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Abstract

In this paper, I am presenting the basics of the Wigner formulation

of Quantum-Mechanics in a very simple language and write about few

interpretational stuff raised around it.
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1 Introduction

In classical mechanics, a system is completely specified by the position and mo-
mentum of its particles. It is common to build a 6N dimensional space, where
N is the number of particle constituting the system. This space is called the
phase space and contains an axe for each of the coordinate and momentum of
the system. The system is completely specified by a point in this space. Usu-
ally, when we have a lack of knowledge regarding the state of the system, we
try to find a probability distribution for the system in its phase space. This is
the case in classical statistical mechanics, where f(p, q) (p is a 3N dimensional
vector representing the momentum of all particles, and q is a 3N dimensional
vector representing the coordinate of all particles) is the probability of finding
the system with coordinate between q and q+dq and momentum between p and
p + dp. The predictions of quantum mechanics are similar to that of classical
statistical mechanics in the sense that they are statistical in nature. Thus, the
fundamental question arise whether quantum processes can be described as an
average over uniquely determined processes or not. And the observability of
these processes if the answer is yes [1]. Naturally the place to look for such
processes is the phase space and if the system is undergoing a process in the
phase space it must be represented by a point in the phase space. Regard-
less of the tough problem mentioned, it seems natural for a scientist to seek a
function similar to distribution functions in quantum mechanics. But, in the
framework of Orthodox and Copenhagen interpretations of quantum mechanics
this is impossible.

2 Wigner distribution function

The first example of such a function in quantum mechanics was suggested by
Wigner [2]. He mentioned the canonical ensemble probability distribution in
classical statistical mechanics for the system having momentum between p and
p + dp and coordinate between q and q + dq, which is e−βǫ, where β is the
reciprocal of the temperate, T , and ǫ is the sum of the kinetic and the potential
energy. He mentioned that in quantum mechanics, we cannot simultaneously
have momentum and position so we cannot have such an expression. But even if
we consider the coordinate alone, where the classical expression for probability
is e−βV , where V is the potential energy of the system, the classical expression is
not valid for quantum systems, because when β →∞ there is no reason for that
expression to be equal to |ψ0(x1, ..., xn)|2 (the ground state wave function is not
even always known). Also, the statistical mechanics of quantum systems is given
by the von Newman formula, i.e., < Q >= Tr(Qe−βH), where Q is the operator
corresponding to the quantity under consideration, H is the Hamiltonian of the
system and <> denote the expectation value. Because it was not easy to use
the von Newman formula for evaluating the expectation values, Wigner suggests
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to build the following expression

P (q, p) = (
1

h̄π
)n

∫

dyψ(q + y/2)∗ψ(q − y/2)eipy/h̄, (1)

and call it the probability function, here n is the number of dimensions of the
space. Thorough out this paper consider the limits of the integrals from −∞
to ∞, unless otherwise is explicitly stated. Unfortunately, Wigner never men-
tioned how he made up this recipe, he just mention in his first paper regarding
distribution functions that: ”This expression was found by L. Szilard and the
present author some years ago for another purpose.” By introducing the inverse
Fourier transform of ψ, i.e., ψ(q) = ( 1

2πh̄ )
n
2

∫

dpe
i
h̄
pqψ(p) in the above relation

we could get

∫

dy

∫

dp′
∫

dp′′ψ(p′)∗ψ(p′′)e
i
h̄

[−p′(q+y/2)+p′′(q−y/2)+py], (2)

by performing the integral over y we could get (2πh̄)nδ(p− p′′+p′

2 ), then we can
perform the integral over p′′ and perform the change of variables p−p′ → −y/2to
get

P (q, p) = (
1

h̄π
)n

∫

dyψ(p+ y/2)∗ψ(p− y/2)eiqy/h̄. (3)

This relation is completely equivalent with the relation (1) and shows the sym-
metry of the Wigner functions with respect to q and p. The phase space function
corresponding to an operator A is defined thorough

A(q, p) =

∫

dyeipy/h̄ < q −
y

2
|Â|q +

y

2
> . (4)

3 Proposals for getting the Wigner function

I have run to few ways to get the Wigner function in the literature and am
going to present these methods here. Stenholm presents a derivation for the
Wigner function [3]. All the information extractable from the quantum theory
is contained in the matrix elements

