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1. ASTRONOMY

Magnitude System: The flux fr (erg cm~2 s™!) passing
through filter ' with a response Ap () (fraction transmitted,
i.e., between O to 1 at wavelength )\) is related to the absolute
flux f through

fr= / AN, f = / frd) (1

Standard filters centred around Ay ~ 36504, Ag ~ 44004,
Ay ~ 5480A. Definition of apparent/bolometric magnitude:

mpyl —mF’2:—2.5log10 (fF’l) (2)
fro
_ fi
my —mge=—2.5log g | & (3)
f2
Normalization: m = 0 and mpr = 0 for the star Vega. Also,
me = —26.83, mgrius = —1.6 and sensitivity of the eye

is m < 6 (for pupil diameter of 8mm). With normalization,
the magnitudes through standard filters (or the bolometric nor-
malization) are:

ANAx (N)dA
mx = —2.5log,, V "}ijo fXbei } (4)
Mpor = —2.510g; {ff)\lf—,j)w\] )
where the normalizations fluxes are
Fy=252x10%ergem 257} (6)
Fx xo = F(u,B,V,RorI},30 = @)

{4.27,6.61,3.64,1.74,0.832} x 10 %erg cm ?s *A~!

e.g., a flux of 6.61 x 10*96rg em~2s7tA-1 at 4400A
gives mp = 0, or a spectrally integrated flux of 2.52 X
107° erg em ™2 57! gives mpyo; = 0.

Absolute (/) vs. Apparent magnitudes (m). M = m for a
*at d = 10pc, i.e.,

d

Effective temperature is the black body temperature that
gives L.
Color is the temperature magnitude difference in two filters.
e.g.,

B —V = mp — my = color index ©)]
Color temperature is the blackbody temperature that gives the
observed B — V.
Wien Approximation for blackbody F' o< exp(hc/AkT) (at
short wavelengths), giving:

7090 K

For Vega, B — V =0 and T, ~ 10000K.

Spectral Types: From hot (~ 50000K) to cold (~ 3000K):
OBAFGKM. Each type goes from O to 9 (e.g., A0..A9). The
Sun is a G2 star. Vega is AO.

B-V~ —-0.71 (10)

Diffraction limit of a telescope with a diameter d at a fre-
quency A is:

fmin ~ 1.2% (11)

2. POTENTIAL ENERGY AND VIRIAL THEOREM

The gravitational potential energy of spherically symmetric
mass M is:

M
d
Uprar = -G [ (12)
0 T
The virial theorem:
1d21
5@:2K+;F~r (13)

where I is the “spherical” moment of inertial [ = Y, m;r?.
K is the kinetic energy of the system K = ). m;(dr;/dt)-r;.
Particles in a gravitational field:
Gm;m;
Fij=——35—"(ri—r) (14)
T

And the virial theorem becomes:

Gmgm;
K:f%ZFiyj.(rfrj):%Z myn;
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3. EQUATION OF STATE OF IDEAL GAS
The equation of state of an ideal gas is
KT 1
p="" 1 Cart (16)
pmy 3

Here a is the radiation energy constant. It is related to the
Stefan-Bolzmann constant through:

_40

a a7

c

Note that if the matter is degenerate, then there will be another
term. This pressure can be written with the help of the gas to
total pressure ratio

4 3
IBEpgas ; P l( k > 3(15)‘| p4/3 (18)

Ptot mmyp a B4

Molecular Weight ;1 appearing above is the average weight
of a particle (contributing to the pressure) in units of the pro-
ton mass m,. Given mass fractions n; for specie j in the

ionised plasma, the molecular weight is:
= > A
>+ Zj)

Each specie has an atomic mass A; and charge Zje. If one

%_Iram of matter contains X grams of hydrogen, ¥ grams of
e and Z grams of the rest (“Metalicity”), one has:

19)

1 1+ 27,
z:2X+3Y+<(+J)> A (20)
H 4 A; Jj#1,2
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4. DEGENERATE MATTER AND WHITE DWARFS
Non-relativistic. The degeneracy pressure is:

