On the behaviour of stellar winds that exceed the photon-tiring limit

Allard Jan van Marle, 1,2* Stanley P. Owocki1 and Nir J. Shaviv3

1Bartol Research Institute, University of Delaware, Newark, DE 19716, USA
2Centre for Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, bus 2400, B-3001 Leuven, Belgium
3Racah Institute of Physics, Hebrew University, Giv’at Ram, Jerusalem 91904, Israel

ABSTRACT
Stars can produce steady-state winds through radiative driving as long as the mechanical luminosity of the wind does not exceed the radiative luminosity at its base. This upper bound on the mass-loss rate is known as the photon-tiring limit. Once above this limit, the radiation field is unable to lift all the material out of the gravitational potential of the star, such that only part of it can escape and reach infinity. The rest stalls and falls back towards the stellar surface, making a steady-state wind impossible. Photon-tiring is not an issue for line-driven winds since they cannot achieve sufficiently high mass-loss rates. It can, however, become important if the star exceeds the Eddington limit and continuum interaction becomes the dominant driving mechanism.

This paper investigates the time-dependent behaviour of stellar winds that exceed the photon-tiring limit, using one-dimensional numerical simulations of a porosity-moderated, continuum-driven stellar wind. We find that the regions close to the star show a hierarchical pattern of high-density shells moving back and forth, unable to escape the gravitational potential of the star. At larger distances, the flow eventually becomes uniformly outward, though still quite variable. Typically, these winds have a very high density but a terminal flow speed well below the escape speed at the stellar surface. Since most of the radiative luminosity of the star is used to drive the stellar wind, such stars would appear much dimmer than expected from the super-Eddington energy generation at their core. The visible luminosity typically constitutes less than half of the total energy flow and can become as low as 10 per cent or less for those stars that exceed the photon-tiring limit by a large margin.

Key words: hydrodynamics – radiative transfer – methods: numerical – stars: mass-loss – stars: winds, outflows.

1 INTRODUCTION
The high luminosity of hot, massive stars leads to strong radiatively driven mass loss. In the more or less steady winds of O, B and WR stars, the driving is through scattering of radiation by an ensemble of spectral lines (e.g. Castor, Abbott & Klein 1975, hereafter CAK). The tendency of these driving lines to become saturated with increasing density acts as an effective wind regulator, limiting the wind mass-loss rates to ca. 10^{−4} M_⊙ yr^{−1} in even the most luminous stars. While potentially quite important for the star’s evolution, this level of mass loss is energetically of only minor significance, with a total (kinetic and potential) mechanical luminosity of only a few per cent of the ‘photon-tiring limit’ set by the total available stellar luminosity.

By contrast, the mass-loss rates during the giant eruptive phase of luminous blue variable (LBV) stars like η Carinae are inferred to be as high as 0.1–1 M_⊙ yr^{−1}, much higher than can be reasonably explained by models based on line driving (Smith & Owocki 2006). In the case of η Carinae, the inferred average mechanical luminosity during its ca. decade-long eruption in the 1840s is comparable to the estimated average radiative luminosity, ~2.5 × 10^{7} L_⊙, during this time. This luminosity likely well exceeds the Eddington limit, at which the radiative force associated with continuum scattering by free electrons exceeds the inward force of gravity, implying then that the extreme mass loss can be driven by continuum, instead of line, opacity.

Unlike line driving, continuum driving does not suffer saturation at high densities, meaning then that it can initiate an arbitrarily large mass flux, since all available photon energy can be used to drive the matter. However, if the mechanical luminosity needed to lift this mass flux fully out of the gravitational potential exceeds the stellar luminosity, then the ‘tiring’ or reduction in radiative energy flux will make it unable to sustain the outflow. This paper presents time-dependent hydrodynamical simulations of the complex combination of stagnated outflow and subsequent infall that occurs in
continuum-driven models with initial, base flux that exceeds this photon-tiring limit.

Previous analyses of continuum-driven mass loss have focused on developing steady-state wind outflow models with mass-loss rates that approach, but do not exceed, the photon-tiring limit. To provide the necessary driving regulation and limitation of the mass flux, such models invoke a ‘porosity’ moderation of the opacity associated with a clumped medium (Shaviv 1998, 2001a). Such clumps can result from instabilities, such as the photon bubble instability (Spiegel 1976; Hsu, Arons & Klein 1997; Spiegel & Tao 1999; Begelman 2001; Shaviv 2001b) in the stellar atmosphere and the upper layers of the stellar envelope. These ‘photon-bubbles’ are a phenomenon that occurs in super-Eddington atmospheres and can support large density inhomogeneities.

This reduces the continuum driving in the dense layers where clumps are optically thick, thus allowing the stellar base to be hydrostatically bound even though the luminosity is formally above the Eddington limit. But, as the clumps become optically thin in the higher level, lower density layers, they are exposed to the full radiative driving of the assumed super-Eddington luminosity. The intermediate layer where the net outward force equals gravity then becomes the sonic point of a wind outflow, with the density at this point setting the wind mass-loss rate. This identification of the sonic radius can be used to predict mass-loss rates that are consistent with the observations of clear-cut super-Eddington objects (Shaviv 2001a).

For a given Eddington parameter Γ, the mass loss initiated in such models depends on the nature of the assumed porosity. Specifically, within the ‘power-law porosity’ formalism developed by Owocki, Gayley & Shaviv (2004, hereafter OGS), it depends on a power index and the ratio of a characteristic ‘porosity length’ to the local scaleheight (see OGS and Section 2.4). Analytic solutions derived by OGS show that physically plausible porosity parameters combined with moderate super-Eddington parameters, $\Gamma \gtrsim 1$, can indeed lead to mass-loss rates comparable to that inferred for the extreme LBV giant eruption of η Carinae, even approaching the ‘photon-tiring’ limit.

