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1 Introduction

Propagation of wavepackets in time means application of the operator

Û = T̂ e
− i

~

teR
ts

bH(t)dt

to a given wavefunction ψ(t = ta = 0) to obtain the state of the system at a later
time. Trying to simulate the time evolution of a wavepacket, several problems
arise:

• representation of the wavefunction on the computer,

• evaluation of the operator Ĥ,

• approximation of the exponential of an operator.

This article is meant to introduce and classify a few typical techniques which
solve these problems and enable the reader to choose or derive the technique
which is best suited to his or her problem.

2 Evaluation of Ĥψ [1]

2.1 Local and semilocal representation of Laplace�∆

The �nite di�erencing scheme (FD) considers the derivative only by a local
approximation such that in one dimension

d2ψ(xi)
dx2

=
ψ(xi+1)− 2ψ(xi) + ψ(xi−1)

(∆x)2
.

Higher order di�erencing schemes involving more interpolation points xj are
called semilocal. All of these approximations, however, are not very well�suited
for application with quantum�mechanical problems as the consideration of wave-
functions is intrinsically global.
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2.2 Global representation of ∆ and Fast Fourier Trans-
form

A really global consideration can only be achieved by either involving all avail-
able interpolations points xj in the semilocal approach or, which is the same,
calculate the derivative by multiplying the wave vectors in the Fourier trans-
formed representation of the wavefunction. This means that the momentum
operator is local in momentum space:

ψ(k) =
1√
2π

∞∫
−∞

ψ(x)e−ikxdx = FT [ψ(x)],

ψ(x) =
1√
2π

∞∫
−∞

ψ(k)eikxdk = FT−1[ψ(k)],

dψ(x)
dx

=
1√
2π

∞∫
−∞

ψ(k)(ik)eikxdk = FT−1[(ikψ(k)],

d2ψ(x)
dx2

=
1√
2π

∞∫
−∞

ψ(k)(−k2)eikxdk = FT−1[(−k2)ψ(k)].

The Fourier representation yields the exact energy spectrum

TFT (k) =
~2k2

2m
,

while the �nite di�erence approach gives

TFD(k) =
~2

2m

[
2 sin(k∆x/2)

∆x

]
which converges to the exact spectrum for very small ∆x. So for an appli-
cation of the �nite di�erence scheme one has to choose a �ner mesh for the
representation of the wavefunction.

2.3 Discrete Variable Representation (DVR) [1], [5]

A wavefunction ψ is represented as a linear combination of given interpolation
functions φn by

ψ(x) =
N−1∑
n=0

anφn(x) (1)

such that for given interpolation points xi = x0, . . . , xN

ψ(xi) =
N−1∑
n=0

anφn(xi).
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If the φn satisfy the orthonormality relation in the arguments

N−1∑
n=0

φ∗n(xi)φn(xj) = δij (2)

then this interpolation expression, i.e. the matrix φn(xj) can be directly inverted
to give

an =
N−1∑
j=0

ψ(xj)φ∗n(xj) (3)

for then

ψ(xi) =
N−1∑
n=0

N−1∑
j=0

ψ(xj)φ∗n(xj)φn(xi) =
N−1∑
j=0

ψ(xj)δij .

If the φn furthermore satisfy the orthonormality relation in their order

〈φn|φm〉 =
∫
φ∗n(x)φm(x)dx = δmn (4)

or, more generally, ∫
w(x)φ∗n(x)φm(x)dx = δmn

then, choosing the sampling points xj as the zeros of the N�th polynomial φN ,
it follows from Gaussian integration theory that their discrete representations
also ful�ll the orthonormality relation

N−1∑
j=0

wjφ
∗
n(xj)φm(xj) = δmn (5)

with constant point weights wj because their degrees are all smaller than N (see
appendix 4.1). The coe�cients become

an =
N−1∑
j=0

wjψ(xj)φ∗n(xj).