< x1|ρ̂|x2 >= ψ(x1)ψ(x2)
∗. (5)

We can bring the density matrix into momentum representation and write

< p1|ρ̂|p2 >=
1

2πh̄

∫ ∫

dx1dx2exp[−i(p1x1 − p2x2)/h̄] < x1|ρ̂|x2 > . (6)

Similar to a two body problem in mechanics, we can define new variables as
R = x1+x2

2 and r = x1−x2, and a similar change of variables in the momentum

representation, i.e., P = p1+p2
2 and p = p1 − p2. It is simple to show that

p1x1 − p2x2 = Pr + pR. (7)
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By substituting (7) into (6) and changing the variables, we could get

< P +
p

2
|ρ|P −

p

2
>=

−1

2πh̄

∫ ∫

drdRexp[−i(Pr+ pR)/h̄] < R+
r

2
|ρ|R−

r

2
> .

(8)
Doing a close look at the above relation it is just the Fourier transform of
ρ(R, r), where by analogy to the two particle problem, we can call R the center
of mass coordinate, and r the relative coordinate. Because, we are interested to
get a function containing both momentum and coordinate, we could either drop
the Fourier transformation on relative coordinate to get the Wigner function,
or drop the Fourier transformation on the center of mass coordinate to get the
Shirley [4] function. Groot has presented another equivalent method for deriving
the Wigner function [5]. By inserting one’s we can get

A =

∫

dp′dp′′dq′dq′′|q′′ >< q′′|p′′ >< p′′|A|p′ >< p′|q′ >< q′|. (9)

Then, we can introduce the new variables p′ = p−u/2, p′′ = p+u/2, q′ = q−v/2
and q′′ = q + v/2, where the Jacobian is equal to one, and use the relation

< q|p >= h−n/2e
i
h̄
p.q to get

A = h−n
∫

dpdqdudv|q + v/2 > e
i
h̄

(p+u/2)(q+v/2) < p+ u/2|A|p− u/2 >

e
−i
h̄

(p−u/2)(q−v/2) < q − v/2|.
(10)

This relation simplifies to

A = h−n
∫

dpdqdudv|q+v/2 >< p+u/2|A|p−u/2 >< q−v/2|e
i
h̄

(qu+pv). (11)

By defining the Â dependent function

a(p, q) =

∫

du < p+ u/2|A|p− u/2 > e
i
h̄
qu, (12)

and the Â independent function

∆(p, q) =

∫

dv|q + v/2 >< q − v/2|e
i
h̄
pv. (13)

We have

A = h−n
∫

dpdqa(p, q)∆(p, q). (14)

It is clear that a(p, q) is the Wigner function corresponding to the operator Â.
This is a natural way one can lead to the definition of the Wigner function.
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4 Weyl operator

Years before this work by Wigner, Weyl [6] had proposed a method to construct
an operator Â corresponding to the phase space function A(q, p). First we define

α(σ, τ) =

(

1

2πh̄

)n ∫

dq

∫

dpe−i(σq+τp)/h̄A(q, p) (15)

and then,

Â(q̂, p̂) =

∫

dσ

∫

dτα(σ, τ)ei(σq̂+τ p̂)/h̄ (16)

Wigner’s recipe is exactly the inverse of the Weyl’s. If this is a suitable cor-
respondence between A(p, q) and Â, so we must be able to get the correct
expectation value for Â by use of A(p, q), i.e.,

< ψ|Â|ψ >=

∫

dq

∫

dpP (q, p)A(q, p). (17)

Before proving this equality, I should mention a lemma.
lemma 1: By using the Baker-Hausdorff lemma, we can prove that

eÂ+B̂ = eÂeB̂e
−1

2
[A,B], (18)

which yields to

e
i
h̄

(σq̂+τ p̂) = e
i
h̄
σq̂e

i
h̄
τ p̂eiστ/2. (19)

