Supplemental Fig 2a

Expanded, annotated versions of Fig. 2, A to C, of the report, with expression
profiles for functionally related sets of genes. For each cell cycle-regulated func-
tion, the expression profiles of associated genes are shown as color bars, coded
as in Web figure 1. The class I-IV flagellar genes shown in (C) are expressed
in temporal order consistent with their known ordering in flagella construction.
The column labeled ctrAts shows the change in expression level for each gene
in response to loss of CtrA function where blue, black, and yellow indicate de-
crease, no change, and increase, respectively. For each gene, the corresponding
TIGR ORF number and one-line annotation information are listed to the right

of its profile.
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Supplemental Fig 2b
Growth and Protein Synthesis
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Supplemental Fig 2c

Polar Morphogenesis
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Supplemental Fig 3

An expanded, detailed version of Fig. 3 of the report. The CtrA regulatory net-
work governing Caulobacter cell cycle progression with newly identified path-
ways shown in red. Phosphorylated CtrA, binding to a conserved motif, au-
toregulates its own transcription (26 ), and activates the transcription of sets of
genes required for flagellar biogenesis, DNA methylation, pili biogenesis, cell di-
vision, and six other operons of unknown function. CtrA also acts as a repressor
of the newly identified G1-S sigma factors sigT and sigU and, as previously sug-
gested, of ftsZ (13). Binding of CtrA to sites in the origin of replication inhibits
replication initiation (26 ). In addition, our results suggest there are at least
113 genes in a wide range of functional categories that appear to be indirectly
regulated by CtrA; these include members of the chemotaxis machinery, riboso-
mal subunits, RNA polymerase subunits, and NADH dehydrogenase categories.
CtrA is proteolyzed at the G1-S transition by the protease ClpPX (27). The
histidine kinases CckA and DivL mediate CtrA phosphorylation. DivK, DivJ,
and PleC are all thought to be involved in a cell cycle phosphorelay [reviewed
in (28, 29)].
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Supplemental Fig 4

Expanded, annotated version of Fig. 4 of the report. Regulatory genes expressed
in a cell cycle-dependent pattern. Genes encoding histidine kinases, response
regulators, and sigma factors that are transcribed as a function of the cell cycle
are shown at the time of their peak expression levels during the cell cycle. Newly
identified regulatory genes are denoted by their predicted type and numbered
based on their order of expression in the cell cycle: black, response regulators
with an identifiable output domain; green, single-domain response regulators;
red, histidine kinases; blue, histidine kinases with a fused response regulator
domain; and orange (, sigma factors. Underlined genes have been characterized
previously. The genes in black boxes encode proteins that are known to be
dynamically localized during the cell cycle. TIGR ORF numbers are listed for
each gene shown.
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Supplemental Fig 5

Distribution of cell cycle-regulated genes within functional categories. The num-
ber of genes in each category is in parentheses. Genes were assigned to a
functional category based on the classification scheme defined by Clusters of
Orthologous Genes (COGs) (30).



metabolism (101)

unknown (151)

DNA replication and repair (21)
transcription (21)

translation (25)
protein modification, turnover, folding (16)

conserved unknown (96) cell envelope biogenesis (20)

cell motility and secretion (55)

two-component cell division and chromopsome segregation (13)
signal transduction (34)

Methods
Wild-Type Time Course Methods

A culture of wild-type Caulobacter (CB15N) was grown in minimal media sup-
plemented with glucose (M2G) at 28°C to an OD660 of 0.3 and then synchro-
nized as described (4 ). After resuspension of isolated swarmer cells in fresh
M2G, cells were harvested at 15-min intervals for the duration of the 150-min
cell cycle.

RNA from cells harvested at each time point was reverse-transcribed into
Cy3-labeled ¢cDNA, and competitively hybridized on a microarray with a Cy5-
labeled reference cDNA from a mid-log phase asynchronous culture. Thus,
subsequent log ratios (Cy3:Cy5) greater or less than zero indicate higher or
lower RNA abundance, respectively, relative to the averaged RNA levels in the
unsynchronized reference population. Details of RNA preparation, cDNA probe
preparation, and microarray hybridization are at (31).

