1D problem (1), we subdivide the x-t plane into sets of equal rectangles of sides
δx = h, δt = k, and denote xi = ih and tj = jk. Moreover, denote the value of u at the mesh
point (ih, jk) by u(ih, jk) = ui,j. Thus, the approximation equation becomes eqn (6). Put
p = h2/k and denote ui,j+1 = ui. We have

u2
i−1 − 2(u2

i + pui) + u2
i−1 + {u2

i−1,j − 2(u2
i,j − pui,j) + u2

i−1,j} = 0

≡ fi(ui−1, ui, ui+1). (9)

By eqn (8), we have

2Vi−1εi−1 − 2(2Vi + p)εi + 2Vi+1εi+1 + {V 2
i−1 − 2(V 2

i + pVi) + V 2
i+1}

+ {u2
i−1,j − 2(u2

i,j − pui,j) + u2
i+1,j} = 0, (10)

where Vi is an approximation to ui,j+1.
We can write eqn (10) in matrix form, i.e., Aj+1Vj+1 = bj+1. Unlike the situation we have

in the linear 1D parabolic equation, ut = uxx, where the matrix A is an invariable tridiagonal
matrix, our matrix Aj+1 in each iteration is constructed by the current approximation vector
V and the vector b is generated by two parts, variable part from V and invariable part from
u at the jth time-level.

3See Smith [1], page 142–3.

3

2.4 2D Case

For the 2D problem (2), we have the similar iteration scheme as for the 1D problem. First
we subdivide the x-y plane into sets of equal rectangles of sides δx = δy = h. Then discretize
time t as δt = k. Now we use index i, j, l for x, y, t, respectively. Since we need to approximate
both (u2)xx and (u2)yy, our approximation equation becomes

ui,j,l+1 − ui,j,l

k
=

1

2h2
[{ui+1,j,l+1 − 2ui,j,l+1 + ui−1,j,l+1

h2
+

ui+1,j,l − 2ui,j,l + ui−1,j,l

h2
}

+ {ui,j+1,l+1 − 2ui,j,l+1 + ui−1,j,l+1

h2
+

ui,j−1,l − 2ui,j,l + ui,j+1,l

h2
}]. (11)

Similarly, put p = h2/k and denote ui,j,l+1 = ui,j, we have

− u2
i−1,j − u2

i+1,j + (4u2
i,j + 2pui,j)− u2

i,j−1 − u2
i,j+1

− [u2
i−1,j,l + u2

i+1,j,l − (4u2
i,j,l − 2pui,j,l) + u2

i,j−1,l + u2
i,j+1,l]

= 0 ≡ fi(ui−1,j, ui+1,j, ui,j, ui,j−1, ui,j+1). (12)

By eqn (8), we obtain equations for vector ε with currecnt vector V at the (l+1)th time-level,

− 2Vi−1,jεi−1,j − 2Vi+1,jεi+1,j + (8Vi,j + 2p)εi,j − 2Vi,j−1εi,j−1 − 2Vi,j+1εi,j+1

= [V 2
i−1,j + V 2

i+1,j − (4V 2
i,j + 2pVi,j) + V 2

i,j−1 + V 2
i,j+1]+

[u2
i−1,j,l + u2

i+1,j,l − (4u2
i,j,l − 2pui,j,l) + u2

i,j−1,l + u2
i,j+1,l]. (13)

We can write eqn (13) in matrix form, i.e., Al+1Vl+1 = bl+1. Instead of a tridiagonal matrix in
1D problem, we have a pentadiagonal matrix A, whose dimension is the square of the number
of steps in either x or y. In other words, the matrix size in 2D is the square of the one in 1D
choosing same spatial stepsize h, so solving 2D problem requires much more running time as
well as machine memory.

2.5 Richardson Extrapolation and Convergence Rate

Simply speaking, Richardson Extrapolation is to construct a better solution based on the
estimate of current local error: given the order of accuracy for the solver(say p), we first
obtain a solution u1 with mesh length h,, then we compute another solution u2 with finer
mesh length h/2, finnaly we update our solution as u? below,

u? = u2 +
u2 − u1

2p − 1
. (14)

With Richardson Extrapolation in mind, we can obtain a reliable estimate of the discretization
error as a function of the mesh length, or the convergence rate of iterated solution u(h). That
is, we want to find p such that the true value u = uh + O(hp). Suppose we obtain three

4

h=.0125 h=.025 h=.05 h=.1
k=.01 217.2430 36.6320 7.5110 2.1640
k=.005 420.8550 71.0120 13.7690 3.3850
k=.0025 806.7400 140.1110 26.0280 7.0800

Table 1: Running time in 2D case.

solutions, u1, u2, u3, corresponding to three mesh length, h, h/2, h/4, respectively. Then we
estimate p using the formula below,

p = ln
|u1 − u2|
|u2 − u3|/ln 2. (15)

To compute the difference between two vectors of difference sizes, we transform the vector
of larger dimension to a temporary one of the same size of the other vector, then find the
inf-norm of the difference between the temporary vector and the vector of smaller dimension.
See Appendix C(Rate.m, RateS.m, Diff1.m for more details.