2/3 2

1 /3 h

Pe,nr = () /75/3 (2])
[20 w) e Mg/s]
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here p1. = p/(nem,) is the number of baryons per electron.
Using n = 1.5 polytropic solution:

-1/6 _
R:(1.22><104km)< Pe ) (’L) 7 2

106g cmm—3 2
’ 1/2 572
M = (0.4964M) (m(jgp;n:J (%) (23)

or RO\ s
M = 0.7011M, (1041“) (?) (24)

Relativistic. The degeneracy pressure is:

1/3

1/3 he

Pe,nr: = () — 2 1 a p4/3 (25)
[8 - m,‘i/‘*ué“]

Using n = 3 polytropic solution:

~1/3 _
R:(3.347><104km)< Pe ) (%) 7 26)

106g cm—3 2
e\ 2 he 3/2 1
phe
(27

5. EQUATIONS OF STELLAR STRUCTURE
Mass continuity

d
N _ g2 (28)
dr
Hydrostatic equation
dp Gm
— = —— 29
dr 2P 29
Radiative Transfer
dr 3 Emp L
— —_ 30
ar |, aa 4ac T3 4mr? (30)
Energy transfer
dr dTl dr
— = — — 31
dr e < dr rad, dr ad) ( )

(i.e., the least negative of the two gradients!) Nuclear Energy
generation
dL

— = dnr?pe 32)
dr

here € is the energy generation per unit mass.

Often, the opacity is approximated as:

Ko = Rp®T® (33)
For Thomson opacity, @ = b = 0. For Kramer’s opacity

a=10=-3.5.
While the energy generation is approximated as:

e=¢épmTm (34)
For all reactions m = 1 except 3a burning for which m = 2.
n ~ 4 for pp, n =~ 16 for CNO burning, while n ~ 40 for 3a.
Eddington Luminosity: The ratio between the radiative

transfer equation (written with p,.,4) and the hydrostatic equa-
tion (for pyo¢) gives:

~ dprad _ L

1 - /8 ~ T
dptot Ledd

(33)

where 8 = pgqs/Diot, and

4rGMe
Ledd = . (36)

m

Equations in terms of m for homology: Assuming radiative
transfer, the stellar structure equations can be written with m
as the coordinate:

5—; = ﬁ (37)
= ST @)
% = (40)

6. CONVECTION
Necessary condition for convection

T T —1
df < df :_iz_g“mi’ -t 41)
dr dr | diab Cp k 0%

atmos

(i.e., atmospheric gradient is steeper). In stars, it becomes:

3 KkmpL(r) _ Gm(r)pmy (v—1
167 acl® ~ k ~ (42)

7. RADIATIVE TRANSFER

Mean free path of photons £ is related to scattering (or ab-
sorption cross-section) and number density of scatterers n, to
extinction (opacity per unit volume), or to opacity per unit
mass through:

T =no = Kky = piy 43)

Number of diffusion steps needed to cross a length d is ~
(d/1)?, over a time scale ~ d?/(lc).

Intensity I is defined as the flux (energy per unit area per unit
time) per unit solid angle. The flux along a ray s satisfies
(under the gray approximation)

dl T
a_ . (1—" ) (44)
ds m

If there is only absorption (and re-emission in another wave-
band), then the intensity decays exponentially:

I = Iyexp(—kys). (45)

Thus, the probability that photons arrive from a unit interval
at a given distance s is

P(s)ds = Ky exp(—£y8)ds. (46)
Optical depth between r; and r5 is defined through

2
T= / Kmpdr 47
1

Often one takes 7o = oo to get the optical depth to infinity.
The equation of radiative transfer (which can be obtained by
integrating over I formed from a background with a gradient
temperature).