A recent companion paper (van Marle, Owocki & Shaviv 2008, hereafter Paper I) used numerical radiation hydrodynamics simulations to test these analytic, porosity-moderated wind solutions of OGS for cases that do not exceed this photon-tiring limit. The results showed that the asymptotic steady states of the numerical simulations are generally in quite close agreement with the analytic results. However, with only modest variations in the choice of the key porosity parameters, these analytic scaling laws also allow base mass fluxes that can exceed the photon-tiring limit, with the consequence that the initial wind solution must necessarily stagnate at some finite radius (van Marle, Owocki & Shaviv 2008a), thereby precluding a net, steady mass outflow.

The central thrust of this paper is to explore the nature of the necessarily time-dependent flow that ensues from such a porosity model with a base mass flux above this tiring limit. In principle, this should involve complex, three-dimensional (3D) patterns of both outflow and infall. But, given the computational and conceptual challenges in developing dynamically realistic 3D description, we first explore here much simpler, albeit idealized, one-dimensional 1D models. A key rationale for this approach is that the underlying phenomenon of photon tiling is not inherently multidimensional, but rather depends largely on the radial variation of driving versus gravity. The insight gained in studying 1D simulations of the complex, time-dependent combination of outflowing and inflowing layers will form a basis for future, more complete models that include multidimensional (2D or even 3D) flow.

As detailed in Section 2 (and also the Appendix), a key feature of our simplified method here is to maintain a global energy conservation that accounts for both the loss of radiative luminosity in regions of outward acceleration and the re-energization of the luminosity from regions of infall and shock heating. The results in Section 3 illustrate the complex pattern of inflow and outflow, including also the strong effect on the emergent radiative luminosity. We follow in Section 4 with a discussion of what these results mean for understanding the nature of LBVs, and then conclude in Section 5 with a summary of the work thus far and a brief discussion of directions for future work.

2 Method

2.1 Mass and momentum conservation equations

The spherical mass-loss simulations presented here are based on evolving the 1D, time-dependent equations for conservation of mass and momentum. For density ρ and radial flow speed v, mass conservation in radius r and time t requires

$$\frac{D\rho}{Dt} \equiv \frac{\partial \rho}{\partial t} + v \frac{\partial \rho}{\partial r} = -\rho \frac{\partial (ur^2)}{\partial r},$$

where $D/Dt \equiv \partial/\partial t + v \partial/\partial r$ is the total time derivative following the flow. The total change in speed depends, in turn, on the net force-per-unit mass from gas pressure P, gravity and radiation:

$$\frac{Dv}{Dt} \equiv \frac{\partial v}{\partial t} + v \frac{\partial v}{\partial r} = -\frac{1}{\rho} \frac{\partial P}{\partial r} - \frac{GM}{r^2} + 8\pi\kappa,$$

where, following standard notation, G and M are the gravitation constant and stellar mass and κ is the radiative acceleration, described further in Section 2.4.

The pressure obeys the ideal gas equation of state:

$$P = \rho \frac{kT}{\mu} \equiv \rho a^2$$

with the latter equality defining the isothermal sound speed a in terms of the temperature T, molecular weight μ and Boltzmann’s constant k. Because $a < v_{esc}$, where $v_{esc} \equiv \sqrt{2GM/R}$ is the escape speed from the stellar surface radius R, gas pressure generally plays little direct role in the outward driving of a stellar wind mass loss. But, it does provide a basis for matching the outflow on to a hydrostatically stratified atmosphere at the wind base. Moreover, as discussed below (Section 2.2), when an outflow stalls or stagnates, gas pressure plays a key role in dissipating and stopping the subsequent gravitational infall.

As such, our simulations here retain a non-zero gas pressure, but to avoid the necessity of modelling, in detail, the evolution of the (relatively insignificant) gas internal energy, we simply assume the gas temperature is a fixed constant. This is set to give a sound speed $a = 20$ km s$^{-1}$, implying a temperature roughly equal to the stellar effective temperature, $T \approx T_{eff} \approx 50 000$ K.

2.2 Photon-tiring formulation

A key feature of the present simulations is to account properly for the work done by radiation in accelerating material outward against gravity. As detailed in the Appendix, a full treatment should, in general, include the associated time-dependent equations for conservation of radiative momentum and energy (equations A4 and A5), as well as a description of the energy exchange between gas
and radiation (equation A3). However, the further analysis there shows that, by assuming a limit of infinite light speed in such a way that both the propagation and diffusion times of radiation become small compared to any competing dynamical scale, the storage of energy in the radiation energy density E can be effectively bypassed in favour of direct, essentially instantaneous changes in the radiative flux F.

This makes it possible to account for the net work done by the radiation in terms of a simple ordinary differential equation (ODE) for the radial change of the radiative luminosity $L = 4\pi r^2 F$ (equation A10):

$$\frac{dL}{dr} = -M \dot{\rho}_{rad} = 4\pi r^2 \dot{Q}, \quad (4)$$

where the local mass flux, $M \equiv 4\pi \rho vr^2$, is not necessarily constant (or even positive) in a time-dependent flow. The first term on the right-hand side represents the change in luminosity associated with the net work done by the radiative acceleration, while the second term represents the luminosity change associated with the volume heat exchange rate \dot{Q} between radiation and the gas energy (see equation A9).