3 Results

For the 1D problem, we take h = .1, .05, .025, .0125, .00625 for x, and k = .01, .005, .0025 for
t, with tol = 10−8 in the iteration stopping criteria. For the 2D problem, we have the same
setup except we did not test for the case h = .00625, which generates a 25281× 25281 matrix
in each iteration. For command information, see Appendix B.

3.1 Running time(2D case)

Here we provide the runtime Table 1(in seconds) for the 2D case only, since it does not take
time to solve the 1D case with our choices of h and k. Also we provides the log plot of
running time curve, see Figure 1. It is clear that the running time increases linearly in k and
approximately quadratically in h as h, k decrease.

3.2 Newton Iterations

For both 1D and 2D cases, the mean number of iterations at each time-level is 2, see two
examples below. For 2D case, we provide the running time Table4 2 for single iteration at
each time-level.

4The item ‘dim’ is the dimension of the matrix A in each iteration, given by (1/h− 1)2.

5

10
−1

10
0

10
1

10
2

10
3

log plot of runtime curve for 2D

h

tim
e(

se
c)

k=0.0025

k=0.01

k=0.005

(slope = −2.22)

(slope = −2.32)

(slope = −2.29)

Figure 1: Runing time in 2D case

h=.0125 h=.025 h=.05 h=.1
t=.1 1.0862 0.1832 0.0376 0.0108

t=.005 1.0521 0.1775 0.0344 0.0085
t=.0025 1.0084 0.1751 0.0325 0.0088

dim 6241 1521 361 81

Table 2: Running time of Newton iteration in 2D case.

[u13, i13, t13]=NLP1(0.025,0.01,1e-8);

mean(i13)

ans =

2

[u22,i22,t22]=NLP2(.05,.005,1e-8);

mean(i22)

ans =

1.99004975124378

3.3 Order of accuracy vs h and k

Here we compare the solutions u at t = 1 for different pair (h, k). For each k, we vary the
spatial stepsize h and obtain the solutions then compute ph by eqn (15), i.e., the order of
accuracy for h. Similarly, for each h, we vary the temporal stepsize k to obtain pk. The result
is given in Table 3 and 4. Note: we are using the inf-norm for the difference of two vectors.

6

k 0.01 0.005 0.0025
ph 1.999836 1.999838 1.999839

h 0.1 0.05 0.025 0.0125 0.00625
pk 1.999860 1.999882 1.999864 1.999871 1.999854

Table 3: Order of accuracy for h and k in 1D case.

k 0.01 0.005 0.0025
ph 2.013106 2.013097 2.013095

h 0.1 0.05 0.025 0.0125
pk 1.998083 1.997975 1.997849 1.997891

Table 4: Order of accuracy for h and k in 2D case.

4 Discussion

It is clear that the order of accuracy for Crank-Nicolson Method is O(h2+k2)(see Results 3.3),
which is the advantage of taking 1/2 in the weighted central difference approximation, i.e.,
(∂2U/∂x2)i,j+θ ' θ (∂2U/∂x2)i,j + (1− θ) (∂2U/∂x2)i,j+1. In general, we can apply Richtmyer
Method using weighted difference weighted approximation to nonlinear parabolic equation of
higher order degree, for example, ut = (un)xx.

From the log plot of running time curve for 2D case(see Figure 1), it is clear that the
running time increases linearly in k and quadratically in h as k and h decrease. In other
words, we need to apply Newton’s method to 1/k temporal steps, and at each time-level, we
need to solve a matrix of size (1/h− 1)× (1/h− 1) in each iteration. Unlike the situation to
solve 1D case where it takes little effor(time, memory, etc) to obtain the solution, we require
much more running time as well as machine memory for 2D case.

Newton’s Linearizaion Method is a good tool for linearizing nonlinear PDE’s, just like its
use for nonlinear equations. The key idea is eqn (8), that is, if we can find and/or approximate
∂fi/∂uk easily(which is the case in our project), we can generate the matrix A and vector b
such that the system of linear equations can be written as Ae = b. However, we must keep
in mind that the matrix and vectors in Newton iterations are variables, and the boundary
conditions at different time-level are different. In our projects, it takes 2 Newton iterations
to find solution at each time-level with tol = 1e− 8. In addition, it is usually convenient and
efficient to use the ‘backslash’ method if you use Matlab, i.e., e = A\b, whereas the matrix A
is very sparse.

