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Extinction rates of established spatial populations
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This paper deals with extinction of an isolated population caused by intrinsic noise. We model the population
dynamics in a “refuge” as a Markov process which involves births and deaths on discrete lattice sites and random
migrations between neighboring sites. In extinction scenario I, the zero population size is a repelling fixed point
of the on-site deterministic dynamics. In extinction scenario II, the zero population size is an attracting fixed
point, corresponding to what is known in ecology as the Allee effect. Assuming a large population size, we
develop a WKB (Wentzel-Kramers-Brillouin) approximation to the master equation. The resulting Hamilton’s
equations encode the most probable path of the population toward extinction and the mean time to extinction.
In the fast-migration limit these equations coincide, up to a canonical transformation, with those obtained,
in a different way, by Elgart and Kamenev [Phys. Rev. E 70, 041106 (2004)]. We classify possible regimes
of population extinction with and without an Allee effect and for different types of refuge, and solve several
examples analytically and numerically. For a very strong Allee effect, the extinction problem can be mapped into
the overdamped limit of the theory of homogeneous nucleation due to Langer [Ann. Phys. (NY) 54, 258 (1969)].
In this regime, and for very long systems, we predict an optimal refuge size that maximizes the mean time to
extinction.
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I. INTRODUCTION

Every isolated population ultimately goes extinct. This
happens, even in the absence of adverse environmental
variations, because of the discreteness of the individuals and
random character of birth and death processes. Extinction risk
is a major negative factor in viability of small populations [1,2],
whereas extinction of diseases [1,3] is usually beneficial.

Extinction of a large population because of the intrinsic
noise demands an unusually large fluctuation: a rare sequence
of random events when deaths dominate over births. Evaluat-
ing the role of rare large fluctuations in far-from-equilibrium
systems is hard, and so population extinction, caused by
intrinsic noise and environmental variations, has attracted
much interest from physicists [4–23]. With a few exceptions
[5,6], these studies assumed well-mixed populations, when
spatial degrees of freedom are irrelevant. It has been known,
however, since the classical paper of Skellam [24], that
migration of individuals plays a crucial role in a host of
natural environments of interest to population biology and
epidemiology [25], and in other applications. An important
step forward in quantifying the extinction risk of spatially
distributed populations was made by Elgart and Kamenev [6].
They considered a population on a discrete lattice that models
a refuge of a large but finite size. The population undergoes
on-site birth-death processes and migration of individuals
between neighboring sites. Beyond the refuge the conditions
are so harsh that they can be modeled by an infinite death
rate. Elgart and Kamenev transformed the master equation
for the evolution of a multivariate probability distribution
of the population size into an effective continuous classical
mechanics by applying a time-dependent WKB (Wentzel-
Kramers-Brillouin) approximation that uses the typical on-site
population size K in the long-lived state of the population as
a large parameter. The time-dependent WKB method yields
a Hamiltonian functional and the corresponding Hamilton’s

equations—partial differential equations for an effective mo-
mentum p (coming from the probability generating function)
and a conjugate coordinate q (which, in the deterministic limit,
coincides with the population size). Both p and q depend on the
continuous spatial coordinates x and time t . The extinction rate
is determined by the classical action calculated along a special
trajectory in the (infinite-dimensional) phase space q(x), p(x)
of the system [6].

The present paper also deals with extinction of spatially
distributed populations caused by intrinsic noise. We suggest
an approach that is closely related to that of Elgart and
Kamenev [6], but also differs from it in a number of ways.
First, in addition to scenario I of extinction, considered already
in Ref. [6], we also address scenario II. In scenario I, the
zero population size is a repelling fixed point of the on-site
deterministic dynamics. In scenario II, it is an attracting
fixed point, corresponding to what is known in ecology as
the Allee effect [26]. The results in these two extinction
scenarios turn out to be quite different. Second, we derive
the WKB equations systematically from the master equation
for the multivariate probability distribution. This derivation
shows that a continuous description in space is only valid
when the migration rate between the neighboring sites greatly
exceeds the on-site process rates. Third, by focusing on
the long-lived quasistationary distribution of the population
size, we formulate a stationary WKB theory in terms of the
population size (treated as a “coordinate”) and its conjugate
momentum. Fourth, an important attribute of this WKB theory
is spatial boundary conditions for WKB momentum p(x,t).
We derive these boundary conditions, thus correcting an
omission in Ref. [6]. Fifth, using the WKB theory, we establish
important general properties of the most probable path of the
population to extinction. We show that, in scenario I, the mean
time to extinction (MTE) is determined by a heteroclinic tra-
jectory between two fixed points in the (infinite-dimensional)
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functional phase space of the system. The first fixed point
corresponds to the long-lived quasistationary distribution of
the population size. The second one corresponds to a zero-
population-size state with a nontrivial momentum profile.
In scenario II we only have results in the limit of a very
strong Allee effect: close to a characteristic bifurcation of the
system. Here again we obtain the solution of the problem in
terms of a heteroclinic connection: between the fixed point,
corresponding to the long-lived quasistationary distribution,
and a fixed point describing the “critical nucleus.” In this limit
the population extinction problem turns out to be completely
integrable, similar to the integrability of the problem of
population explosion close to the saddle-node bifurcation
[6]. We explain this integrability by establishing a direct
connection between this problem and the overdamped limit
of the theory of homogeneous nucleation due to Langer [27].
We consider different types of refuge, determined by the
conditions at the refuge boundaries and illustrate our results
by solving, analytically and numerically, three particular
population models. In most of this paper we deal with refuges
whose spatial sizes are not exponentially large in the parameter
K � 1. An exception is in Sec. V B where extinction of
populations residing in very large refuges is considered (again,
for a very strong Allee effect). Surprisingly, we find here
an exponentially large reduction in the MTE and predict an
optimal refuge size that maximizes the MTE.

The remainder of the paper is organized as follows.
Section II includes important preliminaries which are used in
the subsequent sections. It gives an overview of deterministic
theory of population dynamics in a refuge: with and without
Allee effect, and for different spatial boundary conditions. It
also discusses, on a qualitative level, how the noise-driven
population extinction is expected to occur in different cases.
Section III presents a stochastic theory of the population
dynamics in a refuge. Here we introduce the master equation,
focus on the quasistationary multivariate distribution of the
population sizes and on the MTE, and formulate a WKB theory
aimed at evaluating these quantities. Sections IV and V analyze
population extinction in scenarios I and II, respectively. Here
we consider two specific birth-death models in the region of
parameters close to their characteristic bifurcations. In this way
we achieve some generality, as the reduced equations, in each
of the two cases, describe a broad class of population models.
We also revisit, in Sec. IV B, an additional model problem,
exhibiting extinction scenario I. Extinction of populations
residing in exponentially large refuges is considered, for a very
strong Allee effect, in Sec. V. The results are discussed, along
with some possible generalizations and unresolved problems,
in Sec. VI.

II. DETERMINISTIC EQUATIONS AND POPULATION
EXTINCTION SCENARIOS

A. General

Consider a single population residing in a refuge by which
we mean a one-dimensional lattice of N � 1 sites (or habitat
patches) labeled by the index i = 1,2, . . . ,N . The population
size ni at each site varies in time as a result of two types of
Markov processes. The first set of processes involves a local,

on-site stochastic dynamics of birth-death type, with birth and
death rates λ(ni) and μ(ni), respectively, where μ(0) = 0. As
there is no creation of new individuals “from vacuum,” one has
λ(0) = 0. The second process is a random and independent
migration of each individual between neighboring sites with
a migration rate coefficient D0. What happens at the edges of
the refuge, i = 1 and i = N , needs to be specified separately;
we will deal with this issue a bit later.

Assuming ni � 1, one can attempt to neglect fluctuations
and describe the population dynamics by deterministic rate
equations

ṅi = λ(ni) − μ(ni) + D0(ni−1 + ni+1 − 2ni). (1)

Established populations are described, in the deterministic
limit, by stable steady-state solutions ni of this set of N coupled
equations. According to Eq. (1), an established population
would persist forever. The stochastic picture is markedly
different. An unusual sequence of births and (predominantly)
deaths can bring the population to the absorbing state (n1 =
0,n2 = 0, . . . ,nN = 0) corresponding to extinction occurring
everywhere. This ultimately happens with probability 1.

Before dealing with the stochastic problem, however, let us
dwell some more on deterministic rate equations (1) and their
predictions. Let the characteristic population size on a single
site, predicted by a steady-state deterministic solution, scale
as K � 1. This implies [7,20] that, in the leading order of K ,
one can represent the birth and death rates as

λ(ni) = μ0Kλ̄(qi) and μ(ni) = μ0Kμ̄(qi), (2)

where qi = ni/K is the rescaled population size at site i,
λ̄(qi) ∼ μ̄(qi) ∼ 1, and μ0 is a characteristic rate coefficient.
Now Eq. (1) can be rewritten as

q̇i = μ0f (qi) + D0(qi−1 + qi+1 − 2qi), (3)

where f (qi) = λ̄(qi) − μ̄(qi) is the rescaled birth-death rate
function.

With no migration, D0 = 0, the on-site deterministic
dynamics is determined by the equation q̇ = μ0f (q). One
fixed point of this equation is q = 0, and there are two
major cases determined by the sign of the derivative f ′(q)
at q = 0. For f ′(0) > 0 (scenario I) the fixed point q = 0 is
repelling, and the on-site population size, in the absence of
migration, flows to an attracting fixed point q = q1 > 0 that
describes an established population. One example of scenario
I is the well known susceptible-infected-susceptible (SIS)
model of epidemiology [28] for which λ(n) = λ0n(K − n)
and μ(n) = μ0n. Here λ̄(q) = R0q(1 − q), μ̄(q) = q, and
f (q) = q(R0 − 1 − R0q), where R0 = λ0K/μ0 is the basic
reproduction number. At R0 > 1, q = 0 is a repelling point of
the equation q̇ = μ0f (q), whereas q = q1 = 1 − 1/R0 is an
attracting point.

In scenario II, one has f ′(0) < 0. Here the fixed point q = 0
is attracting, and the population gets established, at another
attracting fixed point q = q2, only if the initial population
size exceeds a threshold: a repelling fixed point q1 such that
0 < q1 < q2. Scenario II accounts, in a simplified way, for a
host of Allee effects [26]. As an example of scenario II we will
consider the following three reactions: A → 0, 2A → 3A, and
3A → 2A with rate coefficients μ0, λ0, and σ0, respectively
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[20,29]. Here λ̄(q) = 2q2/γ and μ̄(q) = q(1 + q2/γ ), where
K = 3λ0/(2σ0) and γ = 8μ0σ0/(3λ2

0). At δ2 ≡ 1 − γ > 0 the
system exhibits bistability. Here the zeros of the rescaled birth-
death rate function

f (q) = − 1

γ
q(q − q1)(q − q2) (4)

describe two attracting fixed points, 0 and q2 = 1 + δ, and a
repelling fixed point q1 = 1 − δ such that 0 < q1 < q2.

Now let us reintroduce deterministic migration and assume
that it is much faster than the on-site population dynamics:
D0 � μ0 (the criterion can become less restrictive close to
characteristic bifurcations of the on-site population models;
see Secs. IV A and V). In this case one can use a continuous
spatial coordinate x instead of the discrete index i and replace
the discrete Laplacian in Eq. (3) by the continuous one. This
brings about reaction-diffusion equation

∂tq = μ0f (q) + D∂2
x q, (5)

where D = D0h
2 is the diffusion constant, and h is the lattice

spacing. The system size becomes L = Nh. Equation (5),
which has been the subject of numerous studies [25,30],
should be supplemented by spatial boundary conditions. We
will separately consider periodic, q(x + L) = q(x), and zero,
q(0) = q(L) = 0, boundary conditions. In the discrete version
of the problem, the zero boundary conditions correspond, up to
small corrections (see Appendix A), to absorbing boundaries
at sites i = 1 and i = N . The absorbing boundaries model,
for example, extremely harsh conditions outside of the refuge
[6,24]. Results for still another type of boundaries—reflecting
walls at x = 0 and x = L—can be easily obtained from the
results for periodic boundary conditions.