In regions of outflow, the local mass flux is positive, and so the first term represents the basic ‘tiring’ effect that leads to a radial decline in the radiative luminosity L. Likewise, in such regions of outflow, the need to keep the gas temperature (and internal energy e) constant against the expansion cooling requires $\dot{Q} > 0$ (see equation A9), implying that the second term also contributes to a (relatively small) further radial reduction in luminosity.

In a time-dependent flow, however, the mass flux is not generally constant. Indeed, in regions of flow stagnation and infall, where $v < 0$, it can even be locally negative, and therefore lead to a radial increase, or re-energization, of the luminosity in the regions above a local infall. Moreover, such downflows are typically stopped eventually by strong, localized shock compressions, which effectively convert the infall kinetic energy back into radiation, making $\dot{Q} < 0$. This represents yet another mechanism for re-energization of the luminosity, now occurring at radii above a shock compression.

Using equation (A9) for the heating rate needed to keep the gas isothermal, the luminosity change can be alternatively written as

$$\frac{dL}{dr} = -4\pi \rho vr^2 g_{rad} - 4\pi P \frac{d(v^2)}{dr}. \quad (5)$$

This equation provides a convenient form to compute the radial change of luminosity in a spherically symmetric, isothermal flow, applicable even in the fully time-dependent cases considered below. At each time-step of the simulation, this ODE can be integrated numerically from the base radius R to give the radial run of luminosity, $L(r)$, which is then used to compute the radiative acceleration g_{rad} for the next step of the simulation. To avoid the unphysical possibility of a negative luminosity, the integration of equation (5) sets a floor luminosity $L = 0$.

In practice, maintaining a global energy conservation when there are regions and intervals of infall requires one to account also for the energy associated with material that falls back on to the stellar surface through the lower boundary radius R. We minimize this here by limiting the inflow velocity at the boundary to the sound speed, which then generally leads to the shock formation and capture of most of the infall kinetic energy through the instantaneous emission terms described above. None the less, there is still a small energy loss through the boundary that has to be accounted for to maintain global energy conservation. We do this here by accumulating a storage energy E_{ac} that is then assumed to be re-emitted on a parametrized time-scale t_{em}, taken here to be several (viz. 10)

wind flow times. Based on the value of the stored energy at any given time-step, the lower boundary condition for the luminosity integration of equation (5) then becomes

$$L(R) = L_* + \frac{E_{\text{ac}}}{t_{\text{em}}}. \quad (6)$$

Generally, the associated modification in base luminosity is small, not more than a few per cent.

2.3 Tiring in steady-state outflows

For a simple, steady-state flow with constant mass flux M, we can rewrite the radial change of luminosity in the form

$$\frac{dL}{dr} = -\dot{M} \left[g_{rad} + P \frac{d}{dr} \left(\frac{1}{\rho} \right) \right] = -\dot{M} \left(\frac{GM}{r^2} + \frac{dv}{dr} \right). \quad (7)$$

where the latter equality assumes an isothermal flow and uses the momentum equation (2) to eliminate the radiative acceleration, with the result that the net tiring no longer depends explicitly on the pressure work term. Upon integration from the base radius R, where flow speed is negligibly small [$v(R) \ll c$] and the luminosity is set to the interior value, $L(R) = L_*$, the radial dependence of luminosity is given by

$$L(r) = L_* - \dot{M} \left[\frac{v(r)^2}{2} + \frac{GM}{R} \left(1 - \frac{R}{r} \right) \right]. \quad (9)$$

Note in particular that, in this approximation of isothermal flow with constant internal gas energy, the pressure work term makes no net contribution to the change in luminosity.

The form (9) is in fact the form used in the steady-state, continuum-driven models derived in OGS. It also helps justify neglecting the pressure work terms in the time-dependent simulations of Paper I, which were used to relax towards the asymptotic steady states.

For a wind with terminal speed v_∞, the emergent luminosity is

$$L_\infty = L_* - \dot{M} \left(\frac{v_\infty^2}{2} + \frac{GM}{R} \right). \quad (10)$$

Setting $L_\infty = v_\infty = 0$ then defines a photon-tiring limit for the maximum possible mass-loss rate for a steady-state outflow (Owocki & Gayley 1997; OGS):

$$\dot{M}_{\text{tr}} = \frac{L_*}{GM/R}. \quad (11)$$

Any flow with base mass flux greater than this limit must necessarily stagnate at a finite radius. The simulations presented below examine the complex, time-dependent mixture between outflow and infall that results in flows above this tiring limit.

2.4 Porosity-modulated continuum driving

The treatment of radiative driving in the time-dependent simulations here is based on the formalism for porosity-modulated, continuum driving developed for the steady-state analysis of OGS. For a local luminosity $L(r)$, the radiative acceleration is given by

$$g_{rad}(r) = \frac{k_{\text{eff}} L(r)}{4\pi r^2 c}, \quad (12)$$

where c is the speed of light and k_{eff} is an effective opacity that is reduced from the microscopic value κ by the porous nature
of the medium. For a power-law distribution of clump strengths characterized by a power index α and a ‘porosity length’ h_0 that sets a maximum clump optical thickness $\tau_\alpha = \kappa h_0 \equiv \rho/\rho_\alpha$, the opacity reduction factor depends on the density through (cf. OGS equation 57)

$$
k(\rho) = \frac{\kappa_{\text{eff}}}{\kappa} = \frac{(1 + \rho/\rho_\alpha)^{1-a} - 1}{(1 - \alpha)\rho/\rho_\alpha}.
$$

(13)

Note that for low densities $\rho \ll \rho_\alpha$, the clumps all become optically thin, making $k \to 1$, since the material is exposed to the full opacity κ. However, at high densities $\rho \gg \rho_\alpha$, self shadowing of optically thick clumps reduces the effective opacity, following an overall power-law dependence on density, $k \sim (\rho/\rho_\alpha)^\eta$. The self shadowing of optically thick clumps is inherently a multidimensional effect at the microscopic level, but at the macroscopic level appears as 1-D.