EVE

3 Ky

. (48)
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Blackbody radiation field. Planck’s law describes the black
body radiation (energy Tper unit area per solid angle) from a
surface at temperature 7', either per unit frequency:

2hv3 1
B,(T) = 49
(T) 2 exp(hv/kT) —1 “49)
or per unit wavelength:
2hc? 1
BA(T) = (50)

8. NUCLEAR REACTIONS

The rate of the reaction a + X — b+ Y + (@) can be written
as:

1 pP?N2X,Xy
(ov)
1 + 50,X> AaAX

TaX =7 (51

with X; and A; the mass fractions and atomic weight of specie
1, and

_®fpm) [ E b
o0 = s ) SEIew g - e 62

S(F) is generally a slowly varying function of E which de-
pends on the reaction. And

V2uUrZ o Z x €2
p= VEHTLasXC (53)
h
Here p is the reduced mass. The Gamov Peak is:
bkT\*/*
By = <2) —1.2(222% AvedT2) P keV  (54)
For S(E) = Sy = const, one obtains:
Ngn. _ So o _
o = a’'xT 7 X 10 19 2 T 1 3
! AveaZoZy [keV - barn]T oo
(55
with A,.q being the reduced atomic weight and
3E, 7272 4,00\
= — =425 21— 56
TE%T ( T/10°K (56)
9. POLYTROPIC STARS
Polytropic approximation:
P=Kp" = Kpnti/n, (57)

In adiabatic gas: I' = v = ¢,/c,. In non-relativistic
monoatomic gas v = 5/3, n = 1.5. In relativistic mono-
atomic gas: v = 4/3, n = 3. Eddington standard model
n=3

Standard transformation to get Lane-Emden equation:

p=pcp" jr=¢&~0 (58)

/=

(59)

(n+1)Kp£1—n)/n 1/2
anG

which is:

L d (,do\
§2d§<§ ds)‘ ¢ (€0

TABLE 1
VALUES OF {1 AND T(?, n), FOR VARIOUS POLYTROPIC INDICES n.
n gl T(Qv TL)

0 244949 4.8988
1 3.14159 3.14159
1.5 3.65375 2.71406
2 435287 241105
3 6.89685 2.01824
4 149715 1.79723

- TABLE?2
VALUES OF f(fl &' ¢? (€)d€ FOR n = 3 POLYTROPE.

i=0 i=1 i=2 i=3 i=4 i=5 i=6

j=0 | 6.896 23.783 109.353  565.643 3120.93 17937.1  106037.
j=1 2.662  4.847 14.191 52465  222.832 1036.23  5132.92
j=2 | 1757 2132 4.327 11.667 37.943 140.807  575.485
j=3 1.38 1.292 2.018 4223 10.851 32.515 109.748
j=4 | 1.168 0914 1.181 2.036 4317 10.748 30.454
j=5 1.03 0.704 0.788 1.169 2.126 4.537 11.05
j=6 | 0931 0.571 0.57 0.751 1.207 2.268 4.858
j=7 | 0.856 0.48 0.437 0.521 0.755 1.277 2.454
j=8 | 0796 0414 0.348 0.382 0.507 0.784 1.374
=9 | 0.748  0.364 0.285 0.291 0.359 0.514 0.832
j=10 | 0.707  0.325 0.239 0.23 0.265 0.354 0.535
j=15 | 0.571  0.211 0.124 0.094 0.085 0.088 0.103
j=20 | 0492  0.156 0.078 0.05 0.039 0.034 0.033

j=25 | 0439  0.123 0.055 0.031 0.021 0.016 0.014

with boundary conditions: ¢(0) = 1 and d¢/d&y = 0. Outer
boundary exists only for n < 5, which is ¢(&;) = 0. Stellar
radius:

(n+ 1)K

1
2
(1—-n)/2n
= }m & 6

R*:§1€:|:

Many interesting variables can be written with dimensionless
integrals of the form:

&
Y(i,5)= [ &'¢()dS (62)

0
For example, the stellar mass:

Mzhﬁﬂ@m=4ﬁ%ﬁ% (63)
&1
Average density

P 3 do

—=—-= = (64)

Pe & d€ &

10. ACCRETION DISKS

The rate of energy release in accretion disks from infinity
down to a radius r is roughly

GMm
L(r) ~ 2r

with 7 being the mass accretion rate. This assumes a Ke-
plerian disk such at the velocity is nearly Keplerian at each
radius. The energy dissipated at each radius (per unit area) is
therefore:

(65)

1 dL(r) _ GMin
D(r) = (4nr) dr = 8nrd (66)




11. SUPERNOVA EXPLOSIONS

If we look at a spherical shell having a radial width Ar = fr,

with 7 = vt, then the diffusion time scale is

" / 22 JEmMeny
dift Le 4dmevt

(67)

where k,, is the opacity per unit mass and Mmey, i the mass
of the shell.

