Advanced Quantum Mechanics A - Problem Set 1

1. A tritium atom, ${ }^{3} \mathrm{H}$, initially in its ground state, undergoes a β decay where it emits a 17 KeV electron and turns into a ${ }^{3} \mathrm{He}$ ion. Calculate the probability to find the ${ }^{3} \mathrm{He}$ ion in its ground state. Justify the use of the sudden approximation.
2. Consider a one-dimensional system comprised of three particles. Two of the particles are heavy, with a mass M, and we denote their coordinates by x_{1} and x_{2}. The third particle, of a much lighter mass m, resides in between them at a coordinate x_{3}. The three particles are connected by springs of natural length d and spring constant k. The Hamiltonian is given by
$H=\frac{p_{1}^{2}}{2 M}+\frac{p_{2}^{2}}{2 M}+\frac{p_{3}^{2}}{2 m}+\frac{1}{2} k\left(x_{3}-x_{1}-d\right)^{2}+\frac{1}{2} k\left(x_{2}-x_{3}-d\right)^{2}$
a. Calculate the spectrum within the Born-Oppenheimer approximation.
b. The Hamiltonian can be diagonalized exactly. Find the exact energy levels and compare them to the approximate results found in a.
3. A spin \vec{S} (integer or half-integer) is placed in a time-dependent magnetic field $\vec{B}(t)$. The interaction between the two is described by the Hamiltonian $H=-\mu \vec{B} \cdot \vec{s}$. Calculate the Berry phase of the adiabatic states of the spin.