Even in a star for which the continuum opacity κ implies an Eddington parameter $\Gamma \equiv k L/4\pi G M c$ above the Eddington limit, i.e. $\Gamma > 1$, the porosity reduction of the radiative force can allow high-density regions to remain gravitationally bound, while the outer, lower density regions are driven into a wind outflow. The transition occurs at the sonic point, where $\Gamma k(\rho_\alpha) = 1$, thus defining a base mass-loss rate $M = 4\pi \rho_0 a R^2$. For the canonical case $\alpha = 1/2$ assumed in the simulations here, this has the scaling (cf. OGS equation 77):

$$
M = 4(\Gamma - 1) \frac{L_\alpha}{\eta ac},
$$

(14)

where $\eta = h_0/\sqrt{H}$, with $H = a^2 R^2/\pi G M$ being the density scaleheight at the subsonic base of the wind. The ratio of this mass-loss rate to the tiring limit given in equation (11) has the scaling (cf. OGS equation 78):

$$
m_{\text{tir}} = \frac{M}{M_{\text{tir}}} = 0.13 \frac{\Gamma - 1}{\eta a_{20}} \frac{M/\dot{M}_{\odot}}{R/R_{\odot}},
$$

(15)

where $a_{20} = a/20 \text{ km s}^{-1}$.

2.5 Parameters and numerical implementation

The simulations here are all based on a single representative stellar model with radius $R = 50 R_\odot$, and mass $M = 50 M_\odot$, implying a solar value for the escape speed, $v_\text{esc} = 617 \text{ km s}^{-1}$. As noted, the sound speed is fixed at $a = 20 \text{ km s}^{-1}$, corresponding roughly to a temperature of ca. 50 000 K.

A summary of the varied model parameters is given in Table 1. Models A–C assume a stellar luminosity $L_\alpha = 1.6 \times 10^7 L_\odot$, which with an assumed opacity $\kappa = 0.4 \text{ cm}^2 \text{ g}^{-1}$ implies a strongly super-Eddington condition with $\Gamma = 10$. Model D assumes a moderate $\Gamma = 5$, while models E and F assume a marginally super-Eddington condition $\Gamma = 2$. The models are further distinguished by the choices of the porosity length parameter η, as specified in the third column of Table 1. For the assumed porosity power index $\alpha_p = 1/2$, equation (15) shows that the values of η and Γ combine to yield a predicted mass-loss tiring ratio m_{tir}, as given in the fourth column of Table 1. As shown below, the level by which this base mass-loss tiring exceeds unity is key to the overall nature of the flow stagnation and infall of the various models.

For all cases, we set the re-release time-scale for the inner surface infall energy to be 10 stellar freefall times, $t_{\text{fem}} = R/v_\text{esc} \approx 5.5 \times 10^4 \text{ s}$. Since the energy storage and relative luminosity contribution is generally small compared to the stellar luminosity, we find the results are generally insensitive to the specific release time chosen.

As in Paper I, the simulations here use the ZEUS 3D code developed by Stone & Norman (1992) and Clark (1996). But, unlike the purely isothermal models previously relaxed to an asymptotic steady state, the complex time-dependent evolution of photon-tired flows here requires keeping careful account of the energy exchange, Q, between the gas and radiation. Our implementation of ZEUS achieves this by advancing each individual time-step assuming adiabatic conditions, with an adiabatic index $\gamma = 5/3$, but then resetting the temperature at each grid point back to the assumed constant value. The difference in internal energy between the constant temperature and the temperature that follows from the adiabatic calculations is then added to or subtracted from the local radiative luminosity, following equation (4).

In wind simulations, a key general issue is to resolve the acceleration from a nearly hydrostatic layer supported by gas pressure, including, for example, at the subsonic wind base, which has a characteristic scaleheight $H \approx (2a^2/v_\text{esc}^2) R = 0.002 R$. However, in the models here, the repeated flow stagnation can often lead to multiple such static layers distributed over many stellar radii from the wind base. Moreover, the ultimate escape from the system is only ensured once the outward flow speed exceeds the local escape speed, which can sometimes extend to over 100 R. To properly resolve this complex flow over a large spatial range, we use $\eta = 20 000$ spatial zones extending over $r = 1–200 R$. To concentrate resolution more in the inner wind, we use a spatial grid size that increases by a factor of 1.0005 per zone, i.e. $dr_\eta = dr_{\eta-1} 1.0005$. This leads to a spatial resolution that ranges from $dr_\eta \approx 5 \times 10^{-5} R$ at $r = 1 \text{ R}$ to $dr_{\eta} = 0.1 \text{ R}$ at $r = 200 \text{ R}$.