Spatial profiles of established populations are described, in
the deterministic theory, by the stable steady-state solutions
q = q(x) > 0 of Eq. (5). They satisfy the ordinary differential
equation

Dq ′′(x) + μ0f (q) = 0 (6)

subject to the chosen spatial boundary conditions. The first
integral of this equation,

D

2μ0
(q ′)2 + V (q) = const, (7)

with effective potential V (q) = ∫ q

0 f (ξ )dξ , makes the prob-
lem soluble in quadratures and yields a phase portrait of the
steady states on the plane (q,q ′). Notably, reaction-diffusion
Eq. (5) is a gradient flow, ∂tq = −δF/δq, where

F{q(x,t)} =
∫ L

0
dx[−μ0V (q) + (1/2)D(∂xq)2]. (8)

Therefore it describes a deterministic flow toward a minimum
of the Ginzburg-Landau free energy F{q}. This property helps
identify linearly stable and unstable x-dependent solutions,
as they correspond to local minima and maxima of F{q},
respectively [30]. Furthermore, it yields a simple selection rule
in cases when, at fixed L, there are multiple solutions of Eq. (6)
with periodic boundary conditions: The solution with the
maximum spatial period (equal to L) is selected when starting
from a generic initial condition [31].

a

0 q1 qV

b

0 q1

q

dq
dx

FIG. 1. (Color online) Effective potential V (q) and phase portrait
(q,q ′) for steady-state solutions of Eq. (5) in scenario I (no Allee
effect).

B. Scenario I

What is the steady state in scenario I, as exemplified
by the spatiotemporal SIS model? Figure 1 shows effective
potential V (q) = (R0 − 1)q2/2 − R0q

3/3 and the resulting
phase portrait (q,q ′) at R0 > 1. The only nontrivial steady-
state solution, obeying periodic boundary conditions, is the x-
independent solution q = q1, depicted in Fig. 2(a). Introducing
intrinsic noise, we will see that the most probable path of this
population to extinction is such that the population size drops
to zero uniformly on the whole interval 0 � x � L. For large

aq1

0

x

q

bq1

0

0 0.2 0.4 0.6 0.8 1
x Lc

q

cq1

0

0 1 2 3 4
x Lc

q

FIG. 2. (Color online) Steady-state solutions of Eq. (5) in scenario
I (no Allee effect) for periodic (a) and zero (b) and (c) boundary
conditions in space. The arrows indicate extinction transitions driven
by rare large fluctuations. L = 1.1Lc (b) and 4Lc (c). R0 = 2, so
Lc = π (D/μ0)1/2; see Eq. (9).
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systems, the MTE is very long in this case, being exponentially
large in KL/h = KN .

For the zero boundary conditions, an x-dependent steady
state corresponds to a phase trajectory inside the separatrix in
Fig. 1. Such steady states, depicted in Figs. 2(b) and 2(c), exist
only if the system size L is larger than the critical size,

Lc = π

√
D

μ0(R0 − 1)
. (9)

This quantity can be obtained from Eq. (6) linearized around
q = 0. At L < Lc there is only a trivial solution: no established
population. The x-dependent solution emerges, at L = Lc,
via a transcritical bifurcation. At L � Lc the population size
is close to q1 everywhere except in boundary layers, with a
thickness of order of Lc, at x = 0 and x = L. At L > Lc

the most probable path to noise-driven extinction for the zero
boundary conditions is such that the population size drops to
zero uniformly on the whole interval 0 � x � L. As we will
see in Sec. IV (see also Ref. [6]), for L � Lc the MTE is
again exponentially long in the parameter KN . It becomes
much shorter as L approaches Lc; see Sec. IV.

C. Scenario II: Allee effect

Now consider scenario II, in the example of three reactions
A → 0 and 2A � 3A. At 0 < γ < 1, that is, 0 < δ < 1, the
effective potential,

V (q) = −q2

2
+ 2q3

3γ
− q4

4γ
, (10)

has two maxima: at q = 0 and q = q2, and which of the steady-
state solutions q = 0 and q = q2 “wins” depends on which of
the maxima is higher [25,30].

1. Strong Allee effect

Figures 3 and 4 illustrate the case of V (q2) < V (0): a strong
Allee effect. In our example this occurs at 8/9 < γ < 1, or 0 <

a0

q1 q2

q

V

b

0 q1 q2

q

dq
dx

FIG. 3. (Color online) Effective potential V (q) and phase portrait
(q,q ′) for steady-state solutions of Eq. (5) for a strong Allee effect,
V (0) > V (q2).
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FIG. 4. (Color online) Linearly stable states q = q2 and q = 0,
linearly unstable state q = q1, and critical nucleus qc(x) for a strong
Allee effect and periodic boundary conditions. The system size
L = 1.04Lc (a) and 3.7Lc (b), where Lc is defined in Eq. (11).
The arrows indicate transitions, driven by rare large fluctuations and
leading to a rapid extinction. Parameter γ = 24/25, so δ = 1/5, and
Lc = 2π (3D/μ0)1/2.

δ < 1/3. For periodic boundary conditions, the only linearly
stable nontrivial steady-state solution is the x-independent
solution q = q2. A sufficiently large perturbation, however,
triggers a deterministic transition from q = q2 to the trivial
solution q = 0 that is also linearly stable. An important
attribute of this metastability is the presence of the “critical
nucleus”: an x-dependent solution qc(x) of Eq. (6) that is
linearly unstable under the dynamics of Eq. (5). A small
perturbation around the critical nucleus brings the system
either to q = 0 or to q = q2. The critical nucleus is selected by
the system size L and corresponds to a phase trajectory inside
the internal separatrix shown in Fig. 3(b). The critical nucleus
exists only for L > Lc, where

Lc = π

√
2D(1 + δ)

μ0δ
, (11)

as can be obtained from Eq. (6), linearized around q = q1, with
periodic boundary conditions. At L � Lc the critical nucleus
coincides with the internal separatrix in Fig. 3(b). For f (q)
from Eq. (4) (a cubic polynomial), the critical nucleus can be
found analytically, in terms of elliptic functions, by integrating
the first-order equation (7) and choosing the solution q(x)
with period equal to the system size L. A more practical
way is to solve Eq. (6) numerically, by shooting. One solves
numerically an initial-value problem for Eq. (6) starting, at
x = 0, from some q(0) ∈ (q1,q2) and q ′(0) = 0. Parameter
q(0) is varied until the numerical solution exhibits a single
full-period oscillation, so that q(L) � q(0) and q ′(L) � 0.
Figure 4 shows the critical nuclei for two different values
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of L > Lc. Note that a critical nucleus corresponds to a local
maximum of free energy (73) [30].

The presence of a critical nucleus in the deterministic
theory plays a pivotal role in the noise-driven extinction of an
established population exhibiting a strong Allee effect. Indeed,
a large fluctuation of the size of stochastic population residing
around q = q2 can create critical nucleus qc(x). The further
population dynamics toward extinction proceeds “downhill,”
that is essentially deterministically. What happens at L � Lc,
see Fig. 4(b), is intuitively clear, and will be supported by our
quantitative results in Sec. V. Here the rate of noise-induced
creation of the critical nucleus is exponentially small in K but
independent of L (unless L is exponentially large in K). Once
having passed the critical nucleus, the solution q(x,t) of Eq. (5)
develops, on a time scale ∼μ−1

0 , two outgoing deterministic
“extinction fronts.” In our example of three reactions the
deterministic front solution can be found analytically [25,30].
The extinction fronts propagate with speed

c =
√

μ0D

2(1 − δ2)
(1 − 3δ) (12)

and drive the whole population to extinction on a time
scale ∼L/(μ0D)1/2. Therefore unless the system size L is
exponentially large in K , it is the creation of a single critical
nucleus that serves as the extinction bottleneck. That is, the
MTE is determined here by the mean creation time of the
critical nucleus. This quantity does not include an exponential
dependence on the system size L and is therefore much shorter
than in scenario I. Now, what happens when L is above Lc but
close to it? We will show that here too the most probable path
to extinction corresponds to a large fluctuation bringing the
population from q = q2 to critical nucleus qc(x), see Fig. 4(a),
and not to the x-independent unstable state q = q1. For a
strong Allee effect and zero boundary conditions, there is only
the (linearly stable) trivial steady state q = 0: no established
population.

2. Weak Allee effect

For a weak Allee effect one has V (q2) > V (0), as illus-
trated in Figs. 5 and 6. In our example of three reactions
this case corresponds to 0 < γ < 8/9, or 1/3 < δ < 1. For
periodic boundary conditions there are two linearly stable x-
independent steady states, q = q2 and q = 0, and the linearly
unstable x-independent state q = q1. There is also the critical
nucleus q = qc(x), described by a phase trajectory located
inside the internal separatrix in Fig. 5(b); it is selected by
the system size L. The critical nucleus exists when L > Lc,
where Lc is given by Eq. (11). At L � Lc the critical nucleus
is described by the internal separatrix of Fig. 5(b). Here
the population size, corresponding to the critical nucleus
qc(x), is close to zero everywhere except in a narrow region
with thickness ∼Lc. What is the most probable path of the
population toward noise-driven extinction? Here one has to
choose between two paths. In the first path the population size
goes down from q = q2 to the x-independent unstable state
q = q1 on the whole interval 0 < x < L and then continues to
fall, almost deterministically, to zero. In the second path the
population size goes down from q = q2 to the critical nucleus
and then, almost deterministically, to zero. For L � Lc the

a

0 q1 q2

q

V

b

0 q1 q2

q

dq
dx

FIG. 5. (Color online) Effective potential V (q) and phase portrait
(q,q ′) for steady-state solutions of Eq. (5) for a weak Allee effect,
V (0) < V (q2).

MTE involves, for each of the two options, an exponential
dependence on L, so it can be very long.

For the zero boundary conditions there are two linearly
stable steady states: an x-dependent state and the trivial state
q = 0. There is also critical nucleus: an x-dependent unstable
steady state. These solutions are depicted in Figs. 7(a) and
7(b). Each of the x-dependent solutions is selected by the
system size L and described by a phase trajectory located
between the two separatrices in Fig. 5(b). Among them there
is a limiting phase trajectory such that the stable steady state,

a

0

q1

q2

0 0.2 0.4 0.6 0.8 1
x Lc

q

b

0

q1

q2

0 1 2 3
x Lc

q

FIG. 6. (Color online) Linearly stable steady states q = q2 and
q = 0, linearly unstable state q = q1, and critical nucleus q = qc(x)
for a weak Allee effect and periodic boundary conditions. The
system size L = 1.4Lc (a) and 3.25Lc (b), where Lc is defined in
Eq. (11). The arrows indicate extinction transitions driven by rare
large fluctuations. γ = 3/4, so δ = 1/2 and Lc = π (6D/μ0)1/2.
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a
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x Lc

q

b

q1

q2

0 0.5 1 1.5 2 2.5
x Lc

q

FIG. 7. (Color online) The x-dependent linearly stable steady
state (the upper curve), trivial stable state q = 0, linearly unstable
state q = q1, and critical nucleus q = qc(x) for a weak Allee effect
and zero boundary conditions for L = 1.1Lc (a) and 2.52 (b).
The arrows indicate the extinction transitions driven by rare large
fluctuations. γ = 3/4, so δ = 1/2, and Lc � 6.026(D/μ0)1/2.

at given L, corresponds to a phase trajectory located between
the limiting phase trajectory and the external separatrix. In
its turn, the critical nucleus, for the same L, corresponds to a
phase trajectory that lies between the limiting phase trajectory
and the internal separatrix. The x-dependent solutions, both
stable and unstable, exist when the system size L is larger than
a critical size Lc [which is different from Lc given by Eq. (11)].
The critical size Lc scales as (D/μ0)1/2 and also depends on
δ. For L � Lc the linearly stable steady state corresponds to
the external separatrix and is therefore close to q2 everywhere
except in boundary layers with thickness ∼Lc at x = 0 and
x = L. In its turn, the critical nucleus corresponds, at L �
Lc, to the internal separatrix and therefore coincides with the
critical nucleus obtained for periodic boundary conditions. At
L = Lc the stable and unstable solutions merge. At L < Lc

there is only trivial steady state q = 0, which is linearly stable.
The most probable path to extinction at L > Lc corresponds
to a large fluctuation that brings the population size from the
stable state down to the critical nucleus; see Figs. 7(a) and
7(b).