As to the convergence rate of solutions, the formula 15 based on the Richardson’s Extrap-
olation provides fairly good estimates, which inidicates we would probably benefit applying
this estimate back to estimate the local error and update to get an improved solution. Besides,

7

we can estimate the local error and then estimate ‘optimal’ stepsize to march for the next
time-level, which is no longer fixed, —we can implement adaptive solver!

Last word is about the generalization of our approach. First consider the heat equations
for a stick(1D), a plane(2D), and a cube(3D), we obtain matrix expression of the problem,
Au = b. In nonlinear parabolic case, we have similar expression but with variable matrix
and vectors. To be more precise, there is 3 = 21 + 1 diagonals in the matrix A in 1D case,
5 = 22 + 1 diagonals in 2D case, and (we conjecture and believe) 9 = 23 + 1 diagonals in 3D
case. To sum, we can apply our approach to problems of higher order, whereas the matrix
size increases dramatically as the dimension increase.

A Examples

Here we present two exampels: one for 1D case and the other for 2D case. For simplicity, we study problems
in which the initial and Dirichlet boundary condition correspond to the exact solution given explicity by a
linear function, that is, u(x, t) = x + 2t for 1D case and u(x, y, t) = x + y + 4t for 2D case. In each example,
we debug the program and give all the intermediate steps at the first time-level, where it takes two Newton
iterations to march to the next time-level. From the examples below with moderate values of h and k, we
have very high accuracy at each time-level due to the linearity of the exact solution.

A.1 1D case

For the purpose of illustration, we consider a trivial solution to the 1D problem (1), u(t, x) = x + 2t, which
gives both the initial and boundary conditions. Below we take h = .1, k = .005, tol = 10−8, then study the
iterations at the 1st time-level, i.e., l = 2 in the main program.

% Example for 1D case
% take h=.1, k=.005, tol=1e-8 for Newton iterations,
% initial and boundary conditions given by u=x+2t.
[u, i, t]=NLP1(.1, .005, 1e-8);
[h k p]
ans =

0.1000 0.0050 2.0000

% initial condition at t=0
v’
ans =

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
% boundary conditions at t=0 for x=0 and 1
[u0 u1]
ans =

0 1

% start iterations with initial value V
v’
ans =

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
% the boundary values at 1st time-level, i.e., t=.005
[v0 v1]

8

ans =
0.0100 1.0100

% 1. matrix A generated from vector V , v0 and v1
full(A)
ans =

4.4000 -0.4000 0 0 0 0 0 0 0
-0.2000 4.8000 -0.6000 0 0 0 0 0 0

0 -0.4000 5.2000 -0.8000 0 0 0 0 0
0 0 -0.6000 5.6000 -1.0000 0 0 0 0
0 0 0 -0.8000 6.0000 -1.2000 0 0 0
0 0 0 0 -1.0000 6.4000 -1.4000 0 0
0 0 0 0 0 -1.2000 6.8000 -1.6000 0
0 0 0 0 0 0 -1.4000 7.2000 -1.8000
0 0 0 0 0 0 0 -1.6000 7.6000

% 2. vector b=bu+bv
[bu’; bv’; b’]
ans =

0.4200 0.8200 1.2200 1.6200 2.0200 2.4200 2.8200 3.2200 3.6200
-0.3799 -0.7800 -1.1800 -1.5800 -1.9800 -2.3800 -2.7800 -3.1800 -3.5599
0.0401 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0601

% vector e=A\b
e’
ans =

0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

% Updated solution after 1 iteration vs exact solution
[v’; uu(:,2)’]
ans =

0.1100 0.2100 0.3100 0.4100 0.5100 0.6100 0.7100 0.8100 0.9100
0.1100 0.2100 0.3100 0.4100 0.5100 0.6100 0.7100 0.8100 0.9100

norm(v-uu(:,2),inf)
ans =
2.2815e-005

% another iteration
[e’; v’; uu(:,2)’]
ans =

-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
0.1100 0.2100 0.3100 0.4100 0.5100 0.6100 0.7100 0.8100 0.9100
0.1100 0.2100 0.3100 0.4100 0.5100 0.6100 0.7100 0.8100 0.9100

norm(e,inf)
ans =
2.2814e-005

norm(v-uu(:,2),inf)
ans =
2.2498e-010

% current vector e with updated vector v

9

norm(e,inf)
ans =

2.249804751195629e-010
% that is, we obtain the solution for t=0.005 after 2 iterations
% the local error is very small due to the linearity of the exact solution.