Identification of Cell Cycle-Regulated Transcripts / Discrete Cosine
Transform Analysis

To identify cell cycle-dependent transcripts, the discrete cosine transform (DCT)
(see devbiol.stanford.edu/usr/hm/Mathematica/Discrete Transforms/index.html)
was calculated for each of the 2966 expression profiles with valid data. Three
parameters were calculated for each profile: (i) the maximum DCT coefficient,
(ii) the percentage of signal power contained in the first four DCT coefficients,
and (iii) the peak-to-trough ratio of the profile. A cell cycle-dependent profile is
expected to have a large maximum DCT coefficient, a significant percentage of
total signal power in the lower frequency (e.g., the first four) DCT coefficients,
and a high peak-to-trough ratio. We selected profiles for which parameters i,
ii, and iii (above) were (a) [geq] 0.0017, [geq] 0.8, and [geq] 1.8, or (b) [geq]
0.0017, [geq] 0.6, [geq] 3.0, respectively. These parameters were chosen to min-



imize the false positive rate and to ensure inclusion of previously known cell
cycle-regulated genes as described below. This procedure selected 579 candi-
date profiles.

As the synchronization procedure involved a shift from 4°C to 28°C at the
zero time point, some genes responding to this temperature shift were antic-
ipated in the 579 candidate profiles. These potential heat shock genes were
identified by two criteria: (i) their profiles showed maximal expression at the
zero time point followed by an immediate drop to minimal expression for the
remainder of the time course, and (ii) their expression levels in an asynchronous
population subjected to the same temperature shift were similar to the levels
seen in the synchronized, swarmer cell population at the zero time point (data
not shown). Genes that are expressed at a higher level in the synchronized
population relative to the unsynchronized population after the same tempera-
ture shift are thus swarmer-specific and not heat shock-responsive. The original
group of 579 candidate cell cycle-regulated genes contained 26 genes that re-
sponded solely to the synchronization method and were discarded; this led to a
final group of 553 apparently cell cycle-regulated genes.

To estimate the number of false positives included in this set of 553 genes,
the entire data set was randomly shuffled (2356 genes with 11 time points each =
25,916 randomly shuffled data points) and subjected to the same DCT analysis
procedure. Only 46 of the 2356 randomized expression profiles exceeded the
chosen parameters; accordingly, the false positive rate is estimated to be less
than 9

Analysis of ctrA Mutant Strains

Wild-type and ctrA401ts Caulobacter strains were grown at the permissive tem-
perature of 28°C in peptone-yeast extract (PYE) media to an OD660 of 0.05
and then shifted to the restrictive temperature of 37°C. Cells were collected at
0 and 4 hours after the shift with total RNA harvested and treated as described
n (31). RNA levels on microarrays were compared in three ways, where "mu-
tant” represents the ctrA401ts strain and ”control” is the isogenic, wild-type
strain: (a) control at 0 hours vs. control at 4 hours, (b) control at 0 hours vs.
mutant at 0 hours, (c) mutant at 0 hours vs. mutant at 4 hours. Each of the
three comparisons was done twice, using independent wild-type and ctrA401ts
colonies each time, with results averaged. The correlation coefficient for the du-
plicate experiments was greater than 95Strains 1.53326 and LS3327 were grown
overnight in PYE + 0.05

Promoter Analysis

A promoter database containing the 600 base pairs upstream of the predicted
start codon of each predicted ORF was constructed. A profile of known CtrA
binding sites was built using MEME (Multiple Expectation Maximization Motif
Elicitation), available through the GCG software package (Genetics Computer
Group, Madison, WI). This profile was then used with MotifSearch (GCG soft-



ware) to identify candidate CtrA binding sites in the promoter database. CtrA
binding sites were selected by requiring a combined MotifSearch P value of <
0.01 and a minimum 7 out of 9 match to the consensus CtrA binding site of
TTAA-n7-TTAAC.

10



