Homework Assignment #3

Physics 17 Fall 99

Due: Thursday, October 28

1. The phase velocity v_{φ} of deep water waves is given by

$$v_{\varphi} = \sqrt{\frac{g}{k}} \,, \tag{1}$$

where g is the acceleration due to gravity and k is the wave number.

- (a) Find the group velocity of the waves.
- (b) Deduce the wave equation for the displacement ψ associated with these waves.
- 2. The dispersion relation for an electromagnetic wave propagating through a plasma is

$$\omega = \sqrt{\omega_p^2 + c^2 k^2} \,, \tag{2}$$

where ω_p is a constant called the plasma frequency and c is the velocity of light.

- (a) Calculate and plot the phase and group velocities as a function of k.
- (b) Calculate the product $v_{\varphi}v_{g}$.
- 3. Consider a string that at t=0 has the shape of a localized pulse which is propagating to the right and is of the form

$$\psi(x, t = 0) = e^{-\frac{x^2}{2l^2}}, \tag{3}$$

where l is a constant (how is it related to the width of the pulse?). Such a localized pulse (not necessarily of that particular functional form) is called a wave packet.

(a) Calculate the Fourier transform $\tilde{\psi}(k,t=0)$ of $\psi(x,t=0)$. You will find the following integral

$$\int_{-\infty}^{\infty} dx \, e^{-\alpha x^2} = \sqrt{\frac{\pi}{\alpha}} \quad \text{for Re}(\alpha) > 0$$
 (4)

useful.

(b) Show that the width Δx of the wave packet and the width Δk of $\tilde{\psi}(k)$ in k space obey $\Delta x \Delta k = 1$. This is an example of the "uncertainty relation". Broad features in x space are narrow in k space and vice versa.

- (c) Calculate $\psi(x,t)$ at latter times assuming that the string is described by a linear wave equation with dispersion law $\omega = vk$.
- (d) Repeat (3c) but now assuming $\omega = vk + \alpha k^2$. What happens to the pulse in this case?
- 4. Consider a spherically symmetric scalar field, that is, a field which depends only on the distance r from the origin: $\phi(\sqrt{x^2 + y^2 + z^2})$.
 - (a) Calculate $\nabla \phi(r)$.
 - (b) For the specific case $\phi(x, y, z) = (x^2 + y^2 + z^2)^{-\frac{3}{2}}$ calculate the magnitude and direction of $\nabla \phi$ at the point (1, 2, 3).
- 5. (a) Show that if a vector field $\mathbf{v}(x, y, z)$ can be written as a gradient of a scalar field $\phi(x, y, z)$ its curl vanishes, i.e.

$$\nabla \times \nabla \phi = 0. \tag{5}$$

(b) Show that if a vector field $\mathbf{v}(x, y, z)$ can be written as a curl of another vector field field $\mathbf{u}(x, y, z)$ its divergence vanishes, i.e.

$$\nabla \cdot \nabla \times \mathbf{u} = 0. \tag{6}$$

6. (a) Show that for a vector field \mathbf{v} and a scalar field ϕ

$$\nabla \cdot (\phi \mathbf{v}) = (\nabla \phi) \cdot \mathbf{v} + \phi(\nabla \cdot \mathbf{v}) . \tag{7}$$

(b) Use the result of (6a) to prove the identity between the following two expressions for the energy of an electrostatic field

$$\frac{1}{2} \int d^3x \, \phi \rho = \frac{1}{8\pi} \int d^3x \, \mathbf{E}^2 \,, \tag{8}$$

where $\mathbf{E} = -\nabla \phi$. Assume that the electrostatic field vanishes at infinity.

7. (a) Consider the vector field

$$\mathbf{F} = -\frac{y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j} , \qquad (9)$$

where **i** and **j** are unit vectors along the x and y directions respectively. Calculate the circulation of **F** around the unit circle in the xy plane.

(b) Consider now the vector field $\mathbf{F} = -y\mathbf{i} + x\mathbf{j}$. Show, using Stokes theorem, that the circulation of \mathbf{F} around any closed curve Γ in the xy plane is given by

$$\oint_{\Gamma} \mathbf{F} \cdot \mathbf{dl} = 2A , \qquad (10)$$

where A is the area enclosed by Γ .