III. MASTER EQUATION AND WKB APPROXIMATION

A. Governing equations

Now let us return to the discrete-lattice model and describe
stochastic dynamics of the population. This can be done
in terms of evolution of the multivariate probability dis-
tribution P (n,t) = P (n1,n2, . . . ,t) = P (n̂,ni,t), where i =
1,2, . . . ,N , and n̂ denotes the vector of all n’s not explicitly
written; see, e.g., Ref. [32]. This probability distribution is
assumed to be identically zero if any of ni is negative. For
the continuous-time Markov processes of birth, death, and

migration, the master equation for P (n,t) has the following
form:

∂tP (n,t)=
N∑

i=1

{λ(ni − 1)P (n̂,ni − 1,t)

+μ(ni + 1)P (n̂,ni +1,t)−[λ(ni)+μ(ni)]P (n,t)}

+D0

N∑
i=1

{(ni−1 + 1)P (n̂,ni−1 + 1,ni − 1,t)

+ (ni+1 + 1)P (n̂,ni − 1,ni+1 + 1,t)− 2niP (n,t)}.
(13)

This equation holds as it is for a periodic lattice with period N .
For absorbing boundaries the migration terms i = 1 and i = N

are slightly different; see Appendix A. Of a primary interest for
us is the instantaneous extinction rate, or extinction probability
flux:

∂tP (0,t) = μ(1)[P (1,0, . . . ,0,t) + P (0,1, . . . ,0,t) + · · ·
+P (0,0, . . . ,1,t)]. (14)

We will continue to assume that K � 1. Furthermore, we will
assume in most of the paper (except in Sec. V B) that the
system size is not too large: not exponentially large in K . In
this case, extinction of an established population proceeds, in
the probabilistic language, as follows. During the relatively
short relaxation time tr , determined by the deterministic rate
Eq. (1), the system approaches a quasistationary state, where
P (n,t) is sharply peaked at the relevant steady-state solution
of Eq. (1). At t � tr the quasistationary probability slowly
decays in time,

P (n,t) � π (n)e−t/Te , ni = 0,1,2, . . . , (15)

except for n = 0, which corresponds to a complete extinction.
The decay rate 1/Te is the lowest positive eigenvalue of
the time-dependent master equation (13). This eigenvalue is
special: It turns out to be exponentially small with respect to
K � 1 [33]. The probability of complete extinction P (0,t) =
P (0,0, . . . ,0,t) slowly grows in time:

P (0,t) � 1 − e−t/Te . (16)

In this regime the decay time Te is equal to the MTE,
whereas the probability distribution of extinction times is an
exponential distribution with mean Te; see, e.g., Ref. [10].
Using Eqs. (15) and (16), we can rewrite Eq. (13) as a linear
eigenvalue problem for the quasistationary distribution π (n):

N∑
i=1

{λ(ni − 1)π (n̂,ni − 1) + μ(ni + 1)π (n̂,ni + 1)

− [λ(ni) + μ(ni)]π (n)}

+D0

N∑
i=1

{(ni−1 + 1)π (n̂,ni−1 + 1,ni − 1)

+ (ni+1 + 1)π (n̂,ni − 1,ni+1 + 1)− 2niπ (n)}
= −	π (n), (17)
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(except for n = 0) for the lowest positive eigenvalue 	 =
1/Te. Once π (n) is determined, 	 can be found from the
relation

	 = μ(1)[π (1,0, . . . ,0) + π (0,1, . . . ,0) + · · ·
+π (0,0, . . . ,1)] (18)

following from Eqs. (14)–(16).
For K � 1 and ni � 1 we can treat qi = ni/K as contin-

uous quantities and solve Eq. (17) in WKB approximation,
which generalizes to spatial populations the stationary WKB
method [9,12,17,20,22,23,34–36] previously employed for
well-mixed populations. The WKB ansatz is

π (n) = exp [−KS(q)] . (19)

Our goals are to accurately evaluate the leading-order contri-
bution to ln(μ0Te) and to find the most probable path of the
population to extinction. We plug Eqs. (2) and (19) in Eq. (13)
and neglect the term −	π (n) which is expected to be
exponentially small in K � 1. In the leading order in 1/K

this procedure yields a stationary Hamilton-Jacobi equation,

H (q,∂qS) = 0, (20)

with an effective classical Hamiltonian with N degrees of
freedom,

H (q,p) = μ0

N∑
i=1

[λ̄(qi)(e
pi − 1) + μ̄(qi)(e

−pi − 1)]

+D0

N∑
i=1

[qi−1(epi−pi−1 − 1) + qi+1(epi−pi+1 − 1)],

(21)

where pi = ∂qi
S. This lattice Hamiltonian, and corresponding

Hamilton’s equations—a set of 2N ordinary differential
equations for q̇i(t) and ṗi(t), is a proper framework for
dealing with population extinction for any relation between
the migration rate coefficient D0 and the characteristic rate
coefficient μ0 of the on-site dynamics [33].

In the following we will only consider the limit when,
as in Sec. II, migration between the neighboring sites is
much faster than the on-site population dynamics: D0 �
μ0 (the criterion becomes softer close to bifurcations
of the on-site models; see Secs. IV A and V). In this regime
the quasistationary distribution π (n) and, as a consequence,
the classical action S(q) are slowly varying functions of n and
q, respectively. This implies that the difference between the
momenta pi on neighboring sites is much smaller than unity.
Taylor-expanding the migration term Hm of Hamiltonian (21)
(the term proportional to D0) up to second order, we obtain

Hm(q,p) = D0

N∑
i=1

[
− (qi − qi−1) (pi − pi−1)

+ 1

2
(qi + qi−1) (pi − pi−1)2

]
. (22)

The slow variation of qi and pi with i calls for a continuous
description. We introduce a continuous spatial coordinate x

instead of the discrete index i and arrive at an effective

continuum classical mechanics. The Hamiltonian functional
is

H {q(x,t),p(x,t)} = 1

h

∫ L

0
dxw, (23)

with density

w = H0(q,p) − D[∂xq∂xp − q (∂xp)2] (24)

and on-site Hamiltonian

H0(q,p) = μ0[λ̄(q)(ep − 1) + μ̄(q)(e−p − 1)]. (25)

Note the presence of two diffusion terms inside the square
brackets in Eq. (24). The first term describes deterministic
diffusion, the second one describes fluctuations of diffusion.
The Hamiltonian, related to Eq. (23) by canonical transforma-
tion Q = qe−p,P = ep, was obtained by Elgart and Kamenev
[6] who employed the probability generating function in
conjunction with a time-dependent WKB theory. Note that
the two diffusion terms in Eq. (24) add up to −D∂xQ∂xP
in canonical variables Q and P . This simplification, and the
somewhat simpler form of the on-site Hamiltonian, can be
advantageous; see Sec. IV B.

The Hamilton’s equations of motion,

∂tq = h
δH

δp
= μ0[λ̄(q)ep − μ̄(q)e−p]

+D
[
∂2
x q − 2∂x(q∂xp)

]
, (26)

∂tp = − h
δH

δq
= −μ0[λ̄′(q)(ep − 1) + μ̄′(q)(e−p − 1)]

− D
[
∂2
xp + (∂xp)2

]
, (27)

are partial differential equations for continuous variables
q(x,t) and p(x,t) = hδS/δq [37]. Note that, for the purpose
of solving stationary Hamilton-Jacobi equation (20), time as
appears in Hamilton’s Eqs. (26) and (27) is merely a way of
parametrizing phase space trajectories. It is not necessarily
related to the original time entering Eqs. (13)–(16) for the
evolution of probabilities. To remind the reader, Eqs. (21) and
(22), as well as Eqs. (13) and (17), are only valid for periodic
systems; absorbing boundaries are considered in Appendix A.
It is important, however, that continuous Eqs. (23)–(27) are
valid in the case of absorbing boundaries as well.

For all types of spatial boundaries, continuous Eqs. (26) and
(27) must be complemented with spatial boundary conditions.
This circumstance was left unattended in Ref. [6]. For
periodic systems the spatial boundary conditions are of course
q(0,t) = q(L,t) and p(0,t) = p(L,t). For reflecting bound-
aries they are also straightforward: ∂xq(0,t) = ∂xq(L,t) = 0
and ∂xp(0,t) = ∂xp(L,t) = 0. The case of absorbing bound-
aries is a bit more involved, and we derive the corresponding
boundary conditions in Appendix A. Up to small corrections
O(μ0/D0)1/2 	 1, they turn out to be zero conditions both for
the coordinate and for the momentum: q(0,t) = q(L,t) = 0,
and p(0,t) = p(L,t) = 0.

B. Activation trajectories

Now let us return to Eqs. (19) and (20), which describe,
in WKB approximation, the quasistationary distribution π (n).
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This distribution is smooth and has its (Gaussian) maximum at
q(x) = qs(x). Therefore in order to find π (n), one needs to find
a particular solution of the Hamilton-Jacobi Eq. (20) such that
its variational derivative vanishes at q = qs(x): δS/δq|qs (x) =
0. Setting S {qs(x)} = 0, we define S {q(x)} uniquely as the
solution of Eq. (20). Once this solution is known, one can use
Eq. (18) to evaluate the MTE up to pre-exponential factors:

ln(μ0Te) � KS(0). (28)

In order to calculate S(0) we will use Hamilton’s Eqs. (26)
and (27), which describe trajectories in the functional phase
space {q(x),p(x)}. As the Hamiltonian (23) does not depend
explicitly on time, it is a constant of motion. Furthermore,
as the Hamilton-Jacobi equation (20) is stationary, we should
only consider trajectories, for which this constant of motion—
the total energy of the effective mechanical system—is zero.
The simplest among zero-energy trajectories are deterministic,
or relaxation, trajectories: solutions of Eqs. (26) and (27)
with p(x,t) = 0. Here Eq. (26) reduces to the deterministic
reaction-diffusion equation (5), whereas Eq. (27) is satisfied
trivially.

The quasistationary distribution π (n) is peaked at what
we call fixed point A: (functional) fixed point q(x) =
qs(x),p(x) = 0 of Eqs. (26) and (27). Therefore the phase
trajectory we are interested in for the purpose of calculating
S(0) should start, at t = −∞, at fixed point A. In both
extinction scenarios I and II there is a stable manifold p(x) =
0, and an unstable manifold p(x) �= 0, emanating from fixed
point A; see Appendix B. In the discrete lattice formulation,
each of these two manifolds is N dimensional and is embedded
into zero-energy hypersurface H {q(x),p(x)} = 0.

For any phase trajectory that originates from fixed point A

at t = −∞, we can write

S{q(x,T )} = 1

h

∫ T

−∞
dt

∫ L

0
p(x,t)∂tq(x,t)dx.

In view of Eq. (28), we only need to consider phase trajectories
that reach extinction hyperplane q(x) = 0 [so that q(x,t)
vanishes at all x]. Relaxation trajectories, p = 0, that exit fixed
point A, cannot reach the extinction hyperplane, so we need
an activation trajectory, p �= 0, for this purpose. For extinction
scenario I, a crucial property of the activation trajectory can be
established under quite general assumptions. The activation
trajectory must approach, at t = +∞, another fixed point
which we call fixed point B. It involves q(x) = 0, see Fig. 2,
and p(x) = pe(x): the nontrivial steady-state solution of
Eq. (27) with q(x) = 0 and proper spatial boundary conditions.
That is, in scenario I the activation trajectory must be a
heteroclinic connection AB (or instanton; see Ref. [38] for
a review on instantons) in functional phase space {q(x),p(x)}.
The proof of this statement is presented in Appendix B 2; it
relies on the structure of the phase space of Eqs. (26) and (27)
and, in particular, on the presence and linear stability properties
of (zero-energy) fixed points of Eqs. (26) and (27).

For extinction scenario II, the structure of the phase space
is more complicated, and we cannot make an equally general
statement about the properties of the activation trajectory,
except that this trajectory must exit, at t = −∞, fixed point
A and ultimately arrive at extinction hyperplane q = 0. We

know much more, however, in the case of a very strong Allee
effect, when the basin of attraction of the state q = q2 in the
deterministic theory is small. Here the noise only needs to
create the critical nucleus; see Sec. II C 1. In the language of
Eqs. (26) and (27), the activation trajectory must approach, at
t = +∞, fixed point D that involves q = qc(x) (the critical
nucleus) and p(x) = 0. One can argue that from there on the
population flows to fixed point C (where q = p = 0) along a
relaxation trajectory. The relaxation trajectory does not cost
any action (unless the system size L is exponentially large in
K; see Sec. V B). In this case the MTE can be identified, up to
a pre-exponent, with the mean time of creation of the critical
nucleus. Note that, in this limit, the activation trajectory is
again a heteroclinic connection (AD). One can expect that,
for a moderately strong Allee effect, the activation trajectory
will still involve a critical nucleus and therefore represent a
heteroclinic connection AD.

Once the activation trajectory is found, we can obtain the
MTE in the leading order of the WKB theory by calculating
S(0), entering Eq. (28), along this trajectory. In scenario I,
S(0) is the action along the heteroclinic connection AB. In
the strong-Allee-effect limit of scenario II one has ln(μ0Te) �
KS0, where S0 is the action along the heteroclinic connection
AD. In both cases we can write ln(μ0Te) � KS, where

S = 1

h

∫ L

0
dx

∫ ∞

−∞
dtp(x,t)∂tq(x,t). (29)

If there is more than one heteroclinic connection between the
same pair of fixed points, and obeying the same boundary
conditions in space, one should choose the connection which
yields the minimum action. Similarly to nonspatial but
multipopulation systems [6,12,13,22], the minimum-action
trajectory is the most probable path of the population on
the way to extinction. Sections IV and V present three
particular examples of determining the activation trajectories
and evaluating the MTE.

