next_inactive up previous


details

we calculate the approximated memory function

\begin{eqnarray*}
M_{\mu \nu }(\omega ) & = & \frac{\left\langle F_{\mu };F_{\nu...
...{\mu };F_{\nu }\right\rangle _{\omega =0}^{0}}{-\chi (0)\omega }
\end{eqnarray*}



first we extract the current density from the effective electronic Lagrangian

\begin{eqnarray*}
j_{x} & = & \left[\frac{\sqrt{2}}{\pi }ev_{F}g^{-1}\partial _{...
...y}\right)g^{-1}\partial _{x}u\right]\delta \left(y-u(x,t)\right)
\end{eqnarray*}



assuming $\rho \gg m$we can set

\begin{eqnarray*}
\Pi _{c} & = & \partial _{x}\theta _{c}\\
\Pi _{u} & = & \rho \partial _{t}u
\end{eqnarray*}



thus to order $\left(\partial _{x}u\right)^{2}$

\begin{eqnarray*}
j_{x} & = & \left[\frac{\sqrt{2}}{\pi }ev_{F}\left(1-\left(\pa...
...y}\right)g^{-1}\partial _{x}u\right]\delta \left(y-u(x,t)\right)
\end{eqnarray*}



the memory elemnts are

\begin{eqnarray*}
F_{\mu }(t) & = & \left[J_{\mu },H\right]=\left[J_{\mu },H_{f}...
...right\rangle \right\vert _{i\omega \rightarrow \omega +i\delta }
\end{eqnarray*}



where the optical component of the current is

\begin{eqnarray*}
J_{\mu } & = & \frac{1}{L_{x}L_{y}}\int dxdyj_{\mu }
\end{eqnarray*}



and the scattering potentials

\begin{eqnarray*}
H_{f} & = & -\frac{\sqrt{2}}{\pi }\int dxdy\eta (x,y)\partial ...
...os \sqrt{2}\phi _{s}(x,t)+h.c\right]\delta \left(y-u(x,t)\right)
\end{eqnarray*}



we enumerate the following operators:

\begin{eqnarray*}
\mathcal{O}_{1} & = & \frac{1}{L_{x}L_{y}}\int dxdy\delta \lef...
...ht)\partial _{x}\phi _{c}\left(\partial _{x}u\right)^{2}\Pi _{u}
\end{eqnarray*}



and define the operators:

\begin{eqnarray*}
C_{i} & = & C_{if}+C_{ib}\\
C_{if} & = & \left[\mathcal{O}_{i},H_{f}\right]\\
C_{ib} & = & \left[\mathcal{O}_{i},H_{b}\right]
\end{eqnarray*}



next we define a matrix of correlators

\begin{eqnarray*}
m_{ij}(\tau ) & = & \left\langle T_{\tau }C_{i}(\tau )C_{j}(0)\right\rangle =m_{ijf}(\tau )+m_{ijb}(\tau )
\end{eqnarray*}



the four basic commutators:

\begin{eqnarray*}
C_{11f}(\tau ) & = & 0\\
C_{11b}(\tau ) & = & \frac{\sqrt{2}}...
...x,\tau )+h.c\right]\partial _{y}\delta \left(y-u(x,\tau )\right)
\end{eqnarray*}



the non-zero diagonal temrs:

\begin{eqnarray*}
m_{11b} & = & -\frac{2}{\left(\pi \alpha \right)^{2}L_{y}}\lef...
...^{2}}\left\vert\frac{v_{c}\tau }{\alpha }\right\vert^{-2}m_{55b}
\end{eqnarray*}



the rest non-zero elements:

\begin{eqnarray*}
m_{13} & = & \left\langle \left(\partial _{x}u\right)^{2}\righ...
...\left\langle \left(\partial _{x}u\right)^{2}\right\rangle m_{77}
\end{eqnarray*}



so the memory elements are

\begin{eqnarray*}
\left\langle T_{\tau }F_{x}(\tau )F_{x}(0)\right\rangle & = & ...
...left\vert\frac{v_{c}\tau }{\alpha }\right\vert^{-2}\right]m_{44}
\end{eqnarray*}



the string correlations involved:

\begin{eqnarray*}
\left\langle D_{\xi }\left(u(x,\tau )-u(x,0)\right)\right\rang...
...{x}^{2}G(0,\tau )\pi D_{\xi }}{4\left(\pi \Delta G\right)^{3/2}}
\end{eqnarray*}



the f. transform has the typical integral

\begin{eqnarray*}
I(i\omega ;\beta ) & = & \int _{0}^{\infty }d\tau \left(\frac{...
...nfty }dz\left(\frac{z}{\epsilon }+\omega \right)^{-\beta }e^{iz}
\end{eqnarray*}