TABLE 3
USEFUL CONSTANTS

2.998 1010 cms— !

Speed of light c
Planck’s constant h 6.626 10727 ergs

h 1.05510727  ergs
Bolzmann’s const k 1.38110716  erg K—1!
Electron charge e 480310710  esu

Electron rest mass Me 9.11010—28 g

Proton rest mass mp 1.67310724 ¢

Gravitational const G 6.673 1078 dyne cm? g2
Avogadro’s number  Ng4 6.022 1023 mole ™!

Gas constant R 8.314 107 erg K—1 mole !
Stephan-Boltzmann o 5.670 10~5 ergem—2 s~ K4
Radiation constant a 7.5641071%  ergem™3 K4
Thomson x-section or 6.65610~2% cm?
Electron-Volt eV 1.60210712  erg
Astronomical unit AU 1.496 103 cm

Parsec pc 3.086 1018 cm

Light year Ly. 9.460 107  cm

Solar mass Mg 1.98910%% ¢

Solar radius Ro 6.960 100 cm

Solar luminosity Lo 3.826 1033 erg s~ 1

Solar magnitude:

apparent bolometric ~ mp o —26.75
absolute bolometric ~ M o +4.82
Solar Metalicity Z 0.02
Lunar apparent mag. my, ¢ —12.74

12. COSMOLOGY
Robertson-Walker Metric

dr?

d82 = (Cdt)2 — a(t)2 |:1—I{7"2

+ r%(df? + sin® 6d¢2)}
(68)

K denotes the curvature. a(t) is the scale factor!. K =

—1,0, 41 for hyperbolic, flat and elliptical metrics.

Null Geodesics (ds = 0, photons) satisfy

t() 1
cdt dr
- I — 69
[ e ©
sinh™'(r) K = —1
=flr)=<r K=0
sin~!(r) K =+1
Redshift: N
1 4= obs _ Aobs (70)
Aemitted Aemitted

(obs = present day, emitted = some time in the past).
2nd order approximation:
1
a(t) = Qo |:]. + H()(t - t()) — 5(](]Hg(t — t(])2 + O(t - t())3
(71

! For example, for a closed universe it would be the radius of the 4-sphere,
the surface of which is the 3-volume of the universe.

At Valt
Taking ag/a(t) gives
2= Holto —t) + (1 + qz—o) H2(tg—t)2+ ..  (73)

or inverted, the look back time is:

(to — 1) = Hio (z - (1 n q2—°) 2y O(z3)) (74)

If we look at a light ray (ds = 0) then j;to (c/a(t))dt gives

c 1
r=— [(to—t)-i-Ho(to—t)Q-&-.-} (75)
ag 2
S R R I (76)
B aoHo 2 1
Luminosity Distance: Defined as
L
drp, =\ —— 77
L P )
To second order in z:
1
dr, = Hio [z 51— q0)2" + 0(23)] (78)

Friedman equations:

i 4rG D Aca

= (p+30—2)a+ . (79)
8rG Ac?

a?= %pcf — K+ TCaZ (80)

Cosmological parameters:

Ho:(a> 81)
a/g

S%<p> (82)
pC O

_smp
Pec = % (83)

%:—<f> (84)
as /o

Cosmological equation of state

p = wpc® (85)

For pressure less “dust”, w = 0 (i.e., non-relativistic gas). For
relativistic gas (e.g., radiation) w = 1/3.
From first law of thermodynamics:

d(pc*a®) = —pdV = —3wpa’da (86)
Integration gives
pa®H) — const (87)

Thus, Pm = p’m,O(l + 2)3 and Prad = prad,O(l + 2)4