In this case, the scalar product formula simpli�es to

〈ψ|χ〉 =
∑

n

1
wn

a∗nbn =
N−1∑
j=0

1
wj
ψ∗(xj)χ(xj)

with bj the coe�cients of the representation of χ.
Substitution of the coe�cients (3) in the representation (1) results in

ψ(x) =
N−1∑
i=0

N−1∑
j=0

wjφ
∗
i (xj)ψ(xj)φi(x)

=
N−1∑
j=0

ψjξj(x)
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with orthonormal coordinate eigenfunctions ξj(x) and the sampling values ψj :

ξj(x) =
√
wj

N−1∑
i=0

φ∗i (xj)φi(x),

ψj =
√
wjψ(xj).

Then the derivative operators can be written as

dnψ(x)
dxn

=
N−1∑
j=0

ψj
dnξj(x)
dxn

,

dnξj(x)
dxn

=
√
wj

N−1∑
i=0

φ∗i (xj)
dnφi(x)
dxn

.

2.4 Comparison

In both the DVR and the discrete representation a discrete Hilbert space is
employed. In the Fourier representation a uniform grid spacing is used to obtain
a �nite Fourier series. The quadrature weight is the grid spacing (trapezoidal
rule). This quadrature is of comparable accuracy to the Gaussian quadrature
employed in the DVR representation.

The Fourier method scales as N logN as opposed to an N2 scaling of the
DVR method. The DVR, however, provides the opportunity of choosing the
basis functions φj according to the physical system so their number can be kept
rather small (e.g. LCAO).

3 Propagation methods [2]

The problem is to calculate the propagation operator

Û(te, ts) = T̂ e
− i

~

teR
ts

bH(t′)dt′

with the time order operator T̂ which solves the Schroedinger equation. If
Ĥ is time dependent, one can extrapololate by dividing the considered time
period into smaller sections over which Ĥ is assumed to be constant. Then the
propagation operator assumes the form

Û(te, ts) = e−
i
~

bHs(te−ts)

with di�erent Ĥs dependent on ts. This extrapolation makes use of the relation
Û(t1 + t2, t0) = Û(t2, t1)Û(t1, t0).

A function f applied to an operator Ô can be spectrally decomposed to give

f
(
Ô
)

=
∑

n

f(λn)P̂n,
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where λn are the eigenvalues and P̂n = |un〉 〈un| are the projection operators to
the eigenspaces with

P̂nP̂m = δmnP̂n.

If the eigenvalues are known, these projection operators can be formed by suc-
cessively applying operators of the form Q̂i =

(
Ô − λiÎ

)
, where Î denotes unity:

P̂n =
1
ℵ
Q̂N · · · Q̂n+1Q̂n−1 · · · Q̂1

with the normalization factor

ℵ = (λn − λN ) · · · (λn − λn+1) (λn − λn−1) · · · (λn − λ1) .

However, solving the eigenvalue problem is computationally prohibitively expen-
sive

(
O
(
N2
))

and the number of eigenvalues may be in�nite, so approximate
methods have to be found to con�ne the problem to �nding a small subset
of the set of eigenvalues. Applying the above formulae directly leads to the
Lagrangian interpolation of the operator (as the operators Q̂i are evaluated
recursively) which has numerical disadvantages because adding another sam-
pling point results in the necessity of calculating a completely new interpolation
polynomial.

3.1 Newtonian Interpolation

It is therefore better to approximate the function f polynomially by the New-
tonian term

f(z) = a0 + a1(z − x0) + a2(z − x1)(z − x0) + a3(z − x2)(z − x1)(z − x0) + · · ·

with the coe�cients ai being the divided di�erences

a0 = f [x0] = f(x0),

a1 = f [x0, x1] =
f(x1)− f(x0)

x1 − x0
,

ak = f [x0, x1, . . . , xk] =
f(xk)− a0 −

k−1∑
i=1

al(xk − x0) · · · (xk − xl−1)

(xk − x0) · · · (xk − xk−1)

=
f [x0, x1, . . . , xk−1]− f [x1, x2, . . . , xk]

x0 − xk
.

which are approximations of the i�th derivative of f at x0.
In the Newtonian interpolation, to add another interpolation point it is only
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necessary to calculate the bottom line of the following scheme:

f(x0)
. . .

f(x1) · · · f [x0, x1]
...