According to Mathematica

\begin{eqnarray*}
\int _{0}^{\infty }d\tau \frac{e^{i\omega \tau }-1}{\left(\fra...
...\omega \right)^{\beta -1}+o\left(\epsilon ^{2}\omega ^{2}\right)
\end{eqnarray*}



The integral can be estimated as

\begin{eqnarray*}
\int _{0}^{\infty }d\tau \frac{e^{i\omega \tau }}{\left(\frac{...
...psilon }^{\infty }d\tau \frac{e^{i\omega \tau }}{\tau ^{\beta }}
\end{eqnarray*}



shifting the path to the imaginary axis

\begin{eqnarray*}
\int _{\epsilon }^{\infty }d\tau \frac{e^{i\omega \tau }}{\tau...
...ac{\omega \epsilon }{2-\beta }\left(i^{2-\beta }-1\right)\right]
\end{eqnarray*}



thus

\begin{eqnarray*}
\int _{0}^{\infty }d\tau \frac{e^{i\omega \tau }-1}{\left(\fra...
...1-\beta ;\omega \epsilon \right)\left(i\omega \right)^{\beta -1}
\end{eqnarray*}



the answer we expect (hopefully as a limit from finite temperature and taking it to zero)

\begin{eqnarray*}
\int _{0}^{\infty }d\tau \frac{e^{i\omega \tau }-1}{\left(\fra...
...1-\beta ;\omega \epsilon \right)\left(i\omega \right)^{\beta -1}
\end{eqnarray*}



generic form

\begin{eqnarray*}
\left\langle T_{\tau }F_{x}(\tau )F_{x}(0)\right\rangle & = & ...
...\rangle \right)\left\vert\frac{\tau }{\epsilon }\right\vert^{-K}
\end{eqnarray*}



\begin{eqnarray*}
\epsilon & = & \frac{\alpha }{v_{s}}\\
K & = & K_{c}+K_{s}\\ ...
...{v_{s}}{v_{c}}\right)^{2}\\
z & = & \epsilon (\omega +i\delta )
\end{eqnarray*}



stationary string

\begin{eqnarray*}
\left\langle T_{\tau }F_{x}(\tau )F_{x}(0)\right\rangle & = & -AD_{\xi }\left\vert\frac{\tau }{\epsilon }\right\vert^{-K}
\end{eqnarray*}



\begin{eqnarray*}
M_{xx}(z) & = & A\epsilon ^{2}D_{\xi }e^{-\pi i(K-1)}\Gamma \left(1-K\right)z^{K-2}
\end{eqnarray*}



rigid string

\begin{eqnarray*}
\left\langle D_{\xi }\left(u(x,\tau )-u(x,0)\right)\right\rang...
...c{D_{\xi }}{\sqrt{1-e^{-\omega _{0}\left\vert\tau \right\vert}}}
\end{eqnarray*}



\begin{eqnarray*}
\left\langle T_{\tau }F_{x}(\tau )F_{x}(0)\right\rangle & = & ...
...-K}\frac{1}{\sqrt{1-e^{-\omega _{0}\left\vert\tau \right\vert}}}
\end{eqnarray*}



\begin{eqnarray*}
A & = & \frac{1}{L_{y}}\left(\frac{2ev_{F}}{\pi ^{2}\alpha }\r...
...ht)^{K_{c}}\left(\frac{m\omega _{0}}{2\pi }\right)^{\frac{3}{2}}
\end{eqnarray*}



\begin{eqnarray*}
\int _{0}^{\infty }d\tau \frac{e^{i\omega \tau }-1}{\left(\fra...
...omega \tau }-1}{\left(\frac{\tau }{\epsilon }+1\right)^{\beta }}
\end{eqnarray*}



for $\omega \ll \omega _{0}$

\begin{eqnarray*}
M_{xx}(z) & = & A\epsilon ^{2}D_{\xi }e^{-\pi i(K-1)}\Gamma \left(1-K\right)z^{k-2}
\end{eqnarray*}