A.2 2D case

For the purpose of illustration, we consider a trivial solution to the 2D problem (2) with initial and boundary
conditions given by u(t, x, y) = sin x sin y exp(−2t). Below is an example taking h = .25, k = .01, tol = 10−8,
at the 1st time-level, i.e., l = 2 in the main program.

% Example in 2D case
% h=.25, k=.01, tol=1e-8;
% initial and boundary conditions given by u=x+y+4t
[u, iter, time]=NLP2(.25, .01, 1e-8);
[h k p]
ans =

0.2500 0.0100 6.2500

% at time-level t=0
% initial condition, i.e., u(:,1) or uu(:,2)
u(:,1)’
ans =
Columns 1 through 8
0.5000 0.7500 1.0000 0.7500 1.0000 1.2500 1.0000 1.2500

Column 9
1.5000

u(:,1)’
ans =

0.5000 0.7500 1.0000 0.7500 1.0000 1.2500 1.0000 1.2500 1.5000
% boundary condition, i.e., if x=0 or 1, or y=0 or 1
[u_0_dot; u_dot_0; u_1_dot; u_dot_1]
ans =

0.2500 0.5000 0.7500
0.2500 0.5000 0.7500
1.2500 1.5000 1.7500
1.2500 1.5000 1.7500

% Start iterations at time-level t=.005, or l=2 in the loop
% 1. initial value for v and the exact solution at t=.005
[v’; uu(:,2)’]
ans =

0.5000 0.7500 1.0000 0.7500 1.0000 1.2500 1.0000 1.2500 1.5000
0.5400 0.7900 1.0400 0.7900 1.0400 1.2900 1.0400 1.2900 1.5400

% boundary condition at t=.005
[v_0_dot; v_dot_0; v_1_dot; v_dot_1]
ans =

0.2900 0.5400 0.7900
0.2900 0.5400 0.7900

10

1.2900 1.5400 1.7900
1.2900 1.5400 1.7900

% 2. matrix A generated from vector v and its boundary values
full(A)
ans =

16.5000 -1.5000 0 -1.5000 0 0 0 0 0
-1.0000 18.5000 -2.0000 0 -2.0000 0 0 0 0

0 -1.5000 20.5000 0 0 -2.5000 0 0 0
-1.0000 0 0 18.5000 -2.0000 0 -2.0000 0 0

0 -1.5000 0 -1.5000 20.5000 -2.5000 0 -2.5000 0
0 0 -2.0000 0 -2.0000 22.5000 0 0 -3.0000
0 0 0 -1.5000 0 0 20.5000 -2.5000 0
0 0 0 0 -2.0000 0 -2.0000 22.5000 -3.0000
0 0 0 0 0 -2.5000 0 -2.5000 24.5000

% 3. vector b=bu+bv
[bu’; bv’; b’]
ans =

6.5000 9.6250 12.7500 9.6250 12.7500 15.8750 12.7500 15.8750 19.0000
-5.9568 -9.0834 -12.0868 -9.0834 -12.2500 -15.2534 -12.0868 -15.2534 -18.2168
0.5432 0.5416 0.6632 0.5416 0.5000 0.6216 0.6632 0.6216 0.7832

% 4. solve e=A\b and update vector v
[e’; v’]
ans =

0.0402 0.0401 0.0402 0.0401 0.0400 0.0401 0.0402 0.0401 0.0402
0.5402 0.7901 1.0402 0.7901 1.0400 1.2901 1.0402 1.2901 1.5402

% difference between current v and exact solution after 1 iteration
norm(v-uu(:,2),inf)
ans =
2.1619e-004

% 5. solve e=A\b and update vector v(in the 2nd iteration)
[e’; v’]
ans =

-0.0002 -0.0001 -0.0002 -0.0001 -0.0000 -0.0001 -0.0002 -0.0001 -0.0002
0.5400 0.7900 1.0400 0.7900 1.0400 1.2900 1.0400 1.2900 1.5400

% difference between current v and exact solution after 2 iterations
norm(v-uu(:,2),inf)
ans =
9.2801e-009

% 6. solve e=A\b with currecnt vector v
e’
ans =
1.0e-008 *
-0.9280 0.0283 -0.4829 0.0283 0.2214 -0.0282 -0.4829 -0.0282 -0.2848

norm(e,inf)
ans =
9.2801e-009

11

% since norm(e,inf)<1e-8, we stop iterations and march to the next time-level.

B Commands

Here we list the commands to obtain solutions, to get time table, and to find the convergence rate.

