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1. ASTRONOMY

Magnitude System: The flux f
F

(erg cm�2 s�1) passing
through filter F with a response A
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(�) (fraction transmitted,
i.e., between 0 to 1 at wavelength �) is related to the absolute
flux f through
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⇡ 5480Å. Definition of apparent/bolometric magnitude:
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Normalization: m = 0 and m
F

= 0 for the star Vega. Also,
m� = �26.83, m

Sirius

= �1.6 and sensitivity of the eye
is m . 6 (for pupil diameter of 8mm). With normalization,
the magnitudes through standard filters (or the bolometric nor-
malization) are:
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where the normalizations fluxes are
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Å

�1

e.g., a flux of 6.61 ⇥ 10

�9

erg cm

�2

s

�1

Å
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Absolute (M ) vs. Apparent magnitudes (m). M = m for a
? at d = 10pc, i.e.,
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Effective temperature is the black body temperature that
gives L.
Color is the temperature magnitude difference in two filters.
e.g.,

B � V ⌘ m
B

�m
V

= color index (9)
Color temperature is the blackbody temperature that gives the
observed B � V .
Wien Approximation for blackbody F / exp(hc/�kT ) (at
short wavelengths), giving:

B � V ⇡ 7090K

T
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� 0.71 (10)

For Vega, B � V ⌘ 0 and T
c

⇡ 10000K.
Spectral Types: From hot (⇠ 50000K) to cold (⇠ 3000K):
OBAFGKM. Each type goes from 0 to 9 (e.g., A0..A9). The
Sun is a G2 star. Vega is A0.

Diffraction limit of a telescope with a diameter d at a fre-
quency � is:
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2. POTENTIAL ENERGY AND VIRIAL THEOREM

The gravitational potential energy of spherically symmetric
mass M is:
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The virial theorem:
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Particles in a gravitational field:

F
i,j

= �Gm
i

m
j

r3
i,j

(r
i

� r
j

) (14)

And the virial theorem becomes:
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3. EQUATION OF STATE OF IDEAL GAS

The equation of state of an ideal gas is
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Here a is the radiation energy constant. It is related to the
Stefan-Bolzmann constant through:
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Note that if the matter is degenerate, then there will be another
term. This pressure can be written with the help of the gas to
total pressure ratio
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Molecular Weight µ appearing above is the average weight
of a particle (contributing to the pressure) in units of the pro-
ton mass m

p

. Given mass fractions n
j

for specie j in the
ionised plasma, the molecular weight is:
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Each specie has an atomic mass A
j

and charge Z
j

e. If one
gram of matter contains X grams of hydrogen, Y grams of
He and Z grams of the rest (“Metalicity”), one has:

1

µ
⇡ 2X +

3

4

Y +

⌧
(1 + Z

j

)

A
j

�

j 6=1,2| {z }
⇡1/2

Z (20)

4. DEGENERATE MATTER AND WHITE DWARFS

Non-relativistic. The degeneracy pressure is:
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here µ
e

= ⇢/(n
e

m
p

) is the number of baryons per electron.
Using n = 1.5 polytropic solution:
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Relativistic. The degeneracy pressure is:
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Using n = 3 polytropic solution:
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5. EQUATIONS OF STELLAR STRUCTURE

Mass continuity
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Hydrostatic equation
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Radiative Transfer
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(i.e., the least negative of the two gradients!) Nuclear Energy
generation

dL

dr
= 4⇡r2⇢✏ (32)

here ✏ is the energy generation per unit mass.
Often, the opacity is approximated as:


m

= ̃⇢aT b (33)
For Thomson opacity, a = b = 0. For Kramer’s opacity
a = 1, b = �3.5.
While the energy generation is approximated as:

✏ = ✏̃⇢mTn (34)
For all reactions m = 1 except 3↵ burning for which m = 2.
n ⇡ 4 for pp, n ⇡ 16 for CNO burning, while n ⇡ 40 for 3↵.
Eddington Luminosity: The ratio between the radiative
transfer equation (written with p

rad

) and the hydrostatic equa-
tion (for p
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) gives:
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Equations in terms of m for homology: Assuming radiative
transfer, the stellar structure equations can be written with m
as the coordinate:
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6. CONVECTION

Necessary condition for convection
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(i.e., atmospheric gradient is steeper). In stars, it becomes:
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7. RADIATIVE TRANSFER

Mean free path of photons ` is related to scattering (or ab-
sorption cross-section) and number density of scatterers n, to
extinction (opacity per unit volume), or to opacity per unit
mass through:
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Number of diffusion steps needed to cross a length d is ⇠
(d/l)2, over a time scale ⇠ d2/(lc).
Intensity I is defined as the flux (energy per unit area per unit
time) per unit solid angle. The flux along a ray s satisfies
(under the gray approximation)
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If there is only absorption (and re-emission in another wave-
band), then the intensity decays exponentially:
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Thus, the probability that photons arrive from a unit interval
at a given distance s is
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Optical depth between r
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Often one takes r
2

= 1 to get the optical depth to infinity.
The equation of radiative transfer (which can be obtained by
integrating over I formed from a background with a gradient
temperature).
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Blackbody radiation field. Planck’s law describes the black
body radiation (energy per unit area per solid angle) from a
surface at temperature T , either per unit frequency:
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8. NUCLEAR REACTIONS

The rate of the reaction a +X ! b + Y + Q can be written
as:
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S(E) is generally a slowly varying function of E which de-
pends on the reaction. And
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Here µ is the reduced mass. The Gamov Peak is:
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9. POLYTROPIC STARS

Polytropic approximation:

P = K⇢� ⌘ K⇢(n+1)/n. (57)

