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* Thermalization is the shortest time scale, the excitons reach a quasi- Emission Current
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 The band diagram of an exciton in GaAs quantum well. o Total X "Tt:. /
 The ground state has an overall ‘spin’” 2, meaning it cannot recombine optically. An 'E - - -2xBright N
optically (‘bright’) state is 5,4 < T higher in energy. The condensed state is ‘dark’. 2 ) | Gray BEC ~ Gray BEC
* BEC theory: a critical population N_,(T) will be thermal, and each additional particle © Therma n1r
beyond that number will be added to the dark condensate. E p Thermal
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Interacting excitons: exchange [2] o T e N
Exchange between individual carriers coherently mixes bright and dark components. o p A
dark-bright splitting N fel . e
€bd ~ N Grav condensate  N(G) is always linear, but the slope is orders of magnitude larger with a dark BEC
3 ¢z Y compared to the slope in the other two phases.

T Ne,  N(T) increases quadratically as the T is lowered through the dark BEC phase. In
the other two phases N(T) is constant.
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- 1 * The phase transitions will barely affect the emission intensity, but will cause
Hine =€ ) (b, b, dy.dy, + H.c.) Nea(T) . . - . .
k1~ ky K3 ™K striking shifts of the emission energy, in the case that N, is large enough.
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* Low N: the condensate is dark. Beyond a second critical occupation N_,, each Expe riment [4]
additional exciton in the condensate contributes equal dark and bright components. e ™
* The exchange coupling depends on the wavefunction of relative-position ®(r). * Nonresonant laser pumps excitons in double quantum wells
* Voltage in the z direction polarizes and traps the excitons
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Is N., high enough for a dark condensate to be observable? =ap : %
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. . . Al . . G =3e7s ! The exciton cloud is localized
Interacting excitons: dipole-dipole repulsion m—4k L 1538 j
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Polarized by perpendicular electric field, dipolar excitons in quantum wells reside in the x (um) z (pm) parabolic potential, 20um wide.
2D plane of the wells, and carry a permanent aligned electric dipole moment.
12 . * To maintain fixed single-particle properties like 75, the voltage is tuned to hold the
* Aligned dipoles repel each other emission line at a fixed energy. The voltage redshifts the exciton emission.
1 over long distances (~773). * This changing compensating voltage probes the total exciton density.
2708 Particle correlations emerge and * Bright exciton density is probed by the emission intensity.
= o6 the probability amplitude of  We track both densities as we change the temperature and excitation power
— having two excitons in close (< G).
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 Exchange occurs where @ is large. ) / |
Since here ®(r) falls fast with r, 2 10 R
the exchange coupling will be 2 =
suppressed for larger dipoles. < 10° = 03l
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 Asaresult, the dark condensate 02| [N, = 300[80.580]
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0 O 10 15 20 . . . * Inlow T, the dark condensate seem to form with less than 1000 excitons in the
d (nm) * Dipole- dipole repulsion results , , , , .
. . trap. It persists through ~2 orders of magnitude increase of density until it turns
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| y , 3] * In high T, the population is simply linear in the excitation power, and the
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3 1011k . Thus we find that the system \_ measured bright population is about half the measured total population. )
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