Finally, as in Paper I, the simulations start with an initial condition set by a simple β-law velocity profile:

$$
v(r) = v_\infty \left(1 - \frac{r}{R}\right)^\beta
$$

Table 1. Summary of model parameters and results. The other model parameters are $M = 50 M_\odot$, $R = 50 R_\odot$, $\kappa = 0.4 \text{ cm}^2 \text{ g}^{-1}$ giving $L_{\text{Edd}} = 1.610^9 L_\odot$, $a = 20 \text{ km s}^{-1}$ and $\alpha_p = 1/2$. For the $\Gamma = 10$ models, $M_{\text{tot}} = 0.52 M_\odot \text{ yr}^{-1}$, n_{max} is defined as the maximum number of radial shock layers, which quantifies the complexity of the radial structure, while r_{shock} is the largest radius to which shocks reach. L/E and E_{Edd}/E are the contributions of radiative luminosity and gravitational potential energy, respectively, to the energy outflow at the outer boundary.

<table>
<thead>
<tr>
<th>Model</th>
<th>Γ</th>
<th>η</th>
<th>M_0/M_{tot}</th>
<th>$M_{\text{Edd}}/M_{\text{tot}}$</th>
<th>Γ_{f}</th>
<th>n_{max}</th>
<th>v_∞/v_esc</th>
<th>r_{shock}/R</th>
<th>L/E</th>
<th>E_{Edd}/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>0.25</td>
<td>4.68</td>
<td>0.66</td>
<td>0.7</td>
<td>8</td>
<td>0.07</td>
<td>6</td>
<td>0.094</td>
<td>0.90</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>0.5</td>
<td>2.34</td>
<td>0.8</td>
<td>0.7</td>
<td>5</td>
<td>0.08</td>
<td>8</td>
<td>0.076</td>
<td>0.916</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>1.0</td>
<td>1.17</td>
<td>0.85</td>
<td>0.5</td>
<td>4</td>
<td>0.08</td>
<td>8</td>
<td>0.059</td>
<td>0.935</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0.25</td>
<td>2.08</td>
<td>0.68</td>
<td>1.5</td>
<td>5</td>
<td>0.08</td>
<td>5</td>
<td>0.307</td>
<td>0.689</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>0.06</td>
<td>2.17</td>
<td>0.38</td>
<td>4.4</td>
<td>4</td>
<td>0.09</td>
<td>2.8</td>
<td>0.466</td>
<td>0.527</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>0.12</td>
<td>1.08</td>
<td>0.47</td>
<td>4.3</td>
<td>3</td>
<td>0.09</td>
<td>3.5</td>
<td>0.450</td>
<td>0.544</td>
</tr>
</tbody>
</table>

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 394, 595–604
3 RESULTS

3.1 Initial relaxation and emergence of photon tiring

As a first illustration of the effect of photon tiring, Fig. 1 plot the radial variation of velocity (a) and log density (b) at fixed time snapshots after turning on the tiring effect in a model which was first relaxed to a steady state without tiring. The model parameters are those of model B, with a base mass flux \(m = 2.34 \times 10^{-3} \) times the tiring limit. Shortly after the tiring effect is implemented, the existing flow begins to decelerate, leading to stagnation and then infalls back towards the star. As this falling material meets the remaining upflow below, strong shocks form, compressing the material into dense shells, marked by the density spikes in Fig. 1(b). Since these dense shells have too much mass to be driven outward by the available radiative flux, they are pulled back by gravity, and re-accreted back onto the star.

Eventually, some of the energy generated can lead to a net outward driving of some of the gas, but it too can stagnate before being able to escape, forming more shock layers, and so forth. The actual details are of course complex and depend on the specifics of the overloaded initial condition.

However, rather than dwelling on the specific details which depend on the initial readjustment, we will proceed to focus on the steady-state flow properties, long after the wind relaxes from its initial conditions.

The time-scale over which this relaxed state is reached is of the order of several times \(10^5 \) s. This is effectively the crossing time for gas elements with a characteristic velocity of approximately \(50 \) km s\(^{-1}\) (the flow speed at the outer boundary) over the length of the grid (200 stellar radii).

3.2 Steady-state behaviour of the shock layers

To illustrate the complex pattern of infall and outflow in the regions with the overloaded wind, Fig. 2(a) presents a colourscale plot of the mass flux for model B (base mass flux \(2.34\times10^{-3} \)) over the radial range \(r = 1–15 \) R and in a representative time interval of about a third of a year, long after the relaxation from the initial conditions is reached. The figure shows quite vividly the complex hierarchy of initial base outflows (in red) that are truncated by broad downflows (in blue) of stagnated material. This flow pattern is a direct consequence of the photon-tiring feedback.

Indeed, the colour scale in Fig. 2(b) reveals that this flow pattern is tightly coupled with corresponding time and space variations of the local luminosity. The photon tiring in regions of outward acceleration leads to a strong reduction in the luminosity (dark shading); but, this is punctuated by re-energization of this luminosity (light shading) in the shock collision regions where infall energy is converted back into radiation.

To further demonstrate the overall spatial progression of mass in this complex flow pattern, the overlaid light contours in Fig. 2(b) mark the radial and temporal evolution of selected mass shells. Because, there can be no crossing of such mass shells in these idealized, 1D, purely radial flow simulations, they can be effectively tracked by defining the time and radius variation of a Lagrangian mass coordinate:

\[
\begin{align*}
 m_1(r, t) &= 4\pi \int_0^{R_\infty} r'^2 \rho(r', t) \, dr' \\
 &\quad + 4\pi \int_0^t r'^2 \rho(r, t')v(r, t') \, dt'
\end{align*}
\]

with \(R_\infty \) being the outer boundary of the grid (Owocki et al. 1988; Owocki & Puls 1999). The first integral labels each mass shell of the initial \((t = 0) \) condition by the amount of mass to the outer boundary; the second integral then tracks the amount of the mass that has passed through a zone with radius \(r \) in the time \(t \) since that

Figure 1. Snapshots of the velocity (a) and log density (b) versus radius at multiples of \(10^5 \) s after the switching on of photon tiring, at \(t = 0 \), for model B. The model was first relaxed to a steady state ignoring tiring. The reduction in the radiative driving flux induces a slowdown towards flow stagnation, with shock collisions leading to a build up of high-density shells that eventually fall back on to the star.
initial condition. The mass shell tracks plotted in Fig. 2(b) therefore represent contours of this Lagrangian mass versus radius and time.