...
. . .

f(xN−1) · · · f [xN−2, xN−1] · · · f [x0, . . . , xN−1]
. . .

f(xN ) · · · f [xN−1, xN ] · · · f [x1, . . . , xN ] · · · f [x0, . . . , xN ].

In practice, this process is continued until self�consistency. Numerical prob-
lems with a small distance between the sampling points can be overcome by
permuting these sampling points. A polynomial expansion is also possible for
the consideration of non�hermitian operators thats eigenvalues do not lie on a
real interval but inside a disk in the complex plane [2].

3.2 Error Analysis

The error of the truncated Newton series is

ε =

∥∥∥∥∥∥f
[
x0, . . . , xN−1, Ô

]N−1∏
j=0

Q̂j

∥∥∥∥∥∥ .
The divided di�erence term in this error cannot be evaluated by repeated appli-
cation of the operator Ô as is desired for computational implementation. So the
term to minimise is the product term which only depends on the interpolation
points xi. If the number of these points is equal to the number of eigenstates
of the operator, this minimization is equivalent to the diagonalization of the
operator so the error will converge to zero as this number rises.

There are two approaches to the minimization:

1. Uniform Approach: The error is minimised as an operator � with re-
spect to the whole Hilbert space of states.

2. Non�Uniform Approach: The norm of the product term applied to a
certain wave function is minimised (which is usually the initial state).

3.3 Overview

There is a variety of di�erent propagation schemes for quantum mechanical
systems, with di�erent properties. See table 1 for an overview of the methods
considered in this article.

3.4 The Second Order Di�erencing scheme (SOD) [3]

The most natural ansatz to approximating the propagation operator

Û = e−
i
~

bH∆t = 1− i

~
Ĥ∆t+ · · ·
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Table 1: overview of methods.
method remarks

Second�order simple; interaction between potentials;
di�erencing (SOD) theoretical considerations
Split operator (SPO) simple, stable; but no space�momentum

mixed terms in Ĥ
Chebyshev global, long time method;

exact to computer accuracy
Lanczos subspace depends on initial state

would be the straightforward expansion into a Taylor series. This has, however,
proven to be numerically unstable because of its asymmetry with respect to
time inversion. Therefore the method has to be symmetrised by considering one
forward and one backward step to �rst order in the Taylor expansion:

ψ(t+ ∆t)− ψ(t−∆t) =
(
e−

i
~

bH∆t − e i
~

bH∆t
)
ψ(t),

→ ψ(t+ ∆t) ≈ ψ(t−∆t)− 2
i

~
∆tĤψ(t). (6)

There are two ways of obtaining the second wavefunction ψ(∆t) from ψ(0):

1. (SOD) Propagate by a �rst order scheme for half a time�step and from
there propagate with SOD for another half time�step.

2. (SODS) Propagate with SOD half a step forward to get ψ
(

∆t
2

)
and half

a step backward to get ψ
(
−∆t

2

)
. The �nal result is the arithmetic mean

value of ψ
(
t+ ∆t

2

)
and ψ

(
t− ∆t

2

)
. This method is more symmetric.

3.
ψ(0) → (1st order)→ ψ

(
∆t
2

)
,

ψ(0), ψ
(

∆t
2

)
→ (SOD)→ ψ(0), ψ

(
−∆t

2

)
,

ψ(0), ψ
(
−∆t

2

)
→ (SOD)→ ψ(0), ψ

(
∆t
2

)
.

this initialization stops there because the lower two steps become cyclic
because of the time�reversability of the SOD method.

The method is unitary and conserves norm and energy. It can also be very
easily and naturally adjusted to involve interactions between potential surfaces
a and b due to the electromagnetic �eld E(t) and the (approximately constant)
magnetic dipole moment µ: [7]

ψa(t+ ∆t) = ψa(t−∆t)− 2
i

~
∆tĤaψa(t)− 2

i

~
∆tµE(t)ψb(t),

ψb(t+ ∆t) = ψb(t−∆t)− 2
i

~
∆tĤbψb(t)− 2

i

~
∆tµE(t)ψa(t).
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3.5 Analysis of the SOD method

Apply formula (6) twice to obtain the top row of the matrix in the propagation
equation (

ψn+1

ψn

)
=

(
1− 4∆t2

~2 Ĥ
2 −2 i

~Ĥ∆t
−2 i

~∆tĤ 1

)(
ψn−1

ψn−2

)
.