By substituting A(p, q) from (15) and Â from (16) into (17), we get
∫

dσ
∫

dτα(σ, τ) < ψ|ei(σq̂+τ p̂)/h̄|ψ >

=
∫

dσ
∫

dτ
∫

dq
∫

dpP (q, p)ei(σq+τp)/h̄α(σ, τ),
(20)

which easily simplifies to

< ψ|ei(σq̂+τ p̂)/h̄|ψ >=
∫

dq
∫

dpP (q, p)ei(σq+τp)/h̄

= (2πh̄)−n
∫

dy
∫

dq
∫

dpψ(q + y)∗ψ(q − y)ei(2py+σq+τp)/h̄.
(21)

The integral over p gives (2πh̄)nδ(2y+τ), which allow us to perform the integral
over y in order to get for the right hand side

∫

dqψ(q + τ/2)∗ψ(q − τ/2)ei(σq)/h̄. (22)

According to the lemma 1, the left hand side is

eiστ/2 < ψ|e
i
h̄
σq̂e

i
h̄
τ p̂|ψ > . (23)

Because p is the generator of translation (23) is equal to
∫

dxe
i
h̄

(σx+στ/2)ψ(x)∗ψ(x+ τ). (24)

By imposing the change of variable x → q − τ/2, we get the relation (22), so
Q.E.D.
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5 Properties of the Wigner distribution

A number of properties have been mentioned for this function [7]
(i) Since P (q, p) should be real, it should be corresponding to a Hermitian

operator, i.e.,
P (q, p) =< ψ|M(q, p)|ψ >, (25)

where M = M †, i.e., Hermitian.
(ii)

∫

dpP (q, p) = ( 1
πh̄ )n

∫

dp
∫

dy < q + y/2|ρ|q − y/2 > eipy/h̄

=
∫

dyδ(y) < q + y/2|ρ|q − y/2 >= |ψ(q)|2 =< q|ρ|q > .
(26)

∫

dqP (q, p) = |ψ(p)|2 =< p|ρ|p > (27)

∫

dq

∫

dpP (q, p) = Tr(ρ) = 1 (28)

Derivation of the second and the third one are similar to that of the first one.
(iii) Translation of P (q, p) in the momentum and coordinate spaces occur in

accordance with the translation of the wave function, i.e., if ψ(q) → ψ(q + a)
then P (q, p).→ P (q+a, p), and if ψ(q)→ eip

′q/h̄ψ(q) then P (q, p)→ P (q, p−p′)
(iv) P (q, p) should change the same way as ψ in space reflections and time in-
versions , i.e., if ψ(q)→ ψ(−q), then P (q, p)→ P (−q,−p) and, if ψ(q)→ ψ(q)∗

then P (q, p) → P (q,−p) (v) When the third and all higher order derivatives
of the potential are zero we get the classical equations of motion (the Liouville
equation). (This will be shown in the section Dynamics.)

(vi)

| < ψ(q)|φ(q) > |2 = 2πh̄

∫

dq

∫

dpPψ(q, p)Pφ(q, p) (29)

(vii)
∫

dq

∫

dpA(q, p)B(q, p) = 2πh̄T r(AB), (30)

where A(q, p) is the classical function corresponding to the quantum operator
A. Using the property (ii) it can be easily shown that if h(q, p) = f(q) + g(p)
then we can get the expectation value of h by

∫ ∫

dpdqP (q, p)[f + g]

6 The Product of two Operators

Groenewold in a fundamental work argued foundational issues of quantum me-
chanics, which where discussed until 1946. He depicts the physical properties
corresponding to the quantum mechanical operators Â and B̂ with a and b.
He used the von Newman’s assumptions, i.e., (I) if a corresponds to Â and b
corresponds to B̂ then a+ b corresponds to Â+ B̂, and (II) if a corresponds to
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Â then f(a) corresponds to f(Â). Then it is shown that such symbols consti-
tute two isomorphic groups. Thus, if Â and B̂ do not commute then a and b
should not commute. It can be shown that if we assume a and b as commuting
observables we get into contradiction with assumptions (I) and (II). Therefore,
a quantum system can not possess two physical properties corresponding to two
non-commuting operators, and there is no reason to introduce different notation
for operator and physical property. In that paper for the first time, he show
that

ÂB̂ = F̂ → F (q, p) = A(q, p)e(h̄Λ/2i)B(q, p) = B(q, p)e−(h̄Λ/2i)A(q, p), (31)

where

Λ =

←−
∂

∂p

−→
∂

∂q
−

←−
∂

∂q

−→
∂

∂p
. (32)