Together, the plots in Fig. 2 provide an interesting complementary perspective for the flow patterns in models with a base mass flux above the tiring limit. Matter is launched from the surface of the star, only to fall back almost immediately as the radiation field becomes overloaded and can no longer support the outflow against gravity. Once, however, the infalling gas is shocked, it releases its kinetic energy as radiation, which can then provide a boost to the overlying material. This implies that some of the gas can accelerate above the first shock layer.

Nevertheless, because the gas accelerating above the first layer is too overloaded, it will again stagnate and begin to fall back. The energy it releases can then accelerate gas above the second shock, and so forth. However, because progressively higher shocks are further from the star and involve a smaller mass flux, their timescale for acceleration and stagnation is longer.

At a high enough layer, both the total mass flux and the gravitational potential depth are small enough such that the remaining luminosity can drive the gas to infinity. Beyond this layer, a freely coasting wind is accelerated to infinity. In model B, for example, this takes place at roughly eight stellar radii.

3.3 Wind behaviour at larger radii

To demonstrate the nature of this net outflow at larger radii, Fig. 3 plots the time variation of three key quantities at the outer boundary of the computational grid (200 R_\star) for the relaxed state of model B. These include the radiative luminosity relative to the stellar luminosity, the wind velocity relative to the escape speed and the mass flux relative to the photon-tiring mass-loss rate. The driving proves to be quite efficient, bringing the mass flux close to (~ 85 per cent) the tiring limit. The wind velocity is nearly constant at ca. 50 km s$^{-1}$, about a factor of 2.5 times the sound speed, and much less than the surface escape speed, $v_{\text{esc}}(R) \approx 620$ km s$^{-1}$; but, it is just slightly above the local escape speed, $v_{\text{esc}}(r = 200 R) \approx 44$ km s$^{-1}$. The mass flux is also quite constant, with the small fluctuations that mostly reflect residual variations in the flow density from the discrete shells formed near the wind base.

However, note that, at least in this idealized 1D model, the radiative luminosity exhibits quite strong variations. The average level is also substantially reduced to about ~ 10 per cent of the base luminosity. But, there are also brief spikes above 50 per cent, arising from the sudden radiative emissions in the shock infall regions. More realistically, such spikes would likely be smoothed out by both radiative storage and 3D averaging effects ignored in the present 1D, sudden radiative release simulations.

Finally, Fig. 4 compares the outer boundary state of models C, B and A with increasing mass flux tiring factors, 1.17, 2.34 and 4.68. To show finer details of the variations, the time resolution in Fig. 4 is much higher than in Fig. 3. Qualitatively, the behaviour of the wind is similar for all three simulations: the mass flux is a large fraction (>65 per cent of the tiring limit in all three cases). The wind moves slowly, and the radiative luminosity that escapes at the outer boundary is highly variable but greatly reduced from the base value.

The results also reveal notable trends in the quantitative properties. In particular, for models that exceed the tiring limit by a greater margin, the net driving of mass loss becomes somewhat less efficient. More photons escape while the mass flux decreases and becomes less variable. This is understandable as the motion of matter back and forth close to the star recycles energy from the radiation field, through kinetic and potential energy of the wind, and back into radiation. If the wind exceeds the tiring limit by a wider margin, this process becomes more extensive, which reduces the efficiency of the driving and allows more photons to escape. However, the outer wind velocity is almost the same in all three models.

If we compare models with a high Γ and high tiring number, to models with low Γ and low tiring number, then we see a clear trend. With a smaller tiring number, there are fewer shock layers up to where free outflow is reached. As a consequence, the light curve is much more regular, as can be expected since it is composed...
Figure 3. Mass flux relative to the tiring mass-loss rate (jagged black line), wind velocity relative to the escape speed at the stellar surface (dashed line) and radiative luminosity relative to the stellar luminosity (continuous line) at the outer boundary radius 200R_\star for model B with $\dot{M} = 2.34\dot{M}_{\text{tir}}$, after the simulation has fully relaxed. The mass flux varies slightly below to the tiring limit, while the wind velocity is nearly constant at a value well below the surface escape speed. The emergent radiative luminosity is highly variable, but with an average value that is only about 10 per cent of the base luminosity, i.e. $\Gamma_\infty \sim 1$.

Figure 4. The same variables as Fig. 3 for models C, B and A, having (from left- to right-hand panel) $\dot{M} = 1.17, 2.34$ and $4.68\dot{M}_{\text{tir}}$, respectively. As the mass flux at the surface exceeds the tiring limit by a larger margin, the tiring mechanism becomes somewhat less efficient: the mass flux at the outer boundary (jagged black line) decreases and radiative luminosity (spiky, continuous line) increases. Also, the variations in mass flux smooth out and decrease in size. The wind speed (dashed line) remains nearly the same for all three simulations.

of fewer shock ‘oscillations’. This can be seen in Figs 6 and 5. A lower luminosity (lower Γ) means that a smaller amount of mass is present in the grid at any given time. Therefore, the optical depth is smaller, so the photons have a better chance to escape. As a result, lower luminosities at the base generally lead to lower efficiency in the driving.