1. Obtain solutions.

% 1D problem
% for t = 0.01, 0.005, 0.0025
% for h = 0.1, 0.05, 0.025, 0.0125, 0.00625
[u11, i11, t11]=NLP1(0.1,0.01,1e-8);
[u12, i12, t12]=NLP1(0.05,0.01,1e-8);
...
[u35, i35, t35]=NLP1(0.00625, 0.0025,1e-8);
% note: u --solution matrix
% i --iteration vector
% t --running time

% 2D problem
% for t = 0.01, 0.005, 0.0025
% for h = 0.1, 0.05, 0.025, 0.0125
[u11, i11, t11]=NLP2(0.1,0.01,1e-8);
[u12, i12, t12]=NLP2(0.05,0.01,1e-8);
...
[u34, i34, t34]=NLP2(0.0125, 0.0025,1e-8);
% note: same notations for u, i, and t.

2. Construct time table for the 2D case.

% 2D case
tol=1e-8;
k=[0.01 0.005 0.0025];
h=[0.0125 0.025 0.05 0.1];
t=[t14 t13 t12 t11; t24 t23 t22 t21; t34 t33 t32 t31]
t =
217.2430 36.6320 7.5110 2.1640
420.8550 71.0120 13.7690 3.3850
806.7400 140.1110 26.0280 7.0800

% mean time for each iteration
[t(1,:)/100; t(2,:)/200; t(3,:)/400]/2
ans =

1.0862 0.1832 0.0376 0.0108
1.0521 0.1775 0.0344 0.0085

12

1.0084 0.1751 0.0325 0.0088

% note: there are 100, 200 and 400 time steps for t=0.01, 0.05, and t=0.025,
% respectively; moreover, there are about 2 iterations at each time-level.

3. Estimatte the convergence rate.

% 1D case
% find p for t=0.01
p13=Rate(u13,u14,u15,101)
p13 =

1.50115859265552 1.99983691089679
...
% find p for t=0.025
p33=Rate(u33,u34,u35,401)
p33 =

1.50030326932689 1.99983943506904
% note: the first one is in 2-norm and the second one is in inf-norm.

% find p for h=0.1
p=RateS(u11,u21,u31)
p =

1.99937218001895 1.99986037178239
...
% find p for h=0.00625
p=RateS(u15,u25,u35)
p =

1.99925594341070 1.99985402476488

% 2D case
...
% find p for t=0.0025
p=log(diff1(u32,u33,401)/diff1(u33,u34,401))/log(2) %inf-norm, k=0.005
p =

2.01309523099357

% find p for h=0.1
p=log(norm(u11(:,101)-u21(:,201),inf)/norm(u21(:,201)-u31(:,401),inf))/log(2)
p =

1.99808395859832
...
% find p for h=0.0125
p=log(norm(u14(:,101)-u24(:,201),inf)/norm(u24(:,201)-u34(:,401),inf))/log(2)
p =

1.99789112962261

13

C Codes

Here are the m-files: NR1.m, NR2.m, NLP1.m, NLP2.m, Rate.m, RateS.m, and Diff1.m.

NR1.m

M-file NR1.m for the 1D problem.

function [u,iter,time]=NR1(t,x);
% u = NR1(t, x) with tol=1E-8
% Newton-Ralson method to solve f(u,t,x)=0 given t and x,
% where f(u,t,x) is given implicitly below
% (2u-3)+log(u-1/2)-2(2t-x)=0.
% The initial guess for u is taken as (2t-x+3)/2, i.e., we
% igore the logarithm part.

tol=1e-8; % to set the error bound
tic; % to start time counter

u=(2*t-x+3); % u --value obtained before iteration
f=(2*u-3)+log(u-1/2)-2*(2*t-x); % f --is f(u,t,x)
fp=2+1/(u-1/2); % fp --is f’(u,t,x)
uu=u-f/fp; % uu --value after iteration
iter=1;

while (abs(u-uu) > tol)
% to start another iteration
iter=iter+1;
u=uu;
f=(2*u-3)+log(u-1/2)-2*(2*t-x); % f --is f(u,t,x)
fp=2+1/(u-1/2); % fp --is f’(u,t,x)
uu=u-f/fp; % uu --value after iteration

end

time=toc; % to obtain the elasped time

% u=x+2*t; % uncomment this one for testing ONLY

%%%%%%%%%%%%%%%%%%%%%%%%end of mfile %%%%%%%%%%%%%%%%%%%%%%%%%

NR2.m

M-file NR2.m for the 2D problem.

function u=NR2(t, x, y);
% to compute u(t, x, y) for t from [0,1] and
% (x,y) from [0,1]^2.