Note that there is a dot product between the differentiation toward right and
differentiation toward left. It is easy to see that A(p, q)ΛB(p, q) is equivalent
to {A(p, q), B(p, q)}, the Poisson bracket of A and B. By taking the matrix
elements of (16), we get

< q′′|Â|q′ >=

∫

dσ

∫

dτα(σ, τ) < q′′|ei(σq̂+τ p̂)/h̄|q′ > . (33)

and by using the lemma 1, we can get

< q′′|Â|q′ >=
∫

dσ
∫

dτα(σ, τ)eiστ/2h̄eiσ(q′−τ)/h̄δ(q′ − τ − q′′)

=
∫

dσα(σ, q′ − q′′)eiσ(q′+q′′)/2h̄dσ.

(34)

Now we have

F (q, p) =
∫

dzeipz/h̄ < q − z
2 |ÂB̂|q + z

2 >

=
∫

dz
∫

dq′eipz/h̄ < q − z
2 |Â|q

′ >< q′|B̂|q + z
2 >

∫

dz
∫

dq′
∫

dσ
∫

dσ′e(i/2h̄)σ(q′+q− z
2
)e(i/2h̄)σ′(q′+q+ z

2
)

×α(σ, q′ − q + z
2 )β(σ′, q − q′ + z

2 )eipz/h̄.

(35)

By defining the new variables τ = q′ − q + z
2 and τ ′ = q − q′ + z

2 , we would get

F (q, p) =
∫

dτ
∫

dτ ′
∫

dσ
∫

dσ′α(σ, τ)e(i/h̄)(σq+τp)e(i/2h̄)(σ′τ−στ ′)

×e(i/h̄)(σ′q+τ ′p)β(σ′, τ ′).

(36)

Now consider the exponential between the other two exponentials and Taylor
expand it. Consider the second term while forget about all constants, i.e.,
σ′τ − στ ′ it is easy to see that by differentiation of the exponential on the
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right with respect to p and the exponential on the left with respect to q, we
can get σ′τ . We can get στ ′ by differentiation of the exponential on the right
with respect to q and the exponential on the left with respect to p. Therefore,
replacement of (i/h̄)(σ′τ−στ ′) by (h̄Λ/2i) makes no difference up to the second
term in the Taylor expansion, by more elaboration you can show that this is also
true for the higher order terms. After the mentioned replacement the definitions
of A(p, q) and B(p, q) will appear in (36), and we will get the first equality in
(31). If we change the place of the first two and the last two terms in (36),
we can repeat the preceding discussion by interchanging the differentiation with
respect to p by the differentiation with respect to q and vice versa. Thus, we
can easily get the second equality in (31).

Now let me introduce another way of writing the product of two operators.
Bopp operators are defined as [?]

Q = q −
h̄

2i

∂

∂p
, P = p+

h̄

2i

∂

∂q
. (37)

By taking a test function f and a little elaboration you can show that [σq +
τp, τ ∂

∂q − σ
∂
∂p ] = 0. This equality yields to the following equality

exp

{

i

h̄
[σ(q −

h̄

2i

∂

∂p
) + τ(p+

h̄

2i

∂

∂q
)]

}

= e
i
h̄

(σq+τp)e
1

2
(τ ∂

∂q
−σ ∂

∂p
). (38)

If we multiply both sides by e(
i
h̄

)(σ′q+τ ′p), Taylor expand the middle term on
the right hand side, and operate it on the exponential on its right, then every
∂
∂p will be replaced by τ ′ and every ∂

∂q will be replaced by σ′. Then, we will
have the Taylor expansion of an exponential function in the middle, which can
be gathered and give the final relation

exp
{

i
h̄ [σ(q − h̄

2i
∂
∂p ) + τ(p+ h̄

2i
∂
∂q )]

}

e(fracih̄(σ
′q+τ ′p)

= e
i
h̄

(σq+τp)e
i
2h̄

(τσ′−στ ′)e
i
h̄

(σ′q+τ ′p).