As we already mentioned, Hamilton’s Eqs. (26) and (27)
coincide, upon canonical transformation Q = qe−p,P = ep,
with those derived by Elgart and Kamenev in the frame-
work of a time-dependent WKB approximation [6]. There
are some differences, however, between our formulation of
the problem and theirs. These differences involve boundary
conditions both in time and in space. The differences in the
boundary conditions in time appear already in the most basic,
spatially independent setting, so let us consider this setting
first.

The time-dependent WKB formulation of Ref. [6] pre-
scribes, at t = 0, the initial population size, say q = qs , with
an a priori unknown momentum. It also prescribes, at a
(sufficiently large) final time t = T , momentum P = 0 (or, in
our variables, p = −∞), with an a priori unknown population
size. One needs to find the initial p and the final q from
the condition that the action along the resulting trajectory is
minimum. T is ultimately sent to infinity [6].

Our WKB formulation differs, first of all, in its prescription
of the final state of the system. In view of Eq. (28), we
demand q = 0 there. Furthermore, we know that the activation
trajectory must be a heteroclinic connection AB (in scenario I)
or AD (in scenario II). This involves a full knowledge of
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A

B

C

(a)

0

p

q

AD

B

C

p (b)

q
0

FIG. 8. Zero-energy trajectories in spatially independent settings
for extinction scenario I (a) and II (b) [20,29]. Shown are fixed points
A, B, and C (a) and A, B, C, and D (b). The arrows show stable and
unstable manifolds of the corresponding fixed points. The activation
trajectories AB (a) and AD (b) are accentuated by thicker lines.

both q and p at the initial (t = −∞) and final (t = ∞)
points. Importantly, the final value of the momentum in this
formulation is different from p = −∞, or P = 0 demanded
in Ref. [6].

In spite of these differences, the two formulations yield, in
the spatially independent case, the same result for the MTE.
This happens for two reasons. First, the activation trajectory
that emerges, at T → ∞, in the time-dependent formulation
[6] has zero energy, as in our quasistationary formulation.
Second, the activation trajectory in the time-dependent formu-
lation is, in general, not a heteroclinic connection. Rather, it
consists of two (in scenario I) or even three (in scenario II)
separate heteroclinic connections [20,29]; see Fig. 8. One of
them coincides with trajectory AB or AD (for scenarios I
or II, respectively) which the quasistationary theory predicts.
The other segments go along either q = 0 or p = 0 lines
and therefore do not contribute to the action. (One can even
argue that the last segment ultimately reaches p = −∞; see
Fig. 8.) An advantage of the quasistationary theory, especially
in numerical calculations, is that the noncontributing segments
of the trajectory are excluded from the start.

For spatially dependent systems, the differences between
the two formulations may become irreconcilable. Consider,
for example, scenario I in the case of absorbing boundaries.
Here the x-independent momentum p(x) = −∞, postulated
as the final state in Ref. [6], does not obey the zero boundary
conditions p(0,t) = p(L,t) = 0, and so it cannot possibly be
a correct final state.

IV. POPULATION EXTINCTION: SCENARIO I

A. Universal limit

Here we consider, as an example, the spatiotemporal SIS
model. To render our results a broader relevance, we assume
from the start that the basic reproduction number R0 is only

slightly larger than 1: R0 = 1 + δ, where 0 < δ 	 1. In this
limit both q and p scale as δ, and the on-site Hamiltonian (25)
reduces to

H0(q,p) � μ0qp(p − q + δ). (30)

This on-site Hamiltonian describes, in WKB approximation,
a broad class of population models (that do not exhibit the
Allee effect) close to their transcritical bifurcation at δ = 0
[16,20,29]. Notice that, at δ 	 1, the on-site dynamics exhibits
critical slowdown: the characteristic on-site relaxation time
becomes 1/(μ0δ). As a result, the validity of the continuous
description in space here demands D0 � μ0δ: a much softer
criterion than D0 � μ0.

Let us define the characteristic diffusion length l =
[D/(μ0δ)]1/2 and introduce rescaled population size Q = q/δ,
momentum P = p/δ, spatial coordinate x̃ = x/l, and time
t̃ = μ0δt . Upon this rescaling one observes that the second
term in the square brackets in Eq. (24) is of next order in δ

compared to the rest of terms, and should be neglected. The
resulting Hamiltonian density is parameter free,

w = QP (P − Q + 1) + P∂2
xQ. (31)

Here and in the following we drop the tildes everywhere except
in the rescaled system size L̃ = L/l. Action (29) becomes

S(0) = δ2l

h
sA(L̃), (32)

where

sA(L̃) =
∫ L̃

0
dx

∫ ∞

−∞
dtP (x,t)∂tQ(x,t) (33)

is the rescaled action. The rescaled Hamilton’s equations are

∂tQ = 2QP + Q − Q2 + ∂2
xQ, (34)

∂tP = 2QP − P − P 2 − ∂2
xP . (35)

The same WKB equations can be obtained if one approximates,
at small δ, the original master equation by the (functional)
Fokker-Planck equation; see Appendix C. This is not surpris-
ing, as the validity of the Fokker-Planck approximation de-
mands, in addition to ni � 1, that the probability distribution
P (n,t) change only weakly when ni changes by 1. The latter
condition boils down to the condition |p(x,t)| 	 1, which
has been used in deriving Eq. (30). We emphasize that, far
from the bifurcation point, the Fokker-Planck approximation
in general breaks down, whereas the WKB approximation still
holds, in most of the phase space. An example is considered
in Sec. IV B.

To calculate the rescaled action sA, which only depends
on L̃, we need to find a heteroclinic connection AB. The
deterministic steady state Q = Qs(x), P = 0, corresponding
to fixed point A, is given by the nontrivial solution of equation

Q′′(x) + Q − Q2 = 0, (36)

whereas the extinction state Q = 0, P = Pe(x) corresponds to
the nontrivial solution of the equation

P ′′(x) + P + P 2 = 0. (37)

For periodic boundary conditions, see Fig. 2(a), we obtain
x-independent solutions: Qs(x) = 1, Pe(x) = −1. As a result,
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the “extinction instanton” is x independent for any system
size L, and one can use the well known one-site WKB
results [12,13,16,29]. The instanton is described, at any x,
by the equation P − Q + 1 = 0. Rescaled action (33) along
the extinction instanton is equal to sA = L̃/2. Then, using
Eq. (32), we find

ln(μ0δTe) � KS(0) = Kδ2L

2h
= NKδ2

2
, (38)

which is the one-site result times N , as expected. The one-site
result for the MTE, T (0)

e , is actually known with a higher
accuracy—including a pre-exponential factor [20]:

μ0δT
(0)
e �

√
2π

Kδ2
exp

(
Kδ2

2

)
.

Therefore, for L 	 l, we obtain a more accurate result for Te:

μ0δTe �
√

2π

NKδ2
exp

(
NKδ2

2

)
, (39)

as all of the system can be considered here as a single site.
Equation (39) holds when L 	 l and NKδ2 � 1.

Now let us consider a more interesting case of absorbing
boundaries: Q(0,t) = Q(L̃,t) = P (0,t) = P (L̃,t) = 0 (see
Appendix A). We notice that, if Eq. (36) has a nontrivial
solution Q0(x), then Eq. (37) has a nontrivial solution
−Q0(x). Now, Eq. (36) has a unique nontrivial solution Qs(x),
corresponding to an established population, if L̃ > L̃c = π or,
in dimensional units, L > Lc = π [D/(μ0δ)]1/2; see Eq. (9).
(Note that Lc = πl here.) In this case Eq. (37) has a nontrivial
solution Pe(x) = −Qs(x) (fixed point B).

Now we need to find a heteroclinic connection AB. To
our knowledge, this cannot be done analytically for arbitrary
L > Lc, even for the relatively simple universal Hamiltonian
(31). To solve the problem numerically, we modified, and
implemented in MATHEMATICA, the algorithm suggested by
Elgart and Kamenev [6]. The algorithm iterates Eq. (34)
forward in time and Eq. (35) backward in time. It does
not involve shooting and avoids, because of the backward
integration in time, the short-wavelength numerical instability
caused by the presence of negative diffusion in Eq. (35). In
every iteration of Q(x,t) one starts, at t = 0, from Q = Qs(x)
and solves Eq. (34), with zero boundary conditions at x = 0
and L̃, forward in time until a sufficiently long time T is
reached. In this calculation the previous iteration for P (x,t) is
used. Then Eq. (35) for P is solved backward in time starting,
at t = T , from P = Pe(x) and continuing until t = 0. Here
the previous iteration for Q(x,t) is used, and zero boundary
conditions at x = 0 and L̃ are enforced. The very first iteration
for P is the desired final steady state Pe(x), satisfying the zero
boundary conditions at x = 0 and L̃ and corresponding to fixed
point B. An example of a numerically found instanton is shown
in Fig. 9. The filled circles in Fig. 10 show the numerically
computed rescaled action sA, see Eq. (33), versus the rescaled
system size L/Lc.

Approximate analytic solutions are possible in two limits:
L � Lc and 0 < L − Lc 	 Lc, and we will now present
these solutions. (To remind the reader, there is no established
population at L < Lc.)

a

0 0.5 1 1.5 2
0

0.5

1

x Lc

Q

b

0 0.5 1 1.5 2

0

0.5

1

x Lc

P

FIG. 9. (Color online) Numerically computed extinction instan-
ton for scenario I (no Allee effect) close to bifurcation point δ = 0.
The rescaled system length is L/Lc = 2. Shown, after 500 iterations
of the Elgart-Kamenev numerical algorithm (see text), are spatial
profiles of rescaled population size Q (a) and rescaled momentum P

(b) at numerical times 0, 3, 5, 7, and 20 (from top to bottom). The
time interval used for iterations was 0 < t < T with T = 50.

For L � Lc, Qs(x) and Pe(x) = −Qs(x) are close to 1
and −1, respectively, everywhere except in boundary layers of
width O(1) at x = 0 and L̃. Correspondingly, the extinction
instanton is very close (up to corrections exponentially small
in L̃) to the one-site instanton P − Q + 1 = 0 everywhere
except in the boundary layers. As a result, the rescaled action,
sA = L̃/2 − O(1), differs by a term of order unity from the
corresponding result for periodic boundary conditions. The
O(1) correction that we found numerically is about 1.8, and
its contribution to ln(μ0δTe) is relatively large. The asymptote
sA = (π/2)(L/Lc) − 1.8 is shown in Fig. 10. Surprisingly,
it works well already at quite small values of L/Lc − 1.
The next-order correction would come from the gradient
corrections to the zero boundary conditions in space for q

and p; see Eqs. (A6), (A8), and (A9). The expected correction
to sA is O(μ0δ/D0)1/2 	 1. However, by virtue of Eq. (32),

1 2 3 4
0

2

4

6

L Lc

s A

1. 1.1 1.2
0

0.1

0.2

FIG. 10. (Color online) Rescaled action, Eq. (33), determining
ln(μ0Te), vs the rescaled system size L̃ = L/Lc for scenario I (no
Allee effect) close to the bifurcation point δ = 0. Symbols: results
obtained with the Elgart-Kamenev numerical algorithm (see text).
Dashed line: asymptote sA � (9π 3/64)(L̃ − 1)2 for 0 < L̃ − 1 	
1. Dotted line: asymptote sA � (π/2)L̃ − 1.8 for L̃ � 1. Inset: a
blowup close to L̃ = 1.
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this correction contributes a factor O(Kδ2) to ln(μ0δTe). This
contribution is of order of the one-site result for ln(μ0δTe) and
may still be large. That is, for L � Lc the leading contribution
to ln(μ0δTe) scales as L, the subleading contribution scales
as Lc 	 L, and the sub-subleading contribution scales as
h 	 Lc; the latter one “remembers” the lattice formulation of
the problem. The sub-subleading correction can be calculated
numerically using the modified boundary conditions. Note that
criterion L � Lc becomes stringent as the bifurcation point
δ = 0 is approached, and Lc diverges.