for $\omega \gg \omega _{0}$

\begin{eqnarray*}
M_{xx}(z) & = & \frac{A\epsilon ^{2}D_{\xi }}{\sqrt{\epsilon \...
...{0}}}e^{-\pi i(K-1/2)}\Gamma \left(\frac{1}{2}-K\right)z^{K-3/2}
\end{eqnarray*}



gaussian string

\begin{eqnarray*}
\left\langle D_{\xi }\left(u(x,\tau )-u(x,0)\right)\right\rang...
...rac{v_{u}\tau }{\alpha }\right\vert^{-2-k^{2}\lambda ^{2}/2\pi }
\end{eqnarray*}



\begin{eqnarray*}
\left\langle T_{\tau }F_{x}(\tau )F_{x}(0)\right\rangle & = & ...
...au }{\epsilon }\right\vert^{-2-K-k^{2}\lambda ^{2}/2\pi }\right]
\end{eqnarray*}



\begin{eqnarray*}
A & = & \frac{1}{L_{y}}\left(\frac{2ev_{F}}{\pi ^{2}\alpha }\r...
...o }\right)^{2}\left(\frac{v_{s}}{v_{c}}\right)^{K_{c}}\eta ^{-2}
\end{eqnarray*}



\begin{eqnarray*}
M_{xx}(z) & = & \epsilon ^{2}\int \frac{dk}{2\pi }D_{\xi }(k)\...
...)\left(K+\frac{k^{2}\lambda ^{2}}{2\pi }+2\right)}\right)\right]
\end{eqnarray*}



if we insert $D(k)=D_{0}exp(2l-K_{c}l-\lambda ^{2}k^{2}l/2\pi )$ we have

\begin{eqnarray*}
M_{xx}(z) & = & \epsilon ^{2}D_{\xi 0}e^{\left(2-K_{c}\right)l...
...(1+\frac{rz^{2}}{\left(K+3\right)\left(K+2\right)}\right)\right]
\end{eqnarray*}



floppy string

\begin{eqnarray*}
\pi \Delta G & = & \frac{\Gamma \left(\frac{1}{n}\right)\lambd...
...left\vert s\frac{v_{s}\tau }{\alpha }\right\vert^{1-\frac{3}{n}}
\end{eqnarray*}



\begin{eqnarray*}
\left\langle D_{\xi }\left(u(x,\tau )-u(x,0)\right)\right\rang...
...frac{v_{s}\tau }{\alpha }\right\vert^{-\frac{1}{2}-\frac{3}{2n}}
\end{eqnarray*}



\begin{eqnarray*}
\left\langle T_{\tau }F_{x}(\tau )F_{x}(0)\right\rangle & = & ...
...\frac{\tau }{\epsilon }\right\vert^{-\frac{1}{2}-\frac{3}{2n}-K}
\end{eqnarray*}



\begin{eqnarray*}
A_{n} & = & \frac{1}{\lambda L_{y}}\left(\frac{2ev_{F}}{\pi ^{...
...{2}}\left(\frac{\lambda }{s^{1/n}\alpha }\right)^{\frac{n+3}{2}}
\end{eqnarray*}



\begin{eqnarray*}
M_{xx}(z) & = & \epsilon ^{2}D_{\xi }e^{-\pi i(K-1/2n-1/2)}z^{...
...{2}\right)\left(K+\frac{3}{2n}+\frac{1}{2}\right)}\right)\right]
\end{eqnarray*}



floppy string $n=2$

\begin{eqnarray*}
M_{xx}(z) & = & \epsilon ^{2}D_{\xi }e^{-\pi i(K-3/4)}\Gamma \...
...ft(K+\frac{9}{4}\right)\left(K+\frac{5}{4}\right)}\right)\right]
\end{eqnarray*}



\begin{eqnarray*}
A_{2} & = & \frac{1}{\lambda L_{y}}\left(\frac{2ev_{F}}{\pi ^{...
... }{\alpha }\right)^{\frac{3}{2}}\frac{\lambda }{\sqrt{s}\alpha }
\end{eqnarray*}



About this document ...

This document was generated using the LaTeX2HTML translator Version 2002 (1.62)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html -split 2 mem5c.tex

The translation was initiated by Uri London on 2005-05-29



next_inactive up previous
Uri London 2005-05-29