Advanced Quantum Mechanics A - Problem Set 3

1. a. Show that the second quantized form of the particles' density operator is $\rho(x)=\psi^{\dagger}(x) \psi(x)$.
b. Show that the electronic spin operators $S_{\mu}(\mu=x, y, z)$ are given by $S_{\mu}=\frac{1}{2} \sum_{\tau, \tau^{\prime}=\uparrow, \downarrow} a_{\tau}^{\dagger}\left(\sigma_{\mu}\right)_{\tau, \tau^{\prime}} a_{\tau^{\prime}}$, where a_{τ} annihilates an electron with spin z-component τ and σ_{μ} are the Pauli matrices.
2. a. Obtain the Heisenberg equation of motion $\frac{\partial \psi}{\partial t}=\frac{i}{\hbar}[H, \psi]$ for the field operator $\psi(x, t)$ in a bosonic system with potential $V(x)$ and Coulomb interaction between the particles. Repeat the calculation for a fermionic system. Is there a difference between the two results?
b. Find the time evolution of the annihilation operators a_{i} and the creation operators a_{i}^{\dagger} in a system described by the Hamiltonian $H=\sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i}$. Do it for the bosonic and fermionic cases. Show that the commutation (and anti-commutation) algebra is preserved under the time evolution.
3. The Hubbard model is one of the simplest models of interacting electrons. It describes electrons on a lattice, where each site can hold at most two electrons with opposite spins. The electrons can hop between neighboring sites with an amplitude $-t$ and double occupancy of a single site costs energy U due to the repulsive interaction between the electrons. The model can be solved exactly in one dimension but the twodimensional model (believed by many to be the minimal model for the hightemperature superconductors) is still an open problem despite decades of effort. Your task is to solve the model on two sites. Let us denote by $a_{i \sigma}$ the annihilation operator of an electron with spin $\sigma=\uparrow, \downarrow$ on site $i=1,2$. The Hamiltonian is: $H=-t \sum_{\sigma}\left(a_{1 \sigma}^{\dagger} a_{2 \sigma}+a_{2 \sigma}^{\dagger} a_{1 \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}$,
where $n_{i \sigma}=a_{i \sigma}^{\dagger} a_{i \sigma}$ is the particle number operator with spin σ on site i.
a. How many states does the Fock space contain?
b. Find the eigenstates and eigenenergies of the Hamiltonian of system with $0,1,2,3$ and 4 electrons.
c. The total spin operator $S_{t o t, \mu}=\sum_{i} S_{i, \mu}$ is a sum of the site spin operators $S_{i, \mu}$, each given by the expression you were asked to derive in 1 b . What are the values that $S_{\text {tot, } z}$ and $\vec{S}_{\text {tot }}^{2}$ take in the ground state of the 2-electron system?
d. Explain the energy and character of the 2-electron ground state in the limit $U \gg t$.
4. Calculate the correlator $\left\langle S_{i}^{z} S_{j}^{z}\right\rangle$ in the ground state of the spin-1/2 $X Y$ chain.
5. Consider a ferromagnetic $(J>0)$ Heisenberg chain of N spins of size S : $H=-J \sum_{n=1}^{N} \vec{S}_{n} \cdot \vec{S}_{n+1}$, where we assume periodic boundary conditions. The spin operators obey the angular momentum commutation algebra: $\left[S_{m}^{\alpha}, S_{n}^{\beta}\right]=i \delta_{m, n} \varepsilon^{\alpha \beta \gamma} S_{m}^{\gamma}$.
a. Show that the spin operators can be represented in terms of bosonic operators with the aid of the Holstein-Primakoff transformation:
$S_{n}^{-}=a_{n}^{\dagger}\left(2 S-a_{n}^{\dagger} a_{n}\right)^{1 / 2}, \quad S_{n}^{+}=\left(2 S-a_{n}^{\dagger} a_{n}\right)^{1 / 2} a_{n}, \quad S_{n}^{z}=S-a_{n}^{\dagger} a_{n}$,
where $S^{ \pm}=S^{x} \pm i S^{y}$, and $\left[a_{m}, a_{n}^{\dagger}\right]=\delta_{m, n},\left[a_{m}, a_{n}\right]=0$.
b. Assume that $S \gg 1$, and that $\left\langle a_{n}^{\dagger} a_{n}\right\rangle=O(1)$. Expand the transformation for $S^{ \pm}$to lowest order in $1 / S$ and write the Hamiltonian in terms of the bosonic operators within this approximation. Diagonalize it in order to obtain the dispersion of the elementary excitations - the magnons.