Now consider the limit of 0 < L − Lc 	 Lc. We start with
a perturbative calculation of Qs(x) and Pe(x). Let ε = L̃ −
L̃c = L̃ − π 	 1. For Qs(x) we can write

Qs(x) � a0 + a1 sin x + b1 cos x + a2 cos 2x,

where a1 ∼ ε, whereas a0 ∼ b1 ∼ a2 ∼ ε2. Plugging this
ansatz into Eq. (36), we obtain a0 = a2

1/2 and a2 = a2
1/6.

Boundary condition Q(0) = 0 yields b1 = −2a2
1/3. Now we

demand Q(L̃) ≡ Q(π + ε) = 0. Expanding this condition at
small ε, we obtain

a1 = 3ε

4
= 3

4
(L̃ − L̃c) = 3

4
(L̃ − π ). (40)

The bifurcation of the steady-state solutions, both Qs(x) and
Pe(x), at L̃ = L̃c = π is therefore transcritical. The final result
for Qs(x) = −Pe(x), up to ε2, is

Qs(x) � 9ε2

32
+ 3ε

4
sin x − 3ε2

8
cos x + 3ε2

32
cos 2x. (41)

Now let us solve perturbatively Hamilton’s Eqs. (34) and (35).
Shrinking the coordinate x,

π

π + ε
x → x,

we rewrite these equations as

∂tQ = 2QP + Q − Q2 +
(

1 − 2ε

π
+ · · ·

)
∂2
xQ, (42)

∂tP = 2QP − P − P 2 −
(

1 − 2ε

π
+ · · ·

)
∂2
xP, (43)

where dots denote higher-order terms in ε. The problem is
now defined on the interval 0 � x � π . We seek perturbative
solutions in the form

Q(x,t) = εu(x,εt) + ε2u1(x,εt) + · · · ,
P (x,t) = εv(x,εt) + ε2v1(x,εt) + · · · .

In the first order in ε we obtain equations

∂2
xu + u = 0 and ∂2

x v + v = 0. (44)

Their solutions, obeying zero boundary conditions at x = 0
and π , are

u(x,τ ) = a(τ ) sin x, v(x,τ ) = b(τ ) sin x, (45)

where a(τ ) and b(τ ) are yet unknown functions of the slow
time τ = εt . In the second order in ε we obtain

∂2
xu1 + u1 =

(
da

dτ
− 2a

π

)
sin x + (a2 − 2ab) sin2 x, (46)

∂2
x v1 + v1 = −

(
db

dτ
+ 2b

π

)
sin x − (b2 − 2ab) sin2 x, (47)

subject to zero boundary conditions at x = 0 and π . The
solvability conditions for Eqs. (46) and (47) yield the following
equations for da/dτ and db/dτ :

da

dτ
= 2a

π
− 8

3π
(a2 − 2ab), (48)

db

dτ
= −2b

π
− 8

3π
(b2 − 2ab). (49)

These are Hamilton’s equations for generalized coordinate a

and momentum b. Hamiltonian

H(a,b) = 8

3π
ab

(
b − a + 3

4

)
(50)

is of the same type as the universal on-site Hamiltonian (30).
The extinction instanton obeys b = a − 3/4, and we find

a = 3

4(1 + e2εt/π )
, (51)

b = − 3

4(1 + e−2εt/π )
. (52)

One can also easily find the second-order corrections u1 and v1

from Eqs. (46) and (47), but we will not present these formulas
here. Now we calculate, in the leading order in ε, the rescaled
action (33) along the extinction instanton:

sA =
∫ π+ε

0
dx

∫ ∞

−∞
dtp(x,t)∂tq(x,t)

� ε2

π∫
0

dx sin2 x

+∞∫
−∞

dτb
da

dτ

= πε2

2

0∫
3/4

da

(
a − 3

4

)
= 9πε2

64
. (53)

This asymptote is shown in Fig. 10. Finally, we use Eqs. (32)
and (53) to find the logarithm of the MTE:

ln(μ0δTe) � KS(0) = 9π2Kδ2Lc

64h

(
L

Lc

− 1

)2

. (54)

This result is valid, for L − Lc 	 Lc, when it is much greater
than unity. This holds for sufficiently large K or fast migration.

B. Extinction of particles undergoing reactions
A → 2A and 2A → 0

Here we use the WKB approximation to revisit the
problem of extinction of particles A which participate in
two on-site reactions: branching A → 2A and annihilation
2A → 0, with rate coefficients μ0 and μ0/K , respectively,
and K � 1. Although still exhibiting scenario I of extinction,
the on-site Hamiltonian for this model is irreducible and
does not belong to the universality class considered in the
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previous subsection. In the spatially independent formulation,
the Fokker-Planck approximation does not apply for the
evaluation of the MTE [9]. All this is because of the absence
of linear decay process A → 0 (or of the linear in n small-n
asymptote of the death rate). Here the extinction instanton, in
the spatially independent setting, does approach, at t → ∞,
infinite momentum p = −∞ (which, in our variables, is the
“extinction momentum”).

In spite of its degeneracy, this model is quite popular.
Its spatially independent version was investigated in many
papers; see, e.g., Refs. [4,6,9,10], whereas the spatial version
was considered in Ref. [6]. Our objectives here are threefold.
First, we use this example to illustrate the advantages of
canonical variables Q and P (which arise naturally in the
probability generating function formalism [6,21]). Second, we
show that, when the system size L is only slightly above Lc,
this “irreducible” model does reduce to the universality class
considered in Sec. IV. Third, we use this example to compare
our results with those of Elgart and Kamenev [6].

We start from Eq. (23) for the Hamiltonian functional.
The density w has the form of Eq. (24), whereas the on-
site Hamiltonian for processes A → 2A and 2A → 0 is the
following:

H0(q,p) = μ0q(ep − 1) + 1
2μ0q

2(e−2p − 1). (55)

Define characteristic diffusion length l = (D/μ0)1/2. Intro-
ducing rescaled coordinate x̃ = x/l and time t̃ = μ0t , we
arrive at a parameter-free Hamiltonian with density

w = q(ep − 1) + 1
2q2(e−2p − 1)

− ∂xq∂xp + q(∂xp)2, (56)

where we have dropped the tildes. It is advantageous to make
a canonical transformation from q and p to Q = qe−p and
P = ep − 1 (the shift by 1 in P preserves the deterministic
line at P = 0). The new Hamiltonian density becomes

W = QP [P − Q + 1 − (1/2)QP] − ∂xQ∂xP, (57)

and the Hamilton’s equations are [6]

∂tQ = 2QP + Q − Q2 − Q2P + ∂2
xQ, (58)

∂tP = QP2 + 2QP − P − P2 − ∂2
xP. (59)

Extinction action (29) becomes

S(0) = l

h
s(L̃), (60)

where L̃ = L/l is the rescaled system size, and

s(L̃) =
∫ L̃

0
dx

∫ ∞

−∞
dtP(x,t)∂tQ(x,t) (61)

is the rescaled action. To calculate s(L̃) we need to find
an instantonlike activation trajectory that exits from fixed
point A at t = −∞ and asymptotically approaches the proper
extinction state at t = ∞. Fixed point A, corresponding to
Q = Qs(x), P = 0, is given by the nontrivial solution of
equation

Q′′(x) + Q − Q2 = 0, (62)

a

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

x Lc

Q

b

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

x Lc

P

FIG. 11. (Color online) Numerically computed extinction instan-
ton for processes A → 2A and 2A → 0. The rescaled system length
is L/Lc = 1.55. Shown, after 400 iterations of the Elgart-Kamenev
numerical algorithm (see Sec. IV A), are spatial profiles of Q (a) and
P (b) at numerical times 0, 5, 7, 9, and 50 (from top to bottom). The
time interval used for the iterations was 0 < t < T with T = 60.

with boundary conditions Q(0) = Q(L̃) = 0. In its turn, the
proper extinction state Q = 0, P = Pe(x) is given by the
nontrivial solution of equation

P ′′(x) + P + P2 = 0, (63)

with P(0) = P(L̃) = 0. Interestingly, the equations and
boundary conditions for Qs(x) and Pe(x) coincide with those
for Qs(x) and Pe(x) for the universal model of scenario I;
see Eqs. (36) and (37). In particular, equality Pe(x) = −Qs(x)
holds.

We solved the problem numerically using the Elgart-
Kamenev algorithm described above. An example of a nu-
merically found instanton is shown in Fig. 11. The time-
dependent solution of this problem is different from that of
the universal model, except when the rescaled system size
L̃ only slightly exceeds the rescaled critical size for the
established population, L̃c = π . Here |Q| 	 1 and |P| 	 1
for all 0 < x < L̃ and −∞ < t < ∞, and we can neglect the

1 1.5 2
0

0.5

1

1.5

2

L Lc

s

FIG. 12. (Color online) Rescaled action, Eq. (61), vs the rescaled
system size L̃ = L/Lc for the processes A → 2A and 2A → 0. Sym-
bols: results obtained with the Elgart-Kamenev numerical algorithm;
see Sec. IV A. Dashed line: asymptote s � (9π 3/64)(L̃ − 1)2 for
0 < L̃ − 1 	 1. Dotted line: asymptote s � 2π (1 − ln 2)L̃ − 2.36
for L̃ � 1.
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last term in the square brackets of Hamiltonian density (57)
thus arriving at universal Hamiltonian (31) considered in the
previous subsection. As a result, the rescaled action in this case
is again s � (9π3/64)(L/Lc − 1)2; see Eq. (53). Surprisingly,
this result agrees with that obtained by Elgart and Kamenev
close to L = Lc; see Eq. (45) of Ref. [6]. The reason for this
agreement is unclear, as Elgart and Kamenev do not mention
any boundary conditions for P at x = 0 and x = L.

For L � Lc functionsQs(x) andPe(x) = −Qs(x) are close
to 1 and −1, respectively, except in the boundary layers at
x = 0 and L̃. As a result, the extinction instanton is close
to the one-site instanton Q = 2(P − 1)/(P + 2) everywhere
except in the boundary layers, and we obtain s � 2π (1 −
ln 2)(L/Lc) − 2.36; see Fig. 12. Factor 2(1 − ln 2) comes
from the solution of the one-site problem [4,6,9,10]. The
leading term, proportional to L, coincides with that obtained
by Elgart and Kamenev [6]. The numerically found offset
2.36 also agrees, up to 1%, with their result. We can only
explain this agreement (and the agreement in our analytic
results at L/Lc − 1 	 1, reported above) by assuming that
Elgart and Kamenev did impose correct spatial boundary
conditions at the edges of the system, x = 0 and x = L. But
then the final state P(x) in their calculations must have been
P = Pe(x) = −Qs(x), and not P = 0 as they claim.

V. POPULATION EXTINCTION: SCENARIO II, VERY
STRONG ALLEE EFFECT

Here we consider the three reactions A → 0 and 2A→← 3A.
They are described, in WKB approximation, by Hamilton’s
Eqs. (26) and (27) with on-site Hamiltonian

H0(q,p) = μ0

(
q3

γ
+ q

)
(e−p − 1) + 2μ0q

2

γ
(ep − 1). (64)

In the following we only deal with a very strong Allee effect
in a system with periodic boundary conditions; see Figs. 3 and
4. Here the noise-driven population extinction requires a large
fluctuation that creates, at L > Lc, critical nucleus q = qc(x).
The “nucleation instanton” (that is, a heteroclinic connection
AD) can be found by solving Eqs. (26) and (27) with periodic
boundary conditions in space for q(x,t) and p(x,t), conditions
q(x,t → −∞) = q2 = 1 + δ and p(x,t → −∞) = 0, and
conditions q(x,t → +∞) = qc(x) and p(x,t → +∞) = 0,
where 0 < δ 	 1.

A. Small and moderately large systems

For δ 	 1 the on-site deterministic dynamics is close to
the saddle-node bifurcation. Here the unstable and stable fixed
points, q1 = 1 − δ and q2 = 1 + δ, are both close to 1, whereas
the momentum p on the activation trajectory scales as δ2.
Expanding on-site Hamiltonian (64) at small p and q − 1 we
arrive at [20]

H0(q,p) � 2μ0p

(
p + δ2 − �q2

2

)
, (65)

where �q = q − 1. This on-site WKB Hamiltonian, con-
sidered already in Ref. [39], describes a host of spatially
independent overdamped physical systems which exhibit acti-
vated escape close to a saddle-node bifurcation. Furthermore,

the exact destination of the escape process (whether it is
population extinction [20], population explosion [6,35], or a
switch to another metastable state [36]) is of no importance: It
is the decay of metastable state q = q2 which is the kinetic
bottleneck of the process. Note that, at δ 	 1, the fast-
migration criterion in the spatial problem becomes D0 � μ0δ,
as in scenario I.

