Advanced Quantum Mechanics A - Problem Set 6

1. a. Show that for n complex variables z_{i}, n complex parameters J_{i}, and a Hermitian $n \times n$ matrix H
$Z \equiv \int_{-\infty}^{\infty} \prod_{j=1}^{n} \frac{d z_{j}^{*} d z_{j}}{2 \pi i} e^{-\sum_{i, j} z_{i}^{*} H_{i j}{ }^{z}+\sum_{i}\left(J_{i}^{*} z_{i}+z_{i}^{*} J_{i}\right)}=(\operatorname{det} H)^{-1} e^{\sum_{i, j} J_{i}^{*}\left(H^{-1}\right)_{i j} J_{j}}$
b. Use this result to calculate the discrete version (in the limit where the number of time slices goes to infinity) of the path integral for a system of free bosons.
c. Show that $\left\langle z_{m} z_{n}^{*}\right\rangle \equiv \frac{1}{Z} \int_{-\infty}^{\infty} \prod_{j=1}^{n} \frac{d z_{j}^{*} d z_{j}}{2 \pi i} z_{m} z_{n}^{*} e^{-\sum_{i, j} z_{i}^{*} H_{i j} z_{j}}=H_{m n}^{-1}$
d. Prove Wick's theorem:
$\left\langle z_{i_{1}} z_{i_{2}} \cdots z_{i_{N}} z_{j_{1}}^{*} z_{j_{2}}^{*} \cdots z_{j_{N}}^{*}\right\rangle=\sum_{P} H_{i_{1} j_{P(1)}}^{-1} \cdots H_{i_{N} j_{P(N)}}^{-1}=\sum_{P}\left\langle z_{i_{1}} z_{j_{P(1)}}^{*}\right\rangle \cdots\left\langle z_{i_{N}} z_{j_{P(N)}}^{*}\right\rangle$
where the sum is over all permutations of $1,2, \cdots, N$.
2.a. Show that the Euler-Lagrange equations for a Bose liquid with short-range interactions possess a solution of the form $\phi(r, \theta, z)=e^{i n \theta} f\left(r / r_{0}\right)$ where $n \neq 0$ is an integer and $\vec{r}=(r, \theta, z)$. The parameter r_{0} is the typical length in the problem. What is it? Find the asymptotic behavior of $f(r)$ for small and large r.
b. Calculate the current density carried by the solution and show that it describes a vortex around the origin. Calculate the circulation around the origin.
c. Assume that the liquid is inside a cylinder of radius R and calculate the main contribution to the energy of vortex in the limit of large R. For which n is this energy the lowest?
d. We can estimate the entropy that accompanies a solution of this form if we divide the cross section of the cylinder into cells of area r_{0}^{2} and assume that the vortex core can lie inside any one of them. At what temperature the free-energy of the solution turns negative? At temperatures higher than that vortices would spontaneously appear in the system.
2. Calculate using Bogoliubov model for a Bose liquid with short-range interactions the relative fraction of the liquid that is not in the condensate: $\frac{N-N_{0}}{N}$.
