Advanced Quantum Mechanics A - Problem Set 2

1. Show that in one dimension the Lippmann-Schwinger equation takes the form $\psi(x)=\frac{e^{i k x}}{\sqrt{2 \pi}}-\frac{i m}{\hbar^{2} k} \int d x^{\prime} e^{i k\left|x-x^{\prime}\right|} V\left(x^{\prime}\right) \psi\left(x^{\prime}\right)$
What is the asymptotic behavior of the solution for $|x| \gg a$, where a is the extent of the scattering region? How many independent values does $f\left(\vec{k}, \vec{k}^{\prime}\right)$ have?
2. Consider the one-dimensional scattering potential $V(x)=V_{0} \delta(x)$.
a. Solve the Lippmann-Schwinger equation exactly for this case.
b. Verify that $\psi(x)$, obtained in (a.), solves the Schrodinger equation.
c. Use this solution to form a Gaussian wave packet and calculate its exact time evolution. Plot (numerically) the probability density of the wave packet at different times.
d. Show that the scattering amplitude has a pole in the complex k plane if and only if $V_{0}<0$, and that the solution corresponding to this k describes a bound state of the potential. Write down its wave-function.
e. Show that in three dimensions the potential $V(\vec{r})=V_{0} \delta(\vec{r})$ does not lead to any scattering.
3. a. Calculate within the first order Born approximation the scattering amplitude $f(\theta)$ from the spherical potential $V(r)=\left\{\begin{array}{cc}V_{0} & r<R \\ 0 & r>R\end{array}\right.$. What is its behavior in the limit $k R \ll 1$?
b. Calculate the imaginary part of the forward scattering amplitude $f(\theta=0)$ using second order Born approximation in the limit $k R \ll 1$. Show that the optical theorem holds to second order in V_{0}, in the limit $k R \ll 1$.