(39)

On the right hand side of (39), we have all the exponential terms we had on the
right hand side of (36). By replacing them and using the notation introduced
in (37), we get

F (q, p) =
∫

dτ
∫

dτ ′
∫

dσ
∫

dσ′α(σ, τ)e
i
h̄

(σQ+τP )e
i
h̄

(σ′q+τ ′p)β(σ′, τ ′). (40)

Now, we can define

Ã(Q,P ) ≡

∫

dτ

∫

dσα(σ, τ)e
i
h̄

(σQ+τP ). (41)

Therefore, we can express F (p, q) as

F (p, q) = Ã(Q,P )B(p, q). (42)
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Similarly it can be shown that

F (p, q) = B̃(Q∗, P ∗)A(p, q), (43)

where

Q∗ = q +
h̄

2i

∂

∂p
, P ∗ = p−

h̄

2i

∂

∂q
. (44)

We know that the Wigner function is the function associated with (1/2πh̄)nρ̂),
and we know that the equation of motion for ρ is

ih̄∂ρ̂/∂t = [Ĥ, ρ̂]. (45)

Using the product rule just mentioned, we can transform (45) to

ih̄∂P/∂t = H(q, p)eh̄Λ/2iP (q, p)− P (q, p)eh̄Λ/2iH(q, p). (46)

The first term of the Taylor expansion is HP −PH , which is equal to zero. The
second term in the Taylor expansion of the first and the second term of (46) are
just negative of each other so they build up to h̄

i [
∂H
∂p

∂P
∂q −

∂H
∂q

∂P
∂p ]. For the third

term we need

Λ2 = (

←−
∂

∂p

−→
∂

∂q
−

←−
∂

∂q

−→
∂

∂p
)(

←−
∂

∂p

−→
∂

∂q
−

←−
∂

∂q

−→
∂

∂p
) (47)

By inserting two test functions f and g, respectively, in the left and right hand
side of the expression in (47), we can show that

Λ2 =

←−
∂2

∂p2

−→
∂2

∂q2
− 2

←−
∂2

∂q∂p

−→
∂2

∂p∂q
+

←−
∂2

∂q2

−→
∂2

∂p2
(48)

Because of the symmetry of (48), the third term in (45) is zero. Again, by
inserting the test functions f and g, we can evaluate

Λ3 = Λ2Λ = (
←−
∂2

∂p2

−→
∂2

∂q2 − 2
←−
∂2

∂q∂p

−→
∂2

∂p∂q +
←−
∂2

∂q2

−→
∂2

∂p2 )(
←−
∂
∂p

−→
∂
∂q −

←−
∂
∂q

−→
∂
∂p )

=

(←−
∂3

∂p3

−→
∂3

∂q3 − 3
←−
∂3

∂q∂p2

−→
∂3

∂p∂q2 + 3
←−
∂3

∂q2∂p

−→
∂3

∂p2∂q −
←−
∂3

∂q3

−→
∂3

∂p3

)

,

(49)

and

Λ4 = Λ3Λ =

(←−
∂3

∂p3

−→
∂3

∂q3 − 3
←−
∂3

∂q∂p2

−→
∂3

∂p∂q2 + 3
←−
∂3

∂q2∂p

−→
∂3

∂p2∂q −
←−
∂3

∂q3

−→
∂3

∂p3

)

(
←−
∂
∂p

−→
∂
∂q −

←−
∂
∂q

−→
∂
∂p )

=

(←−
∂4

∂p4

−→
∂4

∂q4 − 4
←−
∂4

∂q∂p3

−→
∂4

∂p∂q3 + 6
←−
∂4

∂q2∂p2

−→
∂4

∂p2∂q2 − 4
←−
∂4

∂q3∂p

−→
∂4

∂p3∂q +
←−
∂4

∂q4

−→
∂4

∂p4

)

.

(50)
By continuing in this manner we can show that

h̄∂P/∂t = −2H(q, p)sin(h̄Λ/2)P (q, p). (51)
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In order to generalize the expression for Λ2 to higher dimensions, we can write

Λ2 =

[

∑

i

(

←−
∂

∂pi

−→
∂

∂qi
−

←−
∂

∂qi

−→
∂

∂pi
)

]





∑

j

(

←−
∂

∂pj

−→
∂

∂qj
−

←−
∂

∂qj

−→
∂

∂pj
)