In Table 1, we show the relative contributions of potential energy luminosity $\{\dot{E}_g = 1/2\dot{M}[v_{\text{esc}}(R)^2 - v_{\text{esc}}(r)^2]\}$ and radiative
Figure 5. The light curve of two slightly photon-tired cases, with \(\eta = 0.06 \) and 0.12. Both have \(\Gamma = 2 \). Unlike the higher \(\Gamma \) models, the light curves are much more regular, and not chaotic.

Figure 6. The radial dependence of the mass flux as a function of time (i.e. similar to Fig. 1b), for model F, with \(\Gamma = 2 \) and \(M/M_{\text{tot}} = 1.08 \). Because of the more moderate conditions, the shock layer structure is much simpler – it includes fewer layers, extends to a smaller radius, and significantly less chaotic (as can be seen in Fig. 5).
luminosity (L) to the total energy outflow (E) at the outer boundary. These two make up the bulk of the energy flow, because kinetic energy flow (1/2Mv_∞^2) and the internal energy advection (\(MKT/m_\alpha \)) together contribute less than 0.5 per cent. Maintaining a fully accurate energy conservation in these simulations can be difficult due to the numerical problems that occur when resolving a large number of radiative shocks. We achieved an accuracy of more than 90 per cent in all simulations with the exception of simulation A, which has the largest number of shocks, and for which the energy conservation accuracy was about ~75 per cent. Therefore, although the results of the simulation seem to follow the trends observed in this section, the quantitative values should be viewed with some caution.

4 DISCUSSION

It should be emphasized here that the photon-tiring effects that are the focus of this paper are only relevant for the most extreme forms of radiatively driven mass loss. For even the strongest, steady-state, line-driven winds from WR stars, the mass-loss rates can range up to a few times \(10^{-3} \) M_\⊙ yr\(^{-1} \) and the flow speeds up to \(v_\infty \approx 3000 \) km s\(^{-1} \). This then implies a mechanical wind luminosity that is less than a few per cent of a typical WR luminosity of ca. \(10^8 \) L_\⊙.

By contrast, the Homunculus nebula that resulted from the 1840–1850 giant eruption of \(\eta \) Carinae is estimated to harbour up to a few times \(10^3 \) of radiatively driven mass loss. For even the strongest, steady-state, driven winds. Rather than producing a steady wind with a velocity exceeding the escape speed at the stellar surface, the tiring results in a complex combination of infall and outflow in the inner wind, with a terminal velocity in the outer wind that is much lower than the surface escape speed. The net mass flux is somewhat below the photon-tiring mass-loss limit. Both quantities seem to depend only weakly on the wind parameters at the stellar surface as set by the porosity-length formalism. (NB. This may change for multidimensional simulations.) Less than half of the stellar luminosity escapes in the form of radiation, even for stars that are only a small fraction above the photon-tiring limit. For stars that are further above the photon-tiring limit, this fraction drops rapidly to less than 10 per cent, so stars like this have an effective radiative luminosity that is less than the Eddington limit and could appear to be quite dim to an external observer.

We note in passing that the flow stagnation and a complex combination of infall and outflow have also proposed for the circumstellar environment of some asymptotic giant branch (AGB) stars (Soker 2008).

In future work, we plan to introduce time-dependent, flux-limited, radiative diffusion in our simulations, first in a 1D model, but eventually with aims to extend this to a multidimensional grid.

We also intend to investigate the effect of stellar rotation on the geometry of the continuum-driven wind, and how this might give rise to the bipolar shape seen the homunculus nebula of \(\eta \) Carinae.

5 SUMMARY AND FUTURE WORK

Even in the 1D framework, the present simulations assume an instantaneous nature for both the propagation and diffusion of radiation, and neglect optically thick backwarming effects in favour of a simple, constant temperature. Including an optically thick radiative diffusion with a finite speed would allow energy to be stored in the radiation field, with a likely smoothing effect on both luminosity variation and the resulting motions of mass shells. In 3D or even 2D, such shells should break up into clumps. This could allow more photons to escape between the dense clumps, reducing the mass flux and increasing the radiative luminosity at the outer boundary. This higher luminosity at large radii could also accelerate the flow to higher terminal speeds.

ACKNOWLEDGMENTS

This work was carried out with partial support from NSF grant AST-0507581. NJS wishes to thank the support of ISF grant 1325/06. We thank J. MacDonald, N. Smith, A. ud-Doula and R. Townsend for helpful discussions and comments.

REFERENCES

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 394, 595–604
APPENDIX A: REDUCED CONSERVATION EQUATIONS FOR RADIATION AND GAS

Starting from the general mixed frame equations of radiation hydro-dynamics as given by Mihalas & Mihalas (1984) [see also Shaviv (2001a) and Spiegel & Tao (1999)], we first write the basic equations for conservation of mass, momentum and energy for a gas of density \(\rho \), pressure \(P \), specific internal energy \(e = 3P/2\rho \) and velocity \(\mathbf{u} \):

\[
\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{u}, \quad (A1)
\]

\[
\frac{Du}{Dt} = -\nabla P + \mathbf{g}_{rad} - \mathbf{g}_{grav}, \quad (A2)
\]

\[
\frac{D\rho}{Dt} + \frac{P}{\rho} \frac{D\rho}{Dt} \left(\frac{1}{\theta} \right) = \frac{\dot{Q}}{\rho}, \quad (A3)
\]

where \(D/ Dt = \partial/\partial t + \mathbf{u} \cdot \nabla \) represents the advective time derivative. Here, \(\mathbf{g}_{rad} \) and \(\mathbf{g}_{grav} \) are the accelerations associated with radiative driving and gravity, respectively, while \(\dot{Q} \) is the net rate per unit volume for either radiative heating (\(\dot{Q} > 0 \)) or cooling (\(\dot{Q} < 0 \)).