The eigenvalues of this propagation matrix are

λ1/2 = 1− 2
∆t2

~2
Ĥ ± 2

∆t
~
Ĥ

√
∆t2

~2
Ĥ2 − 1

= 1− 2
∆t2

~2
Ĥ ± 2

∆t
~
Ĥ

(
i− i

2
∆t2

~2
Ĥ2 − 3

4!
∆t4

~4
Ĥ4 + · · ·

)
(7)

The second expression stems from the Taylor�series of the squareroot at the
expansion point −1.

The determinant of the propagation matrix has to be unity to make the
map area unitary: λ1λ2 = 1. The mapping is stable only if the eigenvalues lie
on the complex unit circle for otherwise λ1 > 1 and the method diverges. So
the radicant has to be negative, hence:

∆t <
~

Emax
.

The eigenvalue of the exact operator is

λexact = e−2 i
~ Em∆t = 1− 2i

∆t
~
Em − 2

∆t2

~2
E2

m − 4i
∆t3

3~3
E3

m + · · ·

Comparing with (7) gives the error per time�step

ε =
(∆tEm)3

3~3
.

In practice, a time�step which is safely smaller than the optimal one is chosen,
usually ∆t = ∆topt

5 because this yields a high accuracy even after a large number
K of recursion steps:

ε ≈ K

375
.

Now, 〈ψ(t)|(6)〉 is

〈ψ(t)|ψ(t+ ∆t)〉 = 〈ψ(t)|ψ(t−∆t)〉 − 2
i

~
∆t
〈
ψ(t)|Ĥ|ψ(t)

〉
(8)

and 〈(6)|ψ(t)〉 is

〈ψ(t+ ∆t)|ψ(t)〉 = 〈ψ(t−∆t)|ψ(t)〉+ 2
i

~
∆t
〈
ψ(t)|Ĥ|ψ(t)

〉
. (9)
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Adding these two equations, ((8)+(9)), yields

Re 〈ψ(t+ ∆t)|ψ(t)〉 = Re 〈ψ(t)|ψ(t−∆t)〉 = const

which means norm conservation for real overlaps. Similarly,
〈
Ĥψ(t)

∣∣∣can be
multiplied with |(6)〉 to obtain energy conservation.

3.6 The Split�Operator method (SPO)

Approximate the operator Û = eλ( bT+bV ), λ = − i∆t
~ as

Û = S2(T̂ , V̂ , λ) + S′(λ3) +O(λ4),

S2(T̂ , V̂ , λ) = e
λ bT
2 eλbV eλ bT

2 .

The error term S′(λ3) = 1
24

[
T̂ + 2V̂ ,

[
T̂ , V̂

]]
λ3 can be easily obtained from

Taylor expansion of the exponentials. As the commutator plays a role, the
eigenvalues of the kinetic and potential energies have to be bounded to achieve
convergence. The SPO method is very easily implemented, in fact I implemented
the relaxation method (see 3.7) with SPO �rst before I used it as a benchmark
to test and debug the more e�cient but hard to implement Chebyshev method.

The SPO can be generalised to a higher order operator by

Û = S2(T̂ , V̂ , γλ)S2(T̂ , V̂ , (1−2γ)λ)S2(T̂ , V̂ , γλ)+S′
((

2γ3 + (1− 2γ)3
)
λ3
)
+O(λ4).

This operator can be thought of as a split of the propagation step into several
shorter time propagations, so the error terms add up. Setting γ = 1

2− 3√2
makes

the S′�term zero so the new operator is of fourth order. The time�dependence of
the error of the SPO method points to its main use as a short time propagator.
Operators of any order can be built but they become computationally very
expensive because of the high number of Fourier�transformations needed [9].