Let us define characteristic diffusion length l =
[D/(2μ0δ)]1/2 and introduce rescaled population size Q =
�q/δ, momentum P = p/δ2, spatial coordinate x̃ = x/l,

and time t̃ = 2μ0δt . At δ 	 1 the second term in the
square brackets in Eq. (24) is again negligible. The resulting
(parameter-free) Hamiltonian density can be written as

w = P
[
P − U ′(Q) + ∂2

xQ
]
, (66)

where U (Q) = −Q/2 + Q3/6 is the effective potential. Here
and in the following we drop the tildes everywhere except in
the rescaled system size L̃ = L/l. Action (29) becomes

S = δ3l

h
sB(L̃), (67)

where

sB(L̃) =
∫ L̃

0
dx

∫ ∞

−∞
dtP (x,t)∂tQ(x,t) (68)

is the rescaled action. The rescaled Hamilton’s equations are

∂tQ(x,t) = 2P − U ′(Q) + ∂2
xQ, (69)

∂tP (x,t) = PU ′′(Q) − ∂2
xP . (70)

The same WKB equations can be obtained from the Fokker-
Planck equation, valid at small δ; see Appendix C.

Hamiltonian (66) almost coincides with the Hamiltonian
considered by Elgart and Kamenev [6]. The only difference is
that the effective potential in their case was of the opposite sign,
as they considered population explosion rather than extinction.
The procedure of finding the activation trajectory (heteroclinic
connection AD) is identical in the two cases. It is based on the
following important property of zero-energy flows in this class
of Hamiltonians: if the quantity F (x,t) = P − U ′(Q) + ∂2

xQ

vanishes, at some time, for all x, then it vanishes at all times.
This property can be easily proved by calculating ∂tF (x,t)
and using Eqs. (69) and (70). Since in our problem Q(x,t =
−∞) = 1 and P (x,t = −∞) = 0, the equality F (x,t) = 0
does hold. It immediately follows that P = ∂tQ, and

∂tQ = U ′(Q) − ∂2
xQ (71)

on the activation trajectory. Equation (71) is a time-reversed
version of the deterministic equation

∂tQ = −U ′(Q) + ∂2
xQ. (72)

Using the relation P = ∂tQ in Eq. (68), one obtains sB = �F̃ ,
where �F̃ is the difference between the final (at t = +∞) and
initial (at t = −∞) values of the rescaled Ginzburg-Landau
free energy functional, cf. Eq. (8):

F̃{Q(x,t)} =
∫ L̃

0
dx[U (Q) + (1/2)(∂xQ)2]. (73)

Note that the local identity F (x,t) = 0 implies an infinite
number of integrals of motion. Although their presence looks
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like a miracle in the WKB formalism, it is a direct consequence
of integrability of the stationary Fokker-Planck equation in this
case; see Appendix C.

The final state, at L > Lc, is the (rescaled) critical nucleus:
an x-dependent solution of the steady-state equation

Q′′(x) + (1/2)[1 − Q2(x)] = 0 (74)

subject to periodic boundary conditions with spatial period L̃.
Elgart and Kamenev [6] solved this equation, and calculated
�F̃ , in the limit of L � Lc. We will present the solution for
any L > Lc. The solution of Eq. (74), up to an arbitrary shift
in x, can be written as

Qc(x) = c + (b − c)sn2

[
2K(m)x

L̃

]
. (75)

Here b and c are two of the three real roots a(E) > b(E) > c(E)
of the polynomial E − ξ/2 + ξ 3/6 (the roots are real for |E | <

1/3), sn(. . .) is the Jacobi elliptic function, and K(m) is the
complete elliptic integral of the first kind [40]. Furthermore,
m = m(E) = (b − c)/(a − c), and parameter E is determined
by relation

4
√

3K(m)√
a − c

= L̃.

The x-dependent solution (75) exists at L̃ > L̃c = 2π or, in
dimensional units, L > Lc = π [2D/(μ0δ)]1/2; this is what
Eq. (11) predicts at δ 	 1. Note that Lc = 2πl here. At
L > Lc solution (75) exhibits a single full spatial oscillation:
its spatial period is equal to the rescaled system size L̃. At
L > kLc, where k = 2,3, . . ., this solution coexists with addi-
tional solutions having 2,3, . . . ,k full oscillations. The k > 1
solutions, however, yield greater actions than solution (75),
and therefore should be ruled out.

Evaluating free energy (73) for solution (75) with the
help of MATHEMATICA, we obtain sB = �F̃ = (L/Lc) where
function (ξ ) is depicted in Fig. 13. The logarithm of the MTE
is therefore approximately equal to

ln(μ0δTe) � Kδ3Lc

2πh


(
L

Lc

)
. (76)

This result is valid when it is much greater than unity. This
can be achieved for sufficiently large K and fast migration.
Importantly, at L � Lc the MTE ceases to grow with system
size L, so the MTE can be relatively short. Furthermore, for
any L > Lc the action spent on creating the critical nucleus
is less than the action spent on bringing the population to the
x-independent unstable state q = q1. Therefore extinction via
the critical nucleus is (exponentially) more probable than via
the state q = q1.

What are the asymptotes of this result in the three charac-
teristic regions of L < Lc, 0 < L − Lc 	 Lc and L � Lc?
Instead of using asymptotics of the elliptic functions, one can
directly solve Eq. (74) in these regions. At L < Lc the critical
nucleus gives way to the x-independent unstable solution
Q = −1. Here we obtain �F̃ = 2L̃/3, and

ln(μ0δTe) � 2LKδ3

3h
= 2NKδ3

3
, (77)

0.0 0.5 1.0 1.5
0

1

2

3

4

5

ξ

FIG. 13. (Color online) Function (ξ ) determining the depen-
dence of ln(μ0Te) on the rescaled system size L/Lc, see Eq. (76),
for populations with a very strong Allee effect. The dotted line is the
asymptote (ξ � 1) = 24/5 = 4.8.

which is the one-site result [6,20] times N as expected. Again,
for L 	 Lc we can use a more accurate one-site result [20]
and obtain

μ0δTe � π exp
(

2
3NKδ3

)
, (78)

as the whole system can be considered as a single site. This
result is valid when L 	 Lc and NKδ3 � 1.

At L = Lc a weakly inhomogeneous critical nucleus
emerges via a supercritical bifuraction. At 0 < L − Lc 	 Lc

the critical nucleus, in the rescaled variables, is

Qc(x) � −1 + A cos

(
2πx

L̃

)
+ A2

4
− A2

12
cos

(
4πx

L̃

)
,

(79)

where

A � 4
√

3√
5

(
L

Lc

− 1

)1/2

. (80)

Here we obtain

�F̃ � 2L̃

3

[
1 − 18

5

(
L

Lc

− 1

)2
]

,

and so

ln(μ0δTe) � 2NKδ3

3

[
1 − 18

5

(
L

Lc

− 1

)2
]

. (81)

Finally, at L � Lc the critical nucleus can be approximated
by its asymptote at L → ∞:

Qc(x) � 1 − 3 cosh−2(x/2). (82)

In this limit, mathematically identical to the one considered by
Elgart and Kamenev [6] in the context of population explosion,
we obtain sB = �F̃ = 24/5, and so

ln(μ0δTe) � 24Kδ3l

5h
= 12Kδ3Lc

5πh
. (83)

Note that the criterion L � Lc becomes stringent as the
bifurcation point δ = 0 is approached, and Lc diverges.
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FIG. 14. (Color online) A numerically computed nucleation
instanton (heteroclinic connection AD) for scenario II (a strong Allee
effect) close to the bifurcation point δ = 0. The rescaled system length
is L/Lc � 1.54. Shown are spatial profiles of the rescaled population
size Q at numerical times 0, 11, 12, 13, 14, and 20 (from top to
bottom). The last profile is the critical nucleus for this system size.

Now we see that the asymptotes of (ξ ) are the following:

(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4π

3
ξ, ξ < 1,

4π

3
ξ

[
1 − 18

5
(ξ − 1)2

]
, 0 < ξ − 1 	 1,

24

5
, ξ � 1.

(84)

Before concluding this subsection we note that, although we
succeeded in calculating action sB analytically, the calculation
of the nucleation instanton, Q(x,t) and P (x,t), demands
(rather simple) numerics. Q(x,t) is described by the time-
reversed version of the reaction-diffusion equation (72).
Therefore for a given system size, one can solve Eq. (72)
with periodic boundary conditions numerically, starting from
the critical nucleus (with a slight positive offset) and advancing
the solution until it converges close to Q = 1. The instanton
solution is then readily obtained via time reversal, whereas
P (x,t) can be found from P (x,t) = ∂tQ(x,t). An example of
an instanton found in this way is depicted in Fig. 14.

B. Very large systems: Single versus multiple nucleation

In the previous subsection we evaluated ln(μ0δTe) under
the condition that the probability of creating more than one
critical nucleus during the traverse time of the deterministic
extinction fronts through the population is negligible. The rest
of the parameters being fixed, this condition is always satisfied
at sufficiently large K . If we instead fix K � 1 and increase
L, we will arrive at the regime when additional critical nuclei
typically appear while the extinction fronts still run through
the population. The present subsection deals with this regime.
Importantly, the assumption of quasistationarity, see Eqs. (15)
and (16), does not hold in this regime, except for the purpose of
calculation of the rate of formation of a single critical nucleus
in the phase q2 = 1 + δ. The latter is given, at L � Lc and t �
1/(μ0δ), by Eq. (83) that we rewrite here, up to pre-exponential
factors, as

1

Te

∝ μ0δe
−KS0 , where S0 = 12δ3Lc

5πh
. (85)

As 1/Te is exponentially small, the nucleation acts are rare,
and we can assume that they are statistically independent
and Poisson distributed. This implies that, in sufficiently
large systems, L � Lc, the nucleation rate (85) includes a
pre-exponential factor proportional to L (that we did not care
about previously but must account for now). Correspondingly,
the nucleation rate density ρ (that is, the nucleation rate per
unit length of the system) is independent of L, and we can
represent it as

ρ = μ0δ

Lc

ρ∗, where ρ∗ = Re−KS0 	 1, (86)

and R is a dimensionless pre-factor that depends on dimension-
less parameters K , δ, and μ0/D0. Importantly, the nucleation
problem is mathematically equivalent to the overdamped limit
of theory of homogeneous nucleation due to Langer [27]; see
Appendix C. The theory of Langer corroborates our argument
that, for L � Lc, the nucleation rate is proportional to L.
Furthermore, his theory makes it possible to calculate the
prefactor R explicitly. We will not need the prefactor, however,
as we are only interested in the leading-order approximation
for ln(μ0δTe).

With the nucleation rate density (86) at hand, we now
consider the following problem. Let at t = 0 the whole system,
with L � Lc, be in the populated state q2 = 1 + δ. The
nucleation rate density ρ is independent of x and t . After a
critical nucleus (of size ∼Lc 	 L) develops, two deterministic
extinction fronts form and propagate in both directions with
speed c � √

μ0D/2; see Eq. (12). What is the probability
Pq2 (x0,t0) to still observe q = q2 at point x = x0 at time
t = t0 > 0? For this to happen, no critical nucleus should have
appeared in space-time domain G within the event horizon
produced by the two incoming extinction fronts. Taking into
account the finite size L of the system and the periodic
boundary conditions, we find that, for 2ct0 < L, the domain
G is determined by the conditions

|x − x0| < c(t0 − t) and 0 < t < t0, (87)

whereas for 2ct0 > L it is determined by the conditions

0 < x < L for 0 < t < t0 − L

2c
, and

|x − x0| < c(t0 − t) for t0 − L

2c
< t < t0; (88)

see Fig. 15. Indeed, because of the periodic boundary condi-
tions (which bring translational invariance of the problem)
we can always choose x0 = L/2, so Pq2 (x0,t0) is actually
independent of x0. The space-time area σ (t0) of the domain G

is equal to

σ (t0) =
{

ct2
0 for 2ct0 < L,

Lt0 − L2

4c
for 2ct0 > L.

(89)

By virtue of the Poisson statistics, we obtain

Pq2 (t) = e−ρσ (t) =
{

exp(−ρct2) for 2ct < L,

exp
(
−ρLt + ρL2

4c

)
for 2ct > L.

(90)
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FIG. 15. Event horizon produced by two extinction fronts at
2ct0 < L (a) and 2ct0 > L (b).

