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1 Infinite potential well

In class, you discussed the infinite potential well, i.e.

V (x) =

{
0 if 0 < x < L

∞ else
(1)

You found the permitted energies are discrete:

En =
n2π2~2

2mL2
(2)

and you found the corresponding wave functions:

φn(x) =

{√
2
L
sin(nπx

L
) if 0 < x < L

0 else
(3)

1.1 time evolution

Each of the states |φn〉 describes a stationary state, which leads to time-independent physical
predictions. Time evolution appears only when the state vector is a linear combination of
several kets |φn〉. We shall consider here the situation where at t = 0 the state vector is:

|ψ(t = 0)〉 = 1√
2
[|φ1〉+ |φ2〉] (4)

Since |φ1〉 , |φ2〉 are energy eigen-states, the state at t > 0 will be:

|ψ(t)〉 = 1√
2
[e−i

π2~
2mL2 t |φ1〉+ e−2i

π2~
mL2 t |φ2〉] (5)

we can omit the global phase and re-write this as:

|ψ(t)〉 = 1√
2
[|φ1〉+ e−iω12t |φ2〉] (6)
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where:
ω12 =

E2 − E1

~
=

3π2~
2mL2

(7)

The shape of the wave packet is given by the probability density:

|ψ(x, t)|2 = 1

2
φ1(x)

2 +
1

2
φ2(x)

2 + φ1(x)φ2(x)cos(ω12t) (8)

We see that the time variation of the probability density is due to the interference term in φ1φ2.
The typical time it takes the probability density to travel from left to right and back again is
of order T = 2π

ω12
.

Let us calculate the mean position of the particle at time t: 〈X(t)〉. It is convenient to define:
X ′ = X − L

2
. since the diagonal matrix elements of X ′ are zero:

〈φ1|X ′ |φ1〉 ∝
ˆ L

0

(x− L

2
)sin2(πx/L)dx = 0

〈φ2|X ′ |φ2〉 ∝
ˆ L

0

(x− L

2
)sin2(2πx/L)dx = 0

(9)

We are left with:

〈X ′(t)〉 = Re{e−iω12t 〈φ1|X ′ |φ2〉} = Re{e−iω12t[〈φ1|X |φ2〉 −
L

2
〈φ1|φ2〉]}

= Re{e−iω12t
2

L

ˆ L

0

xsin(
πx

L
)sin(

2πx

L
)dx} = −cos(ω12t)

16L

9π2

(10)

From which it follows that:
〈X(t)〉 = −16L

9π2
cos(ω12t) +

L

2
(11)

The position changes from 0 to L as a cosine function with a period T = 2π
ω12

. compare this
to the classical case, where inside the range [0, L] the potential is constant and therefore there
is no force and we expect the particle’s speed to be constant and the particle to be bouncing
between 0 and L with a linear dependence of 〈X(t)〉 on t within each segment. The center of the
quantum wave packet, instead of turning back at the walls of the well, executes a movement of
smaller amplitude and retraces its steps before reaching the regions where the potential is not
zero. The physical explanation of this phenomenon is that before the center of the wave packet
has touched the wall, the action of the potential on the "edges" of this packet is sufficient to
make it turn back.

1.2 Perturbation caused by a position measurement

Consider a particle in the state |φ1〉. Assume its position is measured at t = 0 and found to
be L

2
.What are the probabilities of the different results that can be obtained in a measure-

ment of the energy, performed immediately after this first measurement? One must beware
of the following false argument: after the measurement, the particle is in the eigenstate of X
corresponding to the result found, and its wave function is therefore proportional to δ(x− L

2
);
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if a measurement of the energy is then performed, the various values En can be found, with
probabilities proportional to:

|
ˆ L

0

dxδ(x− L

2
)φ∗n(x)|2 = |φn(

L

2
)|2 =

{
2
L

if n is odd
0 if n is even

(12)

Using this incorrect argument, one would find the probabilities of all values of En corresponding
to odd n to be equal. This is absurd, since the sum of these probabilities would then be
infinite. This error results from the fact that we have not taken the norm of the wave function
into account. It is necessary to write the wave function as normalized just after the first
measurement. However it is not possible to normalize the function δ(x − L