In adiabatic gas: � = � = c
p

/c
v

. In non-relativistic
monoatomic gas � = 5/3, n = 1.5. In relativistic mono-
atomic gas: � = 4/3, n = 3. Eddington standard model
n = 3.
Standard transformation to get Lane-Emden equation:
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TABLE 1
VALUES OF ⇠1 AND ⌥(2, n), FOR VARIOUS POLYTROPIC INDICES n.

n ⇠1 ⌥(2, n)
0 2.44949 4.8988
1 3.14159 3.14159

1.5 3.65375 2.71406
2 4.35287 2.41105
3 6.89685 2.01824
4 14.9715 1.79723

TABLE 2
VALUES OF

R ⇠1
0 ⇠i�j(⇠)d⇠ FOR n = 3 POLYTROPE.

i=0 i=1 i=2 i=3 i=4 i=5 i=6
j=0 6.896 23.783 109.353 565.643 3120.93 17937.1 106037.
j=1 2.662 4.847 14.191 52.465 222.832 1036.23 5132.92
j=2 1.757 2.132 4.327 11.667 37.943 140.807 575.485
j=3 1.38 1.292 2.018 4.223 10.851 32.515 109.748
j=4 1.168 0.914 1.181 2.036 4.317 10.748 30.454
j=5 1.03 0.704 0.788 1.169 2.126 4.537 11.05
j=6 0.931 0.571 0.57 0.751 1.207 2.268 4.858
j=7 0.856 0.48 0.437 0.521 0.755 1.277 2.454
j=8 0.796 0.414 0.348 0.382 0.507 0.784 1.374
j=9 0.748 0.364 0.285 0.291 0.359 0.514 0.832
j=10 0.707 0.325 0.239 0.23 0.265 0.354 0.535
j=15 0.571 0.211 0.124 0.094 0.085 0.088 0.103
j=20 0.492 0.156 0.078 0.05 0.039 0.034 0.033
j=25 0.439 0.123 0.055 0.031 0.021 0.016 0.014

with boundary conditions: �(0) = 1 and d�/d⇠
0

= 0. Outer
boundary exists only for n < 5, which is �(⇠
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) = 0. Stellar
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Many interesting variables can be written with dimensionless
integrals of the form:
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For example, the stellar mass:
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10. ACCRETION DISKS

The rate of energy release in accretion disks from infinity
down to a radius r is roughly

L(r) ⇡ GMṁ

2r
(65)

with ṁ being the mass accretion rate. This assumes a Ke-
plerian disk such at the velocity is nearly Keplerian at each
radius. The energy dissipated at each radius (per unit area) is
therefore:

D(r) =
1

(4⇡r)

dL(r)

dr
⇡ GMṁ

8⇡r3
(66)
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11. SUPERNOVA EXPLOSIONS

If we look at a spherical shell having a radial width �r = fr,
with r = vt, then the diffusion time scale is

t
di↵

⇠ f2r2

`c
⇠ f

m

m
env
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(67)

where 
m

is the opacity per unit mass and m
env

is the mass
of the shell.

TABLE 3
USEFUL CONSTANTS

Speed of light c 2.998 1010 cm s�1

Planck’s constant h 6.626 10�27 erg s
~ 1.055 10�27 erg s

Bolzmann’s const k 1.381 10�16 erg K�1

Electron charge e 4.803 10�10 esu
Electron rest mass me 9.110 10�28 g
Proton rest mass mp 1.673 10�24 g
Gravitational const G 6.673 10�8 dyne cm2 g�2

Avogadro’s number NA 6.022 1023 mole�1

Gas constant R 8.314 107 erg K�1 mole�1

Stephan-Boltzmann � 5.670 10�5 erg cm�2 s�1 K�4

Radiation constant a 7.564 10�15 erg cm�3 K�4

Thomson x-section �T 6.656 10�25 cm2

Electron-Volt eV 1.602 10�12 erg
Astronomical unit AU 1.496 1013 cm
Parsec pc 3.086 1018 cm
Light year l.y. 9.460 1017 cm
Solar mass M� 1.989 1033 g
Solar radius R� 6.960 1010 cm
Solar luminosity L� 3.826 1033 erg s�1

Solar magnitude:
apparent bolometric mb,� �26.75
absolute bolometric Mb,� +4.82
Solar Metalicity Z 0.02
Lunar apparent mag. mV,$ �12.74

12. COSMOLOGY

Robertson-Walker Metric

ds2 = (cdt)2 � a(t)2


dr2
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(68)
K denotes the curvature. a(t) is the scale factor1. K =

�1, 0,+1 for hyperbolic, flat and elliptical metrics.
Null Geodesics (ds = 0, photons) satisfy
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(obs = present day, emitted = some time in the past).
2nd order approximation:
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or inverted, the look back time is:
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If we look at a light ray (ds = 0) then
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Luminosity Distance: Defined as
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To second order in z:
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Friedman equations:
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Cosmological parameters:
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ȧ

a

◆

0

(81)

⌦

0

=

✓
⇢

⇢
c

◆

0

(82)

⇢
c

=

3H2

0

8⇡G
(83)

q
0

=�
✓
äa
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Cosmological equation of state

p = w⇢c2 (85)
For pressure less “dust”, w = 0 (i.e., non-relativistic gas). For
relativistic gas (e.g., radiation) w = 1/3.
From first law of thermodynamics:

d(⇢c2a3) = �pdV = �3w⇢a2da (86)

Integration gives

⇢a3(1+w)

= const (87)

Thus, ⇢
m

= ⇢
m,0

(1 + z)3 and ⇢
rad

= ⇢
rad,0

(1 + z)4

1 For example, for a closed universe it would be the radius of the 4-sphere,
the surface of which is the 3-volume of the universe.