 , (52)

in order to get

Λ2 =
∑

i,j

[ ←−
∂2

∂pi∂pj

−→
∂2

∂qi∂qj
− 2

←−
∂2

∂qi∂pj

−→
∂2

∂pi∂qj
+

←−
∂2

∂qi∂qj

−→
∂2

∂pi∂pj

]

. (53)

7 Proof of the impossibility of a positive phase

space probability distribution

Since his first paper on this subject, Wigner was aware that this probability
function gets negative values (unless the world was just made up of Gaussian
wave packets). Thus, he emphasized that this is just a calculational tool, not a
real probability distribution in phase space. Latter, Wigner published a paper
in a book in the honor of Alfred Lande [8]; There he use the fact that for a mixed
state we have P (q, p) =

∑

wiPi(q, p), where wi is the probability of the i’th pure
state, and Pi(q, p) is the Wigner function for the i’th pure state. Then, he shows
that by imposing the conditions (i) and (ii) (see section (5)) it is impossible to
build an always positive distribution function. He used ψ(q) = aψ1(q)+ bψ2(q),
where ψ1 is zero outside I1 and ψ2 is zero outside of I2. Consider I1 and I2 to
be two non-overlapping intervals over the space of coordinate. Now we have

Pab(q, p) = |a|2P1 + a∗bP12 + ab∗P21 + |b|2P2. (54)

If q is outside of I1, P1 is zero for such a q and the only way to have a positive
value for Pab(q, p) for every a and b is to have P12(q, p) = P21(q, p) = 0. The
same reasoning can be given for the q outside of I2. Therefore, every where, we
have

Pab(q, p) = |a|2P1 + |b|2P2. (55)

This means that Pab is independent of the complex phase of a/b, and it does
not make sense. Consider the Fourier transform of ψ1 and ψ2 to be φ1(p) and
φ2(p). By removing Pab from equation (54) and equation (55), then integrating
both sides of the resultant equation with respect to q and using the mentioned
Fourier inverses, we get

|a|2
∫

P1(q, p)dq + |b|2
∫

P2(q, p)dq

= |a|2|φ1(p)|
2 + |b|2|φ2(p)|

2 + 2Re[ab∗φ1(p)φ2(p)
∗].

(56)

For this relation to be valid for all a and b, we must have

φ1(p)φ2(p)
∗ = 0. (57)
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On the other hand, φ1 and φ2 are Fourier transforms of confined functions; thus,
they cannot vanish on any finite interval. This is a contradiction, and QED.
Because, it seems possible to break down every normalizable wave function into
such a linear combination, thus this proof excludes the possibility of having a
phase space distribution for a quantum state. Wigner [8], also, showed that
by imposing the conditions (i)-(v) (1) is unique. While, O’connell and Wigner
[9] show that by imposing conditions (i)-(iv) and (vi) ([?]) is the only possible
distribution.

8 Dynamics of the Wigner function

If we want to express quantum mechanics in terms of the Wigner function we
must derive Wigner functions equation of motion. This will be done with the
aid of the Schroedinger equation, i.e.,

ih̄
∂ψ(t)

∂t
=

[

−
h̄2

2m

∂2

∂q2
+ V (q, t)

]

ψ(t). (58)

By conjugate transposing both sides of the Schroedinger equation, we get

− ih̄
∂ψ(t)∗

∂t
=

[

−
h̄2

2m

∂2

∂q2
+ V (q, t)

]

ψ(t)∗. (59)

Let me decompose the time dependence of P into two parts, i.e.,

∂P
∂t = ( 1

πh̄ )n
∫

dy
[

∂ψ(q+y)∗

∂t ψ(q − y) + ψ(q + y)∗ ∂ψ(q−y)
∂t

]

e2ipy/h̄

= ∂kP
∂t + ∂vP

∂t .

(60)

In the last expression of (60), the first part arise from the kinetic part of the
Hamiltonian and the second part arise from its potential part. By substituting
(58) and (59) in (60) and considering the n to be equal to one, we can get

∂kP

∂t
= (
−i

2πm
)

∫

dy

[

∂2ψ(q + y)∗

∂y2
ψ(q − y)− ψ(q + y)∗

∂2ψ(q − y)

∂y2

]

e2ipy/h̄,

(61)
where we have replaced ∂2/∂q2 by ∂2/∂y2. By partial integration, because ψ
vanishes at −∞ and ∞, we can get

∂kP

∂t
= (
−p

πh̄m
)

∫

dy

[

∂ψ(q + y)∗

∂y
ψ(q − y)− ψ(q + y)∗

∂ψ(q − y)

∂y

]

e2ipy/h̄.