14

% Here the function is choose as 20sin(x)sin(y)exp(-2t),

u=sin(x)*sin(y)*exp(-2*t);
%u=x+y+4*t; % uncomment this one for testing ONLY

%%%%%%%%%%%%%%%%%%%%%%%%end of mfile %%%%%%%%%%%%%%%%%%%%%%%%%

C.1 1D Solver: NLP1()

M-file NLP1.m for solving 1D nonlinear parabolic equation of the form (1).

function [u, iter, time]=NLP1(h, k, tol);
% [u, iter, time] = NLP1(h, k, tol)
% Solver for Non-Linear Parabolic equation, du/dt=dd(u^2)/dd(x)
% (dd() is the 2nd differential operator).
%
% We consider the initial conditions and Dirichlet boundary
% conditions corresponding to the eaxct solution obtained by
% NR1(t,x)(see NR1.m for the implicit function f(u,t,x)). Here
% choose fixed stepsize for x and t, i.e., h=Delta(x) and
% k=Delta(t). Moreover, we have x from [0,1] and t from[0, 1].

tic; % to start time counter

% to initialize...
ns=1/h-1; % the number of unkonwn points for each row(spatial)
x=(h:h:1-h)’; % spatial vector for later reference

nt=1/k; % the number of time points to be solved
t=(0:k:1)’; % temporal vector for later reference

% u=zeros([ns 2]); % for test purpose only
u=zeros([ns nt+1]); % u(:,t) gives solution at time t.
p=h*h/k;
iter=zeros([nt 1]);

% to get initial and Dirichlet boundary conditions
for i=1:ns

u(i,1)=NR1(0,x(i));
end

% temprory vector
b=zeros([ns 1]);
v=zeros([ns 1]);

% % now to compute the exact solution for u
% uu=zeros([ns nt+1]);
% uu(:,1)=u(:,1); % case: t=0;

15

% for i=1:ns
% for j=1:nt
% uu(i,j+1)=NR1(t(j+1),x(i));
% end
% end

% main loop to obtain u(t_(j+1)) from u(t_j)
for j=2:nt+1

% to solve e_(j) s.t. u(t_j)=u(t_(j-1))+e_j
% the equation is A_j*e_j=b_j
% Both A and b are generated from vector v(t_(j-1)),
% which is initially u(t_(j-1))
v=u(:,j-1);
A=spdiags([-2*v 4*v+2*p -2*v], [-1 0 1], ns, ns);
% to use the action of matrix
v2=v.^2;
u0=NR1(t(j-1),0); % i.e., u(, 0)
u1=NR1(t(j-1),1); % i.e., u(t_j, 1)
v0=NR1(t(j),0); % i.e., u(t_(j+1),0), left bound for vector v
v1=NR1(t(j),1); % i.e., u(t__(j+1),0), right bound for vector v
bu=[u0^2; v2(1:ns-1)] - 2*(v2-p*v) + [v2(2:ns); u1^2]; % unchanged, here v=u(:,j)
bv=[v0^2; v2(1:ns-1)] - 2*(v2+p*v) + [v2(2:ns); v1^2];
b=bu+bv;
e=A\b;

counter=1;
while (norm(e,inf)>tol)

v=v+e;
A=spdiags([-2*v 4*v+2*p -2*v], [-1 0 1], ns, ns);
v2=v.^2;
bv=[v0^2; v2(1:ns-1)] - 2*(v2+p*v) + [v2(2:ns); v1^2];
b=bu+bv;
e=A\b;

counter=counter+1; % to record iteration number
end

u(:,j)=v;
iter(j-1)=counter;

end

time=toc;

%%%%%%%%%%%%%%%%%%%%%%%%%%end of mfile%%%%%%%%%%%%%%%%%%%%%%%%

C.2 2D Solver: NLP2()

M-file NLP2.m for solving the 2D nonlinear parabolic equation of the form (2).

16

function [u, iter, time]=NLP2(h, k, tol);
% [u, t, iter, time, uu] = NLP1(h, k, tol)
% Solver for 2D Non-Linear Parabolic equation, du/dt=dd(u^2)/dd(x)
% (dd() is the 2nd differential operator).
%
% We consider the initial conditions and Dirichlet boundary
% conditions corresponding to the eaxct solution obtained by
% NR2(t,x,y)(see NR2.m for the implicit function f(u,t,x,y)). Here
% choose fixed stepsize for x,y, and t, i.e., h=Delta(x)=Delta(y) and
% k=Delta(t). Moreover, we have (x,y) from [0,1]^2 and t from[0, 1].

tic; % to start timer

% to initialize...
ns=1/h-1; % the number of unkonwn points for each row(spatial)