The MTE can be calculated from Te = ∫ ∞
0 Pq2 (t)dt , and

we obtain

Te =
√

π

4ρc
erf

(√
ρ

c

L

2

)
+ 1

ρL
e−ρL2/4c, (91)

where erf(. . .) is the error function [40]. Using the expression
(86) for ρ, we can rewrite Eq. (91) as

μ0δTe = πδ1/4

(2ρ∗)1/2
erf

(
L

L∗

)
+ 1

ρ∗

Lc

L
e−L2/L2

∗ , (92)

where the characteristic length scale L∗ (which is exponen-
tially large in K) is defined as

L∗ =
√

2

πρ∗
δ−1/4Lc = 2δ−3/4

√
πD

μ0ρ∗
. (93)

For Lc 	 L 	 L∗ the first term in Eq. (92) can be neglected,
and we recover, up to a pre-exponent, the result from
Sec. V A: μ0δTe ∼ (Lc/L)eKS0 . However, for exponentially
large systems, L � L∗, the second term is negligible, whereas
erf(L/L∗) → 1, and we arrive at μ0δTe ∼ 1/

√
ρ∗ ∼ eKS0/2.

Note that, if we interpret this new asymptote as exponential of
some effective WKB action, this action will be twice as small
as the action obtained for L 	 L∗. A sketch of the overall
dependence of the MTE on the system length is presented, on
a log-log scale, in Fig. 16. Evident is a maximum of the MTE
at L much larger than Lc but much smaller than L∗.

The exponentially large characteristic length scale L∗
comes, quite naturally, from the balance between the nucle-
ation rate, ρL = μ0δρ∗L/Lc, and the traverse rate of the
deterministic extinction fronts through the system, ∼c/L.
At L 	 L∗ the population is typically going extinct via the
formation of only one critical nucleus, whereas at L � L∗
multiple nucleation acts typically occur.

Finally, the behavior of the MTE versus L, depicted in
Fig. 16, can be understood as follows. At Lc < L < L∗ it is

L

*
-1

1/4

 ⎯(2 *)
1/2

L = h L = Lc L = L*

0
-1

0 Te

FIG. 16. Shown, on a log-log scale, is a sketch of the system-size
dependence (92) of the rescaled MTE of a population exhibiting a
very strong Allee effect.

the formation of a single nucleus that serves as a bottleneck
of the extinction process. As the formation rate of the nucleus
goes up linearly with L, the logarithm of the MTE goes down
linearly with L in this regime. The linear decrease reaches a
plateau at L � L∗ when multiple nucleation acts occur, and
multiple extinction fronts are at work.

VI. DISCUSSION

When an isolated stochastic population resides in a refuge
of a large but finite size, it ultimately goes extinct with
certainty. We have developed a WKB approximation to the
quasistationary multivariate probability distribution of the
population sizes and arrived at an effective Hamiltonian
mechanics that encodes the most probable path the population
takes on the way to extinction, and enables one to evaluate
the mean time to extinction (MTE). The most general,
spatially discrete version of WKB equations employs the
lattice Hamiltonian (21) and is valid for (almost) any relation
between the migration rate coefficient D0 and the characteristic
rate coefficient μ0 of the on-site birth-death dynamics. For
example, one can use these equations to address an interesting
regime, in populations with an Allee effect, where discreteness
of the lattice and a low migration rate conspire to cause
propagation failure of deterministic fronts (of either extinction,
or colonization); see Ref. [41] and references therein. If the
migration is much faster than the on-site population dynamics,
it can be described as diffusion, and one arrives at an effective
continuous classical mechanics, Eqs. (23)–(25), where one has
to find an activation trajectory: the most probable path of the
population to extinction. In the absence of the Allee effect
(extinction scenario I) and for a very strong Allee effect the
most probable path to extinction is an instanton—a proper
heteroclinic connection in the functional phase space of the
system.

The extinction dynamics and the MTE can be very different
depending on whether or not the population exhibits the Allee
effect, as well as on the conditions at the refuge boundaries.
The most dramatic differences appear for a sufficiently large
system size, L � Lc. In this case, in the absence of the Allee
effect (extinction scenario I), the MTE continues to grow
exponentially with the system size. When a very strong Allee
effect is present, however, extinction occurs via formation of a
critical nucleus, and the MTE becomes, up to a pre-exponent,
independent of the system size. We have obtained detailed
results by assuming that the birth and death rate coefficients
are such that the system is close to its characteristic bifurcation
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(transcritical or saddle-node in scenarios I and II, respectively).
In these cases one obtains the universal Hamiltonians (31)
and (66), describing two broad classes of population models:
without Allee effect, and with a very strong Allee effect,
respectively. We have also revisited the model system A → 2A

and 2A → 0 and shown that, close to the critical system size
Lc, this system belongs to the universality class described by
the Hamiltonian (31).

For a very strong Allee effect we have mapped the extinction
problem into the overdamped limit of theory of homogeneous
nucleation due to Langer, where the corresponding stationary
Fokker-Planck equation is integrable. This connection gives
a natural explanation to the integrability of the zero-energy
WKB problem considered in Sec. V. In very large systems the
MTE starts to go down with the system size, so there is an
optimal refuge size for which the MTE is maximum. At still
larger systems the dependence of the MTE on the system size
reaches a plateau. Here multiple nucleation acts occur, and
multiple extinction fronts are at work.

For extinction scenario I, the Elgart-Kamenev algorithm of
forward and backward iterations [6] yields accurate results for
the MTE, and for the most probable path to extinction. An
efficient algorithm that would deal with spatial populations
exhibiting extinction scenario II is unavailable as of present.
This hinders progress of theory beyond the completely inte-
grable case of a very strong Allee effect. The weak-Allee-effect
regime remains terra incognita. This includes evaluation of
the MTE for periodic or reflecting boundaries, see Sec. II C 2,
where the choice between different possible paths to extinction
is not obvious.

In the general part of our derivation, Sec. III, we presented
the WKB theory for single-step birth-death processes, and
in one spatial dimension. A generalization to multiple-step
processes (such as a simultaneous birth or death of more
than one individual) is straightforward, see Sec. IV B, and
was already introduced in Ref. [6]. Higher spatial dimensions
can be also taken care of. For scenario I this was observed
in Ref. [6]. For scenario II (a very strong Allee effect), the
problem remains integrable in higher dimensions, except that
the critical nucleus must in general be found numerically.
More challenging generalizations include multiple populations
(competition, predation, infection and recovery, etc.), and
environmental noise.

Our WKB calculations were based on the assumption
that the classical action for the one-site problem is much
greater than unity. This assumption necessitates K � 1. Our
fast-migration results, however, strongly suggest that this
criterion can be relaxed. For example, it is obvious that, for
homogeneous-in-space regimes of extinction, one can treat the
whole system as a single site, see Eqs. (39) and (78), and it is
the resulting action for the whole system that only needs to be
large for WKB theory to hold. As N � 1, the latter condition
can be satisfied even for K � 1. For inhomogeneous-in-space
extinction regimes, it should suffice to demand that the action
contributed by regions whose spatial dimension is of order of
the characteristic diffusion length l ∼ Lc be much greater then
unity. This necessitates KLc/h ∼ K(D0/μ0)1/2 � 1. For a
fast migration, D0 � μ0, this condition is much softer than
K � 1, and it may be be further relaxed close to characteristic
bifurcations of the on-site Hamiltonians.

Put in a more general context, this work dealt with rare
large fluctuations in spatial stochastic systems far from thermal
equilibrium. The last decade has seen a surge of interest in a
similar class of problems in the context of steady-state currents
in spatial systems of interacting particles, driven by reservoirs
at the boundaries; see, e.g., Ref. [42] and references therein.
WKB approximation, bringing about the Hamilton-Jacobi
or, alternatively, Hamilton’s formalism in a functional phase
space, has been instrumental in the analysis of those systems
as well [43–45].
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APPENDIX A: ABSORBING BOUNDARIES—GOVERNING
EQUATIONS AND SPATIAL BOUNDARY CONDITIONS

Here we consider a refuge with absorbing boundaries. The
individuals can exit the refuge through its edges i = 1 and
i = N (with the same migration rate coefficient D0 as in the
bulk), but no individuals can enter the sites i = 1 and i = N

from outside. In particular, this setting models the extreme
situation when the conditions outside of the refuge are so
harsh that the individuals die there instantaneously. In this case
master equation (13) needs to be replaced by the following one:

∂tP (n,t) =
N∑

i=1

[λ(ni − 1)P (n̂,ni − 1,t) + μ(ni + 1)

×P (n̂,ni + 1,t) − [λ(ni) + μ(ni)]P (n,t)]

+D0

N−1∑
i=2

[(ni−1 + 1)P (n̂,ni−1 + 1,ni − 1,t)

+ (ni+1 + 1)P (n̂,ni − 1,ni+1 + 1,t) − 2niP (n,t)]

+D0[(n1 + 1)P (n̂,n1 + 1,t) + (n2 + 1)

×P (n̂,n1 − 1,n2 + 1,t) − 2n1P (n,t)

+ (nN−1 + 1)P (n̂,nN−1 + 1,nN − 1,t)+(nN +1)

×P (n̂,nN + 1,t) − 2nNP (n,t)]. (A1)

Going over to the eigenvalue problem, as in Eq. (17), and
applying WKB approximation (19), we obtain the following
WKB-Hamiltonian:

H (q,p) = μ0

N∑
i=1

[λ̄(qi)(e
pi − 1) + μ̄(qi)(e

−pi − 1)]

+ D0

N−1∑
i=2

[qi−1(epi−pi−1 − 1)

+ qi+1(epi−pi+1 − 1)]

+D0[q1(e−p1 − 1) + q2(ep1−p2 − 1)]
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+D0[qN−1(epN −pN−1 − 1) + qN (e−pN − 1)].

(A2)

This lattice Hamiltonian [cf. Eq. (21)] holds for any relation
between D0 and μ0 [33]. Now let us consider the limit of
D0 � μ0. Here for smooth solutions such as, e.g., activation
trajectories, one has |pi − pi−1| 	 1. Proceeding as in Sec. III,
we can Taylor expand the migration part of the Hamiltonian:

Hm(q,p) = D0

N∑
i=2

[
− (qi − qi−1) (pi − pi−1)

+ 1

2
(qi + qi−1) (pi − pi−1)2

]
+D0[q1(e−p1 − 1) + qN (e−pN − 1)]. (A3)

Now consider the Hamilton’s equation for dp1/dt :

dp1

dt
= −D0(e−p1 − 1 + p2 − p1) + · · · , (A4)

where · · · denote small corrections coming from the on-site
Hamiltonian O(μ0) and higher-order terms in p2 − p1. The
characteristic time scale of the dynamics of the system (for
example, on an activation trajectory) is μ−1

0 (or longer when
a bifuraction is approached). Therefore the left hand side is
small, and we obtain, in the leading order in μ0/D0,

e−p1 − 1 + p2 − p1 � 0. (A5)

As |p2 − p1| 	 1, the only way to satisfy this condition is
to assume that p1 	 1 which yields, up to small corrections,
p2 = 2p1. Rewriting this relation as p1 − (p2 − p1) = 0 and
going over to continuous description, we obtain

p(x = 0,t) − h∂xp(x = 0,t) = 0 (A6)

or, in the leading order, simply p(x = 0,t) = 0.
Now we consider the Hamilton’s equation for dq1/dt . Up

to small corrections, we obtain

dq1

dt
= D0 (q2 − 2q1) + · · · , (A7)

so again q2 = 2q1+ small corrections. This yields, in the
continuous description,

q(x = 0,t) − h∂xq(x = 0,t) = 0 (A8)

or, in the leading order, q(x = 0,t) = 0. Repeating these
arguments for the site i = N we obtain

q(L,t) + h∂xq(L,t) = 0, p(L,t) + h∂xp(L,t) = 0 (A9)

or, in the leading order, q(x = L,t) = p(x = L,t) = 0. When
going over to continuous description in the bulk, one arrives at
the same continuous Hamiltonian (23)–(25) as in the periodic
case.

We note that the gradient terms that appear in
Eqs. (A6), (A8), and (A9) can be legitimately taken into
account as small corrections to the zero boundary conditions
for q and p. Indeed, they are of relative order (μ0/D0)1/2

[because the characteristic length scale of the problem is l ∼
(D/μ0)1/2 = h(D0/μ0)1/2], whereas the omitted terms—both
in the boundary conditions and in the Hamilton’s equations
in the bulk—are much smaller, of order μ0/D0. Close to the

transcritical bifurcation, see Sec. IV, one should replace μ0 by
μ0δ in these estimates.

Zero boundary conditions for the momentum also appear in
the context of large deviations in open systems of interacting
particles, driven by reservoirs at the boundaries [43,45].