(62)
By jumping back to ∂/∂q, we obtain

∂kP

∂t
= (
−p

m
)
∂P (q, p)

∂q
, (63)
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which is identical to the corresponding part of the classical Liouville equation.
Also, we have

∂vP
∂t = i

(πh̄)nh̄

∫

dy[(V ψ)(q + y)∗ψ(q − y)− ψ(q + y)∗(V ψ)(q − y)]e2ipy/h̄

= i
(πh̄)nh̄

∫

dy[V (q + y)− V (q − y)]ψ(q + y)∗ψ(q − y)e2ipy/h̄.

(64)
By Taylor expanding V , we get

V (q + y) =

∞
∑

λ=0

yλ

λ!

∂λV

∂qλ
. (65)

Therefore, we have

∂vP

∂t
=

2i

πh̄2

∫

dy
∑

λ

yλ

λ!

∂λV

∂qλ
ψ(q + y)∗ψ(q − y)e2ipy/h̄, (66)

where the sum is over the odd positive integers λ, since the even terms resulting
from V (q+ y) and those resulting from V (q− y) cancel each other. Because by
differentiating the exponential term with respect to p, we get a y multiplier, yλ

can be replaced with [(h̄/2i)(∂/∂p)]λ to get

∂vP

∂t
=

∑

λ

1

λ!
(
h̄

2i
)λ−1 ∂

λV (q)

∂qλ
∂λP (q, p)

∂pλ
. (67)

For the sake of simplicity, equations (65)-(67) are written for the one dimensional
case (n = 1), . In order to generalize them to higher dimensions λ! should be
replaced by Πiλi!, any thing to power λ with the same thing to the power

∑

i λi,

∂qλ with Πi∂q
λ
i , and ∂pλ with Πi∂p

λi

i . Which is a trivial generalization; But,
remember λi’s take positive integers that yield an odd positive integer for

∑

i λi.
We can, also, write ∂vP

∂t in the form

∂vP

∂t
=

∫

djP (q, p+ j)J(q, j), (68)

while
J(q, j) = 1

(πh̄)nh̄

∫

dy[V (q + y)− V (q − y)]e−2ijy/h̄

= i
(πh̄)nh̄

∫

dy[V (q + y)− V (q − y)]sin(2jy/h̄)
(69)

has interpreted as the probability of a jump in momentum by an amount j if the
position is q. We can go from the first to the second equality in (69), because
eix = cos(x)+isin(x) and the function in the square brackets is an odd function
so when it is multiplied by an even function, cos(2jy/h̄) and integrated over the
whole space, it will give zero. Now, we are able to get the equation of motion
as

∂P

∂t
= −

n
∑

i=1

pi
mi

∂P

∂qi
+

∑ ∂
∑

λiV

Πi∂q
λi

i

(h̄/2i)
∑

λi−1

Πλi!

∂
∑

λiP

Π∂pλi

i

. (70)
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Now consider the case where the potential has no third or higher order deriva-
tive; then, evidently (69) is the classical Liouville equation. For a system con-
sisting of a bunch of harmonic oscillators and free particles, we can solve the
easier classical equations of motion and get the exact quantum result! This is
surprising.

9 Attempts for giving a probability distribution

interpretation to the Wigner function

Some people have argued this function as a valid probability distribution, and
some others argue it as a valid probability distribution just for some situations.
Stenholm has argued that, we can ”obtain verifiable predictions” only by using
”suitable test bodies.” He show that always positive probabilities come out of
the Wigner distribution when these arguments are implemented. In relativistic
quantum mechanics [10], even if we are working in the position representation,
the choice of the position observable is not at all trivial. Therefore, probably in
non-relativistic cases it is just the absence of mathematical complications which
make us to believe that we can make a classical interpretation of position and
momentum.