Likewise, for radiation with energy density \(E \) and energy flux \(F \), the associated conservation equations for radiative momentum and energy can be written:

\[
\frac{1}{c^2} \frac{DF}{Dt} + \frac{1}{3} \nabla E = -\rho \mathbf{g}_{rad} - \rho \mathbf{u} \mathbf{F} / c, \quad (A4)
\]

\[
\frac{dE}{dt} + \nabla \cdot \mathbf{F} = -\dot{Q} - \rho \mathbf{u} \cdot \mathbf{g}_{rad}, \quad (A5)
\]

where equation (A4) assumes the Eddington approximation in setting the radiation pressure to \(E/3 \), with the extra equality giving the radiative acceleration in terms of the flux \(F \) and a grey opacity \(\kappa \), ignoring radiative drag terms of the form \(\mathbf{u} E/c \) for the highly subrelativistic (\(u \ll c \)) flows considered here. The right-hand side of equation (A5) accounts for the radiative energy expended in heating and accelerating the gas, the latter representing the key ‘photonic’ effect that is the focus of this paper.

In practice, a further approximation here is to ignore the partial time derivatives in both the radiative momentum and energy equations (A4) and (A5). For the radiative flux term, this amounts to assuming light travel times across the system, effectively assuming the instantaneous propagation of the radiative momentum in a limit of infinite light speed, \(c \to \infty \). For the radiative energy term, it amounts to also assuming an instantaneous diffusion of radiative energy, even compared to hydrodynamical variations. For a layer of optical depth \(\tau \), the ratio of diffusion to dynamical time-scales roughly as \(\tau a/c \), and since the sound speed is \(a \approx 20 \text{ km s}^{-1} \), this assumption should hold for \(\tau \ll 10^3 \). Even for the very dense outflows considered here, this condition is generally well satisfied.

In the standard case of a static, planar, grey atmosphere in radiative equilibrium, the right-hand side of equation (A5) vanishes, implying a constant radiative flux and allowing equation (A4) to be trivially integrated to yield a simple optical depth scaling between radiative energy and flux, \(E \sim \tau F \). The exchange of energy with the gas then leads to an equilibrium of the radiative and gas temperature, resulting in an effective ‘backwarming’ of the gas at large optical depths.

An analogous backwarming can also be expected in a very dense, optically thick wind outflow, but the overall dynamical effect of this is likely to be quite limited, since the associated gas internal energy is still well below the gravitational binding energy. The associated energy ratio can be cast in terms of the squared ratio between the sound speed and escape speed, which in a wind with optical depth \(\tau \) should scale as

\[
\frac{a^2}{v_{esc}^2} = \frac{a^2}{v_{esc}^2} \frac{T}{T_{eff}} \approx \frac{a^2}{v_{esc}^2} \left(\frac{\tau + \frac{3}{2}}{3} \right) \frac{3}{2}^{1/4}, \quad (A6)
\]

where \(a \) is the sound speed associated with the star’s effective temperature \(T_{eff} \). Since typically \(a^2/v_{esc}^2 \approx 10^{-4} \), this ratio only becomes of the order of unity for optical depths \(\tau \sim 10^2 \), characteristic of the very centre of an entire star. It is always small for any stellar mass outflow.

Since this implies that gas internal energy is dynamically unimportant, we ignore such optically thick backwarming effects, and instead assume that the radiative heating term \(\dot{Q} \) acts to keep the gas at a nearly constant temperature, chosen here to give a fixed sound speed \(a = 20 \text{ km s}^{-1} \) that is characteristic of the gas near the stellar effective temperature \(T_{eff} \). Since this implies a constant gas internal energy \(e = 3a^2/2 \), the energy equations for the gas (A3) and radiation (A5) reduce to

\[
\frac{P}{\rho} \frac{D\rho}{Dt} = -\dot{Q} = -P \nabla \cdot \mathbf{u}, \quad (A7)
\]

\[
\nabla \cdot \mathbf{F} = -\dot{Q} - \rho \mathbf{u} \cdot \mathbf{g}_{rad}, \quad (A8)
\]

where the latter equality in equation (A7) follows from the mass conservation equation (A1). For the present simple case of a 1D spherical flow with radial speed \(v \) and local luminosity \(L = 4\pi r^2 F \), these reduce to

\[
\frac{P}{\rho} \frac{D\rho}{Dt} = -\dot{Q} = -P \frac{d(vr^2)}{dr}, \quad (A9)
\]

\[
\frac{dL}{dr} = -4\pi r^2 \dot{Q} - M \mathbf{g}_{rad}, \quad (A10)
\]

where \(M \equiv 4\pi rv^2 \) is the local mass flux, which is not necessarily constant (or even positive) in a time-dependent wind.

Note that, in this simplified formulation, the radiative momentum equation is superfluous and the radiative internal energy is irrelevant. But, there is still a clear global conservation of energy between the radiation and both the work and the heating it imparts to the gas. As such, this does provide a convenient 1D formalism for examining the nature of radiatively driven mass flows near the photon-tiring limit.

This paper has been typeset from a \LaTeX file prepared by the author.