Measuring Cosmological Parameters $(\Omega_i, \Lambda, H_0, \text{etc...})$

Various Methods:

The different methods can be divided to several "major" groups of methods:

- Measuring local characteristics sensitive to cosmological parameters.
- Measuring behavior vs. time/z (luminosity, number counts etc.) at high redshift
- Looking at the young (and linear) universe: The Cosmic Microwave Background.

Friedman Equation

Dark Matter and Dark Energy

Total Luminous Matter

By counting the total amount of starlight from galaxies, and the number of galaxies, one can obtain (using (M/Msun)/(L/Lsun)~few):

> Ω_{luminous} ≈ 0.01 Is the universe "empty?" Where is the rest of the mass?

Dark Matter

Galaxy Rotation Curves

On larger scales, more Mass is missing!

Cosmic Flows

Dark-matter density in supergalactic plane

Most matter: Dark Matter

Dynamics $\Omega_{\rm m} = 0.35 \pm 0.05$ Using BBNS, $\Omega_{\rm baryons} \approx 0.05$

What is the dark matter?

Cosmological Parameters

Acceleration

Vaccum energy is responsible for an effective "repulsion force":

 $\Omega_{\Lambda} = 0.65 \pm 0.05 \ge \Omega_{\mathrm{m}}$

SN Cosmology Project

Supernova Cosmology Project Perlmutter *et al.* (1998)

Cosmological Parameters

Cosmic Microwave Background

I=energy flux per unit area, solid angle, and frequency interval

CMB Temperature Fluctuations

CMB anisotropy

Latest Results WMAP

Cosmological Parameters

Age of an old star clusters

Best fit age of universe: $t_0 = 14.5 \pm 1 (0.63/h)$ Gyr Best fit in flat universe: $t_0 = 14.9 \pm 1 (0.63/h)$ Gyr

Big Bang Nucleosynthesis

 $m_n > m_p \implies n + v \implies p + e^$ only 12.5% *n* left after decaying to $p \implies 75\% H + 25\% He$ (in mass)

At T~10⁹K deuterium becomes stable and nucleosynthesis starts:

 $p + n \Leftrightarrow d(pn) + \gamma$

 $d \xrightarrow{p}{}^{3}He(ppn) \xrightarrow{n}{}^{4}He$

A minute later *p* becomes too cold to penetrate the Coulomb barrier by *p* in *d* and process stops. Rate $\propto n_p^2 \rightarrow$ abundances of *d* and ³*He* decrease with Ω_b

 $\Omega_{b} = 0.04 \pm 0.01$