% and ns*ns is the size of solution vector for each time t

nt=1/k; % the number of time points to be solved
t=(0:k:1)’; % temporal vector for later reference

% u=zeros([ns*ns 2]); % for test purpose
u=zeros([ns*ns nt+1]); % u(:,t) gives solution at time t.

p=h*h/k;
iter=zeros([nt 1]);

% to get initial conditions
for i=1:ns

for j=1:ns
l=(i-1)*ns+j; % index in solution vector for [i,j]
u(l,1)=NR2(0, i*h, j*h);

end
end

% fixed boundary conditions for [0,:], [:,0], [1, :], and [:, 1]
for i=1:ns

v_0_dot(i)=NR2(0, 0, i*h); % [0, :]
v_dot_0(i)=NR2(0, i*h, 0); % [:, 0]
v_1_dot(i)=NR2(0, 1, i*h); % [1, :]
v_dot_1(i)=NR2(0, i*h, 1); % [:, 1]

end

% % to compute the exact solution
% uu=zeros(ns*ns, 2);
% uu(:,1)=u(:,1);
% for i=1:ns
% for j=1:ns
% ll=(i-1)*ns+j;
% uu(ll,l)=NR2(t(l),i*h,j*h);
% end

17

% end
% end

% temporary vectors
bu=zeros(ns*ns, 1);
bv=zeros(ns*ns, 1);

% Main Loop to compute U(t_l) from U(t_(l-1))
n=ns*ns; % the size of solution vector
for l=2:nt+1

round=l;

% to solve e_(l) s.t. u(t_l)=v_l+e_l
% the equation is A_l*e_l=b_l
% Both A and b are generated from vector v_l,
% which is initially u(t_(l-1))

v=u(:,l-1);

% to generate the sparse pentadiagonal matrix A_l
v1_plus=v; v1_minus=v;
for i=1:ns-1

v1_plus(i*ns+1)=0;
v1_minus(i*ns)=0;

end

A=spdiags([-2*v -2*v1_minus 8*v+2*p -2*v1_plus -2*v], [-ns -1 0 1 ns], ns*ns, ns*ns);

% first to generate bu which is invariable in the current loop.
% note: v=u(:,l-1) right now
u_0_dot=v_0_dot;
u_dot_0=v_dot_0;
u_1_dot=v_1_dot;
u_dot_1=v_dot_1;

for i=1:ns
for j=1:ns

ll=(i-1)*ns+j; % index for [i,j] in vector bu
tmp=-4*v(ll)^2+2*p*v(ll); % u(t, i,j)
if (i==1)

tmp=tmp + u_0_dot(j)^2; % u(t, 0,j)
else

tmp=tmp + v(ll-ns)^2; % u(t, i-1,j)
end

if (j==1)
tmp=tmp + u_dot_0(i)^2; % u(t, i,0)

else
tmp=tmp + v(ll-1)^2; % u(t, i, j-1)

end

18

if (i==ns)
tmp=tmp + u_1_dot(j)^2; % u(t, 1,j)

else
tmp=tmp + v(ll+ns)^2; % u(t, i+1,j)

end

if (j==ns)
tmp=tmp + u_dot_1(i)^2; % u(t, i,1)

else
tmp=tmp + v(ll+1)^2; % u(t, i,j+1)

end

bu(ll)=tmp;
end

end

% then to generate bv in the similar way above
% first to generate boundary condition for v

tj=t(l);
for i=1:ns

v_0_dot(i)=NR2(tj, 0, i*h); % [0, :]
v_dot_0(i)=NR2(tj, i*h, 0); % [:, 0]
v_1_dot(i)=NR2(tj, 1, i*h); % [1, :]
v_dot_1(i)=NR2(tj, i*h, 1); % [:, 1]

end

for i=1:ns
for j=1:ns

ll=(i-1)*ns+j; % index for [i,j] in vector bu
tmp=-4*v(ll)^2 - 2*p*v(ll); % v(t, i,j)
if (i==1)

tmp=tmp + v_0_dot(j)^2; % u(t, 0,j)
else

tmp=tmp + v(ll-ns)^2; % v(t, i-1,j)
end

if (j==1)
tmp=tmp + v_dot_0(i)^2; % u(t, i,0)

else
tmp=tmp + v(ll-1)^2; % v(t, i, j-1)

end

if (i==ns)
tmp=tmp + v_1_dot(j)^2; % u(t, 1,j)

else
tmp=tmp + v(ll+ns)^2; % v(t, i+1,j)

end

if (j==ns)
tmp=tmp + v_dot_1(i)^2; % u(t, i,1)