3.7 The Chebyshev method

The operator is expressed as an expansion in Chebyshev polynomials

f(z′) =
b0
2

+
∞∑

n=1

bnTn(z′) (10)

with the coe�cients

bn =
2
π

1∫
−1

f(z′)Tn(z′)√
1− (z′)2

dz′. (11)

This inversion formula is using the orthonormality relation of type (4)

2
π

1∫
−1

Tm(z)Tn(z)√
1− z2

dz =
{
δmn , m, n > 0
2 , m = n = 0
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of the Chebyshev polynomials � substitute the series expansion (10) of f in (11).
In order to use the Chebyshev polynomials, the range of eigenvalues of the

operator Ô has to be adjusted by the substitution

Ô′ = 2
Ô − λminÎ

λmax − λmin
− Î

which results in the necessity of multiplying a factor Φ after the calculation to
get the result. The images φn = Tn

(
Ô′
)
ψ are then built up by the recursion

relation for Chebyshev polynomials:

φ0 = ψ,

φ1 = Ô′ψ,

φn+1 = 2Ô′φn − φn−1.

The summation of the derived vectors bnφn is continued until the deviation
of the coe�cients from zero drops below a given accuracy. This makes it possible
to achieve any desired accuracy up to computer accuracy.

The Chebyshev method is preferentially used for propagation of time�independent
operators for otherwise it has to be run several times for subintervals of time
over which it is assumed to be constant. The same has to be done if intermediate
states in time are sought. Both will reduce the e�ciency of the method.

Example 1: Propagation operator. The operator f
(
Ĥ ′
)
to approximate

is U = e−
i
~

cH′t with the maximal and minimal eigenvectors λmin = Emin,
λmax = Emax, ∆E = Emax − Emin.

This means the factor Φ = e
i
~ (∆E/2+Emin)t is a phase factor, f(z′) = e−

i
~ z′t

and hence
bn = (−i)n2Jn (α) , α =

∆Et
2~
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with Jn the Bessel function of �rst kind of order n (the proof for this ex-
pression is to be found in in appendix 4.2).1

The coe�cients go to zero exponentially as n becomes greater than α so
the method is very fast except for very short times where this exponentially
decaying tail becomes dominant in the calculation time.

The same result is produced by

f(z′) =
a0

2
+

∞∑
n=1

anχn(z′)

with the recursion

χ0 = ψ,

χ1 = −iĤ ′ψ,

χn+1 = −2iĤ ′χn + χn−1

and the coe�cients
an = 2Jn (α) .

This can be shown by proving inductively that χn = (−i)nφn, as obviously
bn = (−i)nan:

χn+1 = −2iĤ ′χn + χn−1

= (−i)n+12Ĥ ′φn + (−i)n−1φn−1

= (−i)n+1
(
2Ĥ ′φn − φn−1

)
= (−i)n+1φn+1.

Example 2: Relaxation method. The operator f
(
Ĥ ′
)
to approximate is

Û = e−
cH′τ with the maximal and minimal eigenvectors λmin = Emin, λmax =

Emax. This is often referred to as propagation in imaginary time as it results
from the above propagation operator by setting

t = −i~τ.

(Note that the propagation is actually in negative imaginary time.)
If the operator is applied to a mixed state and the result renormalised,

the state with the lowest energy in the mixed state is produced and all other
states are �ltered out at the rate e−(E1−E0)τ , where E0 and E1 are the lowest
eigenvalues. If a higher state is sought, the ground state has to be �rst produced
and in the second run of the method projected out before every renormalization
step. There are operators e−(cH′−E)mτ , m an even number, which produce the
eigenstate closest to the energy E directly without the need of producing the
lower states �rst but I shall not go into any details about these [8].

1These formulas were occasionally faulty in some of the papers I am citing.
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The factor Φ = e(∆E/2+Emin)τ for the relaxation operator Û is not a phase
factor anymore, f(z′) = e−z′

and hence

bn = (−1)n2In (α) , α =
∆Eτ
2~

with In the modi�ed Bessel function of �rst kind of order n.
This time, the coe�cients go to zero exponentially as n becomes greater

than
√
α so the method is very fast except for very short times where this

exponentially decaying tail becomes dominant in the calculation time.
The same result is produced by

f(z′) =
a0

2
+

∞∑
n=1

anχn(z′)

with the recursion

χ0 = ψ,

χ1 = −Ĥ ′ψ,

χn+1 = −2Ĥ ′χn − χn−1

(note the changed sign of χn−1 compared to the second algorithm in Ex. 1) and
the coe�cients

an = 2In (α) .