2
). The problem

posed above must be stated more precisely. An experiment in which the measurement of an
observable with a continuous spectrum is performed never yields any result with complete
accuracy. For the case with which we are concerned, we can only say that:

L

2
− ε

2
< x <

L

2
+
ε

2
(13)

If we assume ε to be much smaller than the extension of the wave function before the mea-
surement (here L), the wave function after the measurement will be practically:

√
εδ(ε)(x− L

2
)

where δ(ε)(x) is equal to 1/ε for −ε/2 < x < ε/2 and zero otherwise. Now if the energy is
measured, each En can be found with a probability:

P (E = En) = |
ˆ L

0

dx
√
εδε(x− L

2
)φ∗n(x)|2 =


8L
ε

(
1
nπ

)2

sin2

(
nπε
2L

)
if n is odd

0 if n is even
(14)

However small ε may be, the distribution depends strongly on ε. The smaller ε is the more
the distribution extends to larger energies. The interpretation of this result is the following:
according to the uncertainty relations if one measures the position of the particle with great
accuracy, one drastically changes its momentum. Thus kinetic energy is transferred to the
particle, the amount of which is increasing as ε decreases.

2 Half-infinite potential well

Consider a bound particle of mass m in a potential:

V (x) =


∞ if x < 0

−V0 if 0 < x < L

0 if x > L

(15)

where V0 > 0. We aim to find the energy levels and corresponding wave functions for this
potential. This problem is of particular interest as it can be a zeroth order approximation for
many real life potentials, such as the effective two body Coulomb potential or the Van der
Waals potential that keeps molecules bound.
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The solutions of the Schroedinger equation in the different ranges are:

ψ(x) =


Aek1x +Be−k1x x > L

Deik2x + Ee−ik2x 0 < x < L

0 x < 0

(16)

where k1 =
√
−2mE

~2 and k2 =
√

2m(E+V0)
~2 . Requiring that ψ(x) is continuous at x = 0 we get:

D + E = 0→ D = −E (17)

In addition, we know that A = 0 otherwise the probability will be un-normalizable and the
state unphysical since most of the probability is to find the particle outside the well. Now,
requiring that ψ(x) and its first derivative are continuous at x = L we get:

Be−k1L = Deik2L −De−ik2L (18)

and:
− k1Be−k1L = ik2De

ik2L + ik2De
−ik2L (19)

Solving Eq. 18 yiels: B = 2iD sin(k2L)e
k1L. Plugging this result back into Eq. 19:

cot(k2L) = −
k1
k2
. (20)

Since both k1 and k2 depend on energy, this is an equation for the allowed energies in the
system. This equation cannot be solved explicitly and instead has to be solved graphically or
numerically. To obtain a simpler expression, we notice that:

k21 = −
2mE

~2
→ E = −~2k21

2m
(21)

and plugging to k2:

k22 = −k21 +
2mV0
~2

→ k1 =

√
−k22 +

2mV0
~2

(22)

Returning to Eq. 19 and multiplying by L we have:

k2Lcot(k2L) = −
√
−k22 +

2mV0
~2

L = −
√
−k22L2 +

2mV0L2

~2
(23)

We define a dimensionless parameter z = k2L and a dimensionless constant: α = (2mV0L
2

~2 )1/2.
We can now re-write the equation above as:

zcot(z) = −
√
−z2 + α2 (24)

The number of solutions to this equation depends on the value of α. To have at least one
solution the term in the square root should be larger than zero:

α2 > z2 → E < 0 (25)
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As α increases there are more and more solutions. For α → ∞ the energy equation simplifies
to:

(zcot(z))−1 = 0→ z = πn→
√

2m(E + V0)L2

~2
= πn (26)

For large n this yields:

E = −V0 +
~2π2n2

2m~2
(27)

as familiar from the solution for the infinite square well.

Normalizing the wave function gives us:

1 =

ˆ ∞
0

|ψ|2dx = 4|D|2(L
2
− sin(2k2L)

4k2
)+|B|2 e

−2k1L

2k1
= 4|D|2(L

2
− sin(2k2L)

4k2
+
sin2(k2L)

2k1
) (28)

Leading to:

|D| = 1√
2L− sin(2k2L)

k2
+ 2 sin2(k2L)

k1

(29)
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