19

else
tmp=tmp + v(ll+1)^2; % v(t, i,j+1)

end

bv(ll)=tmp;
end

end

% finally to get b=bu+bv
b=bu+bv;

% to solve e_l from equation A_l*e_l=b
e=A\b;
counter=0;

while (norm(e,inf) > tol)
% to continue iteration, i.e., to generate A and bv using updated v
v=v+e;

% to generate the sparse pentadiagonal matrix A_l
v1_plus=v; v1_minus=v;
for i=1:ns-1

v1_plus(i*ns+1)=0;
v1_minus(i*ns)=0;

end

A=spdiags([-2*v -2*v1_minus 8*v+2*p -2*v1_plus -2*v], [-ns -1 0 1 ns], ns*ns, ns*ns);

% to generate bv in the similar way above
for i=1:ns

for j=1:ns
ll=(i-1)*ns+j; % index for [i,j] in vector bu
tmp=-4*v(ll)^2 - 2*p*v(ll); % v(t, i,j)
if (i==1)

tmp=tmp + v_0_dot(j)^2; % u(t, 0,j)
else

tmp=tmp + v(ll-ns)^2; % v(t, i-1,j)
end

if (j==1)
tmp=tmp + v_dot_0(i)^2; % u(t, i,0)

else
tmp=tmp + v(ll-1)^2; % v(t, i, j-1)

end

if (i==ns)
tmp=tmp + v_1_dot(j)^2; % u(t, 1,j)

else
tmp=tmp + v(ll+ns)^2; % v(t, i+1,j)

end

20

if (j==ns)
tmp=tmp + v_dot_1(i)^2; % u(t, i,1)

else
tmp=tmp + v(ll+1)^2; % v(t, i,j+1)

end

bv(ll)=tmp;
end

end

% to get b=bv+bu
b=bv+bu;

% to solve for A*e=b
e=A\b;
counter=counter+1;

end % end of while()

u(:,l)=v;
iter(l)=counter;

end

time=toc;
%%%%%%%%%%%%%%%%%%%%%%%end of mfile%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C.3 Vector Comparisons

1. M-file Rate.m to find the inf-norm difference between two solution vectors of different sizes in 1D case.

function p=Rate(u1,u2,u3, nt);
% find the convergence rate from three solutions
% u1, u2, u3 with stepsize h, h/2, and h/4, respectively.

n=size(u1);
n1=n(1); % to get the size of vector u1
n2=2*n1+1; n3=2*n2+1;

p=zeros(1,2);
% using 2-norm
p(1)=log(norm(u1(:,nt)-u2(2:2:n2-1,nt))/norm(u2(:,nt)-u3(2:2:n3-1,nt)))/log(2);
% using inf-norm
p(2)=log(norm(u1(:,nt)-u2(2:2:n2-1,nt),inf)/norm(u2(:,nt)-u3(2:2:n3-1,nt),inf))/log(2);

%%%%%%%%%%%%%%%%%%%%%%%end of mfile%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2. M-file RateS.m to find the inf-norm difference between two solution vectors of same sizes but different
time steps in 1D case.

21

function p=RateS(u1,u2,u3)
% vectors u1, u2, u3 are of same size

s=size(u1);
nt=s(2); % number of steps in time
n1=nt; n2=2*n1-1; n3=2*n2-1;

p=zeros(1,2);
% using 2-norm
p(1)=log(norm(u1(:,n1)-u2(:,n2))/norm(u2(:,n2)-u3(:,n3)))/log(2);
% using inf-norm
p(2)=log(norm(u1(:,n1)-u2(:,n2),inf)/norm(u2(:,n2)-u3(:,n3),inf))/log(2);

%%%%%%%%%%%%%%%%%%%%%%%end of mfile%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3. M-file Diff1.m to find the inf-norm difference between two solution vectors of different sizes in 2D case.

function d=Diff1(u1, u2,n);
% to find the inf-norm of u1-u2 where u2 is a finer version of u1
% the idea is to construct a vector from u2 with same size as u1
% the transformation of (i,j) in u1 is (2i,2j) in u2

s=size(u1);
s1=sqrt(s(1));
s=size(u2);
s2=sqrt(s(1));

tmp=zeros(s1^2,1);
% to construct a vector from u2
for i=1:s1

for j=1:s1
l1=(i-1)*s1+j;
l2=(2*i-1)*s2+2*j;
tmp(l1)=u2(l2,n);

end
end

d=norm(u1(:,n)-tmp,inf);

%%%%%%%%%%%%%%%%%%%%%%%end of mfile%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

References

[1] G.D. Smith, Numerical solution of partial differential equations: Finite Difference Methods,
3rd ed, Oxford, 1985.

22