This can be shown by proving inductively that χn = (−1)nφn, as obviously
bn = (−1)nan:

χn+1 = −2Ĥ ′χn − χn−1

= (−1)n+12Ĥ ′φn − (−1)n−1φn−1

= (−1)n+1
(
2Ĥ ′φn − φn−1

)
= (−1)n+1φn+1.
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3.8 The Lanczos recursion scheme

The Lanczos method is a good example for the non�uniform approach. The
operator a function of which has to be calculated is �rst represented as a tridi-
agonal matrix on the �nite cyclic subspace spanned by the vectors

∣∣∣Ôkψ0

〉
, k =

0, . . . , n − 1, the Krylov vectors. The vector |ψ0〉 is called the initial guess be-
cause (together with the dimension n) it uniquely de�nes this subspace. Usually
ψ0 is taken to be the initial state ψ(t = 0).

The build�up of the basis vectors for the �nite dimensional representation
is initialised by

Ôψ0 = α0ψ0+̇ψ′1
where +̇ denotes the addition of two linearly independent vectors. The next
step is

Ôψ′1 = β′0ψ0+̇α′1ψ
′
1+̇ψ

′′
2

This equation can be divided by
√
β′0, setting

β0 =
√
β′0, α1 = α′1, ψ1 =

ψ′1√
β′0
, ψ′2 =

ψ′′2√
β′0

to make the matrix representation in the basis ψk symmetric and go on with
the algorithm

Ôψ′k = β′k−1ψk−1+̇α′kψ
′
k+̇ψ′′k+1

until the norm of the vector ψk becomes su�ciently small. The matrix repre-
sentation of Ô then will be

Ô

 ψ0

...
ψn−1

 ≈


α0 β0 0 · · · 0

β0 α1 β1
. . .

...

0 β1 α2
. . . 0

...
. . . . . . . . . βn−2

0 · · · 0 βn−2 αn−1


 ψ0

...
ψn−1

 .

This tridiagonal matrix can be numerically diagonalised to the matrix D by a
transformation matrix Z. The desired propagated wavefunction ψ(t) can then
be found by

ψ(t) = Z†e−
i
~ DtZ

 〈ψ0|ψ(0)〉
...

〈ψn−1|ψ(0)〉


i.e. if ψ0 = ψ(0) only the �rst column of the resulting matrix is needed.

In the one�dimensional testcase that I have implemented the Lanczos method
was the slowest of all mentioned methods. Nevertheless, for a multidimensional
system with hundreds of thousands of gridpoints it is still capable of reducing
the problem to a much smaller number of basis vectors, so I expect that the
e�ciency compared to the other methods will be better in these cases. It is
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also possible to include some knowledge into the method via the initial guess
ψ0 and thus make it semi�empirical to get a matrix representation of Ô (or Ĥ,
respectively) of smaller dimension (e.g. LCAO).

4 Appendix

4.1 Gaussian integration

The integral over a �nite interval of a function w(t)f(t) for an arbitrary function
f with a non�negative weight function w(t) can be approximated by integrating
its approximation by Lagrange polynomials:

b∫
a

w(t)f(t)dt ≈
b∫

a

w(t)
n∑

j=1

n∏
i = 1
i 6= j

t− ti
tj − ti

f(tj)dt+

b∫
a

w(t)v(t)f [t1, . . . , tn, t]dt

=
n∑

j=1

b∫
a

w(t)
n∏

i = 1
i 6= j

t− ti
tj − ti

dt f(tj) +R(f)

=
n∑

j=1

Ajf(tj) +R(f) (12)

where v(t) =
n∏

i=1

(t− ti). Thus the constant coe�cients

Aj =

b∫
a

w(t)
n∏

i = 1
i 6= j

t− ti
tj − ti

dt

are found which are used for the approximation of the integral.