The way to measure the momentum and coordinate of a particle is to let
it interact with another body which we usually let approach it’s classical limit.
This second body is a test particle, and we are actually performing a scattering
experiment. In this scattering experiment, test particle transfers the desired
information out of the interaction region. ”Only probability distributions ob-
servable in this manner can be given a physical interpretation” [3]. In cases
where the test particle is carrying both coordinate and momenta information,
restrictions due to Heisenberg uncertainty principle should be taken into ac-
count. Stenholm emphasized that, in order to get the most precise results for
both momentum and coordinate, we must use a test particle which is in a state
of minimum uncertainty. At the end, the test body is bringing out some infor-
mation which at best allow us to confine our system to a region of phase space
satisfying the relation ∆p∆q ≤ h̄

2 and no more precise detail is achievable. The
minimum uncertainty wave packet can be determined uniquely as

ψ0(x) = Cexp

(

−
(x− < x >)2

4b2
+
i < P > x

h̄

)

, (71)

where <> denotes the expectation value, and we have uncertainties ∆x = b and
∆p = h̄/2b. The Wigner function for this minimum uncertainty wave packet is

W0(R,P ) = Aexp

(

−
(R− < x >)2

2b2
−

4b2(P− < P >)2

2h̄2

)

. (72)

Stenholm argued that ”a Wigner function W (P,R) is not directly observable but
has to be convoluted with the function describing the test particle, which smears
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it, at least, by the amount implied by the function” (72). This convolution leads
to

P (π, q) = A
∫ ∫

exp
(

− (R−q)2

2b2 − 2b2(P−π)2

h̄2

)

W (R,P )dRdP

= ( Aπh̄ )
∫ ∫ ∫

drdPdRe(−iPr/h̄)e−(R−q)2/2b2e−2b2(P−π)2/h̄2

ψ(R+ r
2 )ψ(R − r

2 )∗.
(73)

Here (q, π) are a couple of position and momentum coordinate, and Stenholm
hope them to give meaningful phase space interpretation. A is just a normaliza-
tion constant. By carrying out the integral over P , we can show that P (q, π) ≥ 0.
The immediate criticism to this approach is that not all test bodies are min-
imum uncertainty wave packets. Thus, Stenholm emphasize that in order for
the test body to exhibit a nearly classical behavior it must be smooth and every
wave function smoother than the minimum uncertainty wave packet will fulfill
the positiveness requirement. All in all, we have to calculate W (P,R; t) up to
the moment of measurement, and then smooth it to obtain P (π, q; t). Since,
P (π, q; t) depends on the test particle prepared by the observer it has no dy-
namics. The idea of smoothing the Wigner function with a Gaussian function
was first introduced by Husimi [11]. He get the positive distribution which is
now called the Husimi distribution. Husimi didn’t interpret it as a phase space
distribution because it doesn’t poses the property (ii). There is also a bunch
of work for interpreting Quantum Optics based on Wigner function. Including
Marshall and Santos [12], who argue that, there is just a subset of states in the
Hilbert space which can be generated in the laboratory, and those states ”May
be represented by a positive Wigner distribution.” They have also claimed that
[13], the experiments which are exhibiting non-classical behavior of light can
be interpreted just by assuming light as an electromagnetic wave in accordance
with the Maxwell’s equations of motion. Also, Holland et al [14] published on
the ”Relativistic generalization of the Wigner function and its interpretation
in the causal stochastic formulation of quantum mechanics.” There are some
good reviews on the mathematical properties and applications of the Wigner
function, e.g., [7], [15] and [16].

10 Discussion

We can argue that, any experiment which is designed to measure both momen-
tum and coordinate will get average information about a region of phase space
which is large enough to give a positive value. The Wigner function give a
positive average over this region and thus interpreting the Wigner function as a
probability distribution function is experimentally adequate. But does it make
sense to consider a probability function which has no meaning on a point but
is representing a physical reality when averaged over any large enough interval!
Thats weird but is it more weird than a particle owning either momentum or
position and not both of them at the same time? The classical formalism of
quantum mechanics doesn’t provide any prediction regarding a simultaneous

14



measurement of position and momentum. If it was possible to perform such an
experiment, for example, as suggested, thorough sending out a test particle to
interact with system (quantum particle) and be able to measure its position and
momentum before and after the interaction, because it is approaching classical
behavior, then we could perform an experimental test for this interpretation.
But it seems that no semi-classical test particle can be used for a measurement
on a quantum system without enormously changing its state.
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