

Collapse of Interstellar Cloud Interstellar Medium Contains Clouds. T~10-100°K, M~10's-1000's of M_{sun} If gravitational pull exceeds gas (and B) pressure, gas collapses.

Formation of Disks, why?

- It is easy for the gas to cool and lose energy.
- It is hard for gas to lose angular momentum as it contracts.
- \blacksquare L ~ M r v \square v ~ L/(M r)

- Forces: F_{centrifugal} ~ v²/r ~ L²/r³ & F_{grav} ~ M/r²
 Force ratio: F_{centrifugal} /F_{grav} ~ L²/r
 As collapse proceeds, F_{centrifugal} /F_{grav} increases. Impossible to form star with too much angular momentum.

- Result:
 - □ 2/3 of stellar systems are double stars!
 - □ 1/3 of stellar systems should have planets.
 - (e.g., 99% of *L* in solar system, is in Jupiter!)

Evolution of Stars / Gross Features:

- M < 0.08 M_{sun} Brown Dwarf (no nuclear brurning)
- 0.5 M_{sun} < M < 2 M_{sun} Central Hydrogen burning, Helium flash, Helium burning ☐ End as CO White dwarf.
- 2 M_{sun} < M < 8 M_{sun} Central Hydrogen burning, Helium ignites non degenerately
 ☐ End as CO White dwarf.
- 8 M_{sun} < M < 20 M_{sun} − Numerous burning stages after Helium burning. Type II Supernova □ ends as Neutron Star.
- 20 M_{sun} < M As above, but ends as a Black Hole.</p>
- Note: High masses are inaccurately known due to large wind mass loss during evolution.

Zones of Convection

- Low mass stars: Outer convection because T is low (opacity, ionization)
- High mass stars: Core convection because
 CNO H-burning (high T dependence)

The extent of convective zones (shaded areas) in main-sequence star models as a function of the stellar mass [adapted from R. Kippenhahn & A. Weigert (1990), Stellar Structure and Evolution, Springer-Verlag].

Stable Burning of Helium in Core ■ In low mass ($< 2 M_{sun}$), Helium Flash \square Stable Helium Horizontal nuits) burning after core expansion. Luminosity (solar u ■ In High Mass (> 2 M_{sun}), Stable Core bruning without Helium Flash. Burning through $3 \square \square$ ¹²C reaction, .0001 at T $\sim 10^8$ °K ■ O formed through capture. BAFGKM Spectral classification

Asymptotic Giant Branch Stars & Planetary Nebulae

- Once He is exhausted in core, core continues to contract, He & H burn in shells, envelope expands.
- At some point, envelope becomes unstable, and starts to pulsates, each time sheding some material.
- Envelope ejected at ~ 30 km/s, and core contracts and cools
- Envelope becomes planetary nebula
- Core becomes white dwarf

Supernovae

- One Iron photodisintegration takes place, core collapses on time scale of 10's of ms.
- At "Low" masses, Neutron star is formed, and shock appears.
- As long as there is large fluxes of infalling material, shock cannot "leave" the core. Once shock does propagates outwards (perhaps using

 heating) it:
 - Heats the envelope (fast nuclear processes take place (making Trans-Iron isotopes).
 - □ Accelerates the envelope, and it is ejected with speeds of order 10,000's km/s

Reactions Proceed up to Iron

- ⁵⁶Fe is the most stable isotope. Reactions can release energy only below ⁵⁶Fe.
- When temperature in core ~ 7 10⁹ °K, ⁵⁶Fe photodisintegrates: ⁵⁶Fe ☐ 13 ⁴He + 4 n taking 100 MeV of energy! (At higher temperature, higher S is favored)
- This cools the core very quickly and it collapses.

Ejecta velocities of ~10000 km/s

Left overs of massive stars

- •The remnant left can be either a Neutron Star Or a Black Hole!
- •Neutron stars are held by degeneracy pressure of neutrons (and not electrons)

Neutron Stars can be active!

- Rotation+magnetic field can power objects called pulsars.
- Acceleration of high energy particles along magnetic poles.
- If magnetic axis passes close enough to observer's line of sight, we see a pulsar. (a lighthouse of high energy particles, radiation)