De�nition: A number µ is called algebraic degree of accuracy if for all
polynomials f with a degree smaller or equal to µ the above integration formula
(12) is accurate, i. e. ∀f ∈ R[t] : deg f ≤ µ → R(f) = 0.

Remark: Formula (12) is exact for polynomials of degree smaller or equal
to n − 1 for then the Lagrangian interpolation is exact. Furthermore consider
following example:
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n∑
j=1

Ajv(tj)2 = 0, as v(tj) = 0,

b∫
a

w(t)v(t)2dt > 0 (w non− negative weight).

Hence n− 1 ≤ µ ≤ 2n− 1.

Theorem: An interpolation formula (12) has the maximal algebraic degree
of accuracy of µ = 2n− 1 if and only if ∀p ∈ R[t], deg p ≤ n− 1 :

b∫
a

w(t)v(t)p(t)dt = 0.

proof: (→) µ = 2n− 1.

Then
b∫

a

w(t)v(t)p(t)dt =
n∑

j=1

Ajv(tj)p(tj) = 0 because v(tj) = 0. This inte-

gral is exact because deg(v · p) ≤ 2n− 1.
(←)

b∫
a

w(t)v(t)p(t)dt = 0. (13)

Let deg f ≤ 2n− 1, f = q · v + r, deg q ≤ n− 1, deg r ≤ n− 1. Then

n∑
j=1

Ajf(tj) =
n∑

j=1

Ajr(tj),

b∫
a

w(t)f(t)dt =

b∫
a

w(t)q(t)v(t)dt+

b∫
a

w(t)r(t)dt

=
n∑

j=1

Ajr(tj),

since (13) and µ ≥ n− 1.
q.e.d.

Remark A: From this the discrete orthogonality relation (5) from subsec-
tion 2.3 can be derived as follows: Let tj be the zeros of the n�th orthogonal
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polynomial Pn. Then v = const · Pn and hence it follows that µ = 2n− 1. This
implies that formula (12) is exact for all integrals of the form

b∫
a

w(t)Pi(t)Pj(t)dt = δij , i, j < n.

Remark B:

1. w(t) = 1√
1−t2

for the Chebyshev polynomials.

2. For w(t) ≡ 1 formula (12) is the Gaussian integration formula.

3. Then
n∑

j=1

Aj =
b∫

a

dt = b− a, i.e. the Aj are constant weights (see 2.4).

4.2 Proof of the Chebyshev method (propagation)

bn = (−i)n2Jn (α) , α =
∆Et
2~

.

proof: Most integral tables, e.g. [10], know the integrals

1∫
0

T2k+1(x) sin(αx)√
1− x2

dx = (−1)k π

2
J2k+1(α) = (−i)2k π

2
J2k+1(α),

1∫
0

T2k(x) cos(αx)√
1− x2

dx = (−1)k π

2
J2k(α) = (−i)2k π

2
J2k(α).

Now, sinαx is an odd function, so its representation as a series of Chebyshev
polynomials would only contain odd order Chebyshev polynomials, i.e. sinαx is
orthogonal to all even order Chebyshev polynomials. Analogous to that cosαx
is orthogonal to all odd order Chebyshev polynomials:

1∫
0

T2k(x) sin(αx)√
1− x2

dx = 0,

1∫
0

T2k+1(x) cos(αx)√
1− x2

dx = 0.
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Furthermore the product of two odd functions is even, so for both integrals
1∫
−1

. dx = 2 ·
1∫
0

. dx. Hence

π

2
bn =

1∫
−1

e−iαxTn(x)√
1− x2

dx

=

1∫
−1

Tn(x) cos(αx)√
1− x2

dx− i ·
1∫

−1

Tn(x) sin(αx)√
1− x2

dx

=
{

(−i)2kπJ2k(α)− i · 0, n = 2k,
0− i · (−i)2kπJ2k+1(α) = (−i)2k+1πJ2(α), n = 2k + 1

= (−i)nπJn(α).

q.e.d.
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