APPENDIX B: FIXED POINTS AND ACTIVATION
TRAJECTORIES

The statement that the activation trajectory in extinction
scenario I must be a heteroclinic connection AB in the
functional phase space {q(x),p(x)} relies on the presence and
linear stability properties of fixed points—that is, steady-state
solutions with specified boundary conditions in space—of
Eqs. (26) and (27). These are described in Appendix B 1.
This information is then used in Appendix B 2 to prove the
statement. Appendix B 3 presents a linear stability analysis of
fixed points A, C, and D of scenario II.

1. Scenario I: Functional fixed points and
their linear stability

As a typical example of scenario I, we consider the universal
Hamiltonian (31) introduced in Sec. IV A. There are three
zero-energy fixed points here.

(a) Fixed point A: Q = Qs(x), P = 0

Here we put Q(x,t) = Qs(x) + q(x,t) and P (x,t) =
p(x,t) and linearize rescaled Eqs. (34) and (35) with respect
to q and p. The linearized equations are

∂tq = −2Qs(x)q + q + ∂2
x q + 2Qs(x)p, (B1)

∂tp = 2Qs(x)p − p − ∂2
xp, (B2)

subject to zero boundary conditions for q and p at x = 0 and
x = L̃ > L̃c. Start with Eq. (B2) and look for eigenmodes of
the form p(x,t) = eEtψ(x). Eigenfunctions ψ(x) satisfy the
Schrödinger equation

ψ ′′(x) + [E − V (x)]ψ(x) = 0, (B3)

where E = E + 1, and V (x) = 2Qs(x).
Now we will prove a simple comparison theorem. Consider

an auxiliary equation:

ψ ′′(x) + [
E − 1

2V (x)
]
ψ(x) = 0. (B4)

By virtue of Eq. (36), it has nontrivial solution ψ(x) ∝ Qs(x)at
E = 1. This solution obeys zero boundary conditions at x = 0
and L̃and has no nodes inside the interval 0 < x < L̃. As
a result, E = 1 is the lowest eigenvalue of the auxiliary
problem. Now, our original potential V (x) in Eq. (B3) is higher
everywhere, except at points x = 0 and L̃, than auxiliary
potential V (x)/2. Therefore the lowest eigenvalue of the
original problem (B3) is strictly greater than the lowest
eigenvalue of the auxiliary problem. Hence min E > 1, and
so all eigenvalues E are positive.

Now we turn to Eq. (B1). Here q(x,t) is forced by the term
2Qs(c)p(x,t). Let us expand both the forcing and the solution
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that we are seeking in the complete set of eigenfunctions ψn(x)
of the momentum:

2Qs(x)p(x,t) =
∞∑

n=1

bne
Entψn(x), (B5)

and

q(x,t) =
∞∑

n=1

fn(t)ψn(x). (B6)

We obtain equation

dfn

dt
+ Enfn = bne

Ent ,

for fn(t), whose general solution is

fn(t) = ane
−Ent + bn

2En

eEnt .

As En > 0 for all n = 1,2, . . . , we see that the deterministic
hyperplane p = 0 is the stable manifold of fixed point A, as
expected from the deterministic theory. The unstable manifold
involves a nonzero p.

(b) Fixed point B: Q = 0, P = Pe(x)

Here we put Q = q(x,t) and P = Pe(x) + p(x,t). The
linearized equations are

∂tq = −2Qs(x)q + q + ∂2
x q, (B7)

∂tp = 2Qs(x)p − p − ∂2
xp − 2Qs(x)q. (B8)

where we have used the fact that, for the Hamiltonian (31),
Pe(x) = −Qs(x). The analysis here is very similar to that
for fixed point A. We first consider Eq. (B7) and look for
eigenmodes q(x,t) = eEtφ(x). We observe that Eq. (B7) for
q coincides, up to a sign, with Eq. (B2) for p. As a result,
eigenvalues En are “mirror images” of En, considered in the
context of fixed point A and therefore all of them are negative.

The analysis of forced Eq. (B8) for p closely follows that for
forced Eq. (B1) for q. We expand the forcing and the solution
in the complete set of eigenfunctions φn(x) of q:

−2Qs(x)q(x,t) = −
∞∑

n=1

dne
−Entφn(x), (B9)

and

p(x,t) =
∞∑

n=1

gn(t)φn(x), (B10)

and obtain

dgn

dt
− Engn = −dne

−Ent .

The general solution is

gn(t) = cne
Ent + dn

2En

e−Ent .

As En > 0 for all n = 1,2, . . ., hyperplane q = 0 is the
unstable manifold of fixed point B, whereas its stable manifold
involves q(x) > 0.

(c) Fixed point C: Q = P = 0

Here the linearized equations are

∂tq = q + ∂2
x q, (B11)

∂tp = −p − ∂2
xp, (B12)

and the eigenmodes are elementary:

q = Ae�n1 t sin
n1πx

L̃
, (B13)

p = Beγn2 t sin
n2πx

L̃
, (B14)

where �n1 = 1 − n2
1π

2/L̃2, γn2 = −1 + n2
2π

2/L̃2, and
n1,n2 = 1,2, . . . . We are only interested in solutions with
q(x,t) � 0, therefore the only allowed mode for q is the
fundamental: n1 = 1. This mode, at L̃ > L̃c = π , is unstable.
As a result, region q(x) > 0 in a vicinity of fixed point C

belongs to the unstable manifold of this fixed point.

2. Scenario I: Activation trajectories are
heteroclinic connections

Consider extinction scenario I in a system with absorbing
boundaries at x = 0 and x = L > Lc. As one can see from
Eqs. (26) and (27), hyperplanes q(x) = 0 and p(x) = 0 are
invariant manifolds. Each of them is embedded into zero-
energy hypersurface H {q(x),p(x)} = 0. Therefore hyperplane
q(x) = 0 cannot be reached from domain q(x) > 0 except
via fixed points of Eqs. (26) and (27) that belong to hy-
perplane q(x) = 0 (and have finite p), or alternatively via
p(x,t) = −∞. There are exactly two fixed points belonging
to hyperplane q = 0: B and C. As domain q > 0 in a small
vicinity of fixed point C belongs to its unstable manifold,
fixed point C is unreachable from domain q(x) > 0. On the
contrary, the stable manifold of fixed point B does include
q(x) > 0. Therefore a trajectory can exist that asymptotically
approaches fixed point B at t → +∞.

Now consider trajectories of Eqs. (26) and (27) that come
into hyperplane q(x) = 0 [at a finite time, and simultaneously
at all points of the open interval (0,L)] at p(x,t) = −∞. One
can show that H {q(x,t),p(x,t)} > 0 for such trajectories, and
so they cannot start from fixed point A. This is similar to
what happens in spatially independent but multipopulation
systems [22].

Fixed point B has unstable manifold q(x) = 0, and a stable
manifold �B, which belongs to domain q(x) > 0. Each of
the two manifolds is N dimensional in the lattice formu-
lation and is embedded into the zero-energy hypersurface
H {q(x),p(x)} = 0. Now we see that we need to find a trajec-
tory going from fixed point A to fixed point B. This trajectory
must belong to both hypersurfaces �A and �B . In the lattice
formulation, each of the two hypersurfaces is N dimensional
[and is embedded into the (2N − 1)-dimensional hypersurface
H {q(x),p(x)} = 0]. Therefore hypersurfaces �A and �B can
intersect, in general, only along a finite set of one-dimensional
curves which are trajectories generated by Eqs. (26) and (27).
These are heteroclinic connections. If there is more than one
such connection, the one with the minimum action along it
determines the MTE.
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We observed numerically that there is exactly one hete-
roclinic connection AB in two different examples: for the
universal Hamiltonian (31) and for the set of reactions
A → 2A and 2A → 0; see Sec. IV. This property apparently
holds in a broad class of single-population systems exhibiting
extinction scenario I.

3. Scenario II: Fixed points A, C, and D and their linear stability

In the limit of a very strong Allee effect we only need to
investigate the linear stability properties of fixed points A, C,

and D.

(a) Fixed points A and C: q = q2 or 0, p = 0.

Linearizing Eqs. (26) and (27) around fixed point A, we
obtain

∂tδq = μ0f
′(q2)δq + D∂2

x δq, (B15)

∂tp = −μ0f
′(q2)p − D∂2

xp. (B16)

As f ′(q2) < 0, one can see that deterministic hyperplane
p = 0 is a stable manifold of fixed point A, whereas p �= 0
is an unstable manifold. The same results hold for fixed
point C.

(b) Fixed point D: q = qc(x + const), p = 0.

For periodic boundaries, there is a one-parameter family of
fixed points D corresponding to an arbitrary shift with respect
to x. Because of this degeneracy, there are two eigenmodes
that correspond to zero eigenvalue. One of them is neutrally
stable:

q(x) − qc(x) = const q ′
c(x), (B17)

p = 0; (B18)

it corresponds to an infinitesimal shift in x of the critical
nucleus q = qc(x). The other one is algebraically unstable,
as it grows linearly in time:

q(x) − qc(x) = αq ′
c(x)t + ψ̃(x), (B19)

p = Cq ′
c(x), (B20)

where ψ̃(x) obeys the periodic boundary conditions. We skip
here the exact form of function ψ̃(x), as well as the expression
for nonzero constant α.

As a result, in the lattice formulation we would have an
(N − 1)-dimensional stable manifold �D that contains point
D and leaves the hyperplane p(x) = 0; a one-dimensional
neutrally stable manifold, belonging to the hyperplane p(x) =
0, and an N -dimensional unstable manifold with one of its
tangent vectors belonging to the hyperplane p(x) = 0. The
neutral manifold corresponds to a one-dimensional line of
fixed points D, parametrized by the exact position of critical
nucleus on the interval (0,L).

APPENDIX C: FOKKER-PLANCK EQUATIONS
FOR SCENARIOS I AND II

The Fokker-Planck approximation is a commonly used
large-population-size approximation to the master equation
[32]. Unfortunately, it can only give accurate results for the
MTE when the system is sufficiently close to bifurcations
describing the emergence of established populations (for
spatially independent problems, this was observed in Ref. [7]).
Indeed, only in this case is the probability distribution of the
population size a slow varying function of the population size
at all relevant population sizes, so that the (truncated) van
Kampen system-size expansion [32] becomes accurate. Here
we derive (lattice versions of) Fokker-Planck equations close to
the characteristic bifurcations of extinction scenario I and, for
a strong Allee effect, scenario II. These systems are analyzed,
in WKB approximation, in Secs. IV A and V, respectively.
We also point out the mathematical equivalence between the
problem of population extinction for a very strong Allee
effect and the overdamped limit of theory of homogeneous
nucleation due to Langer [27].

We start from a formal truncated Taylor expansion of
the multivariate probability distribution in the time-dependent
master equation (13). The migration terms in Eq. (13) become

D0

N∑
i=1

{
(ni−1 + 1)

[
1 + ∂

∂ni−1
− ∂

∂ni

+ 1

2

(
∂

∂ni−1
− ∂

∂ni

)2
]

P

+ (ni+1 + 1)

[
1 − ∂

∂ni

+ ∂

∂ni+1
+ 1

2

(
∂

∂ni

− ∂

∂ni+1

)2
]

P − 2niP

}

= D0

N∑
i=1

{
2P + (ni + 1)

(
∂

∂ni

− ∂

∂ni+1

)
P + 1

2
(ni + 1)

(
∂

∂ni

− ∂

∂ni+1

)2

P

+ (ni+1 + 1)

(
∂

∂ni+1
− ∂

∂ni

)
P + 1

2
(ni+1 + 1)

(
∂

∂ni

− ∂

∂ni+1

)2

P

}

� D0

N∑
i=1

[
2P + (ni − ni+1)

(
∂

∂ni

− ∂

∂ni+1

)
P + ni + ni+1

2

(
∂

∂ni

− ∂

∂ni+1

)2

P

]
. (C1)
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Here we have assumed, for concreteness, periodic boundary
conditions. Now we also expand the on-site terms, employ
Eq. (2), go over from ni to qi = ni/K, and put everything
together. The result is a formal Fokker-Planck equation,

∂tP (q,t) = −μ0

N∑
i=1

∂

∂qi

{
[λ̄(qi) − μ̄(qi)]P

− 1

2K

∂

∂qi

[λ̄(qi) + μ̄(qi)]P

}

+D0

N∑
i=1

(
∂

∂qi

− ∂

∂qi+1

) [
(qi − qi+1) P

+ qi + qi+1

2K

(
∂

∂qi

− ∂

∂qi+1

)
P

]
. (C2)

Even for K � 1, this equation is only valid, in general, around
the attracting fixed point of the deterministic rate equations,
where the long-lived population distribution resides. In ad-
dition, this equation can hold, for extinction scenario II, in
the region around the repelling fixed point. Importantly, it
does become accurate for all population sizes ni � 1 when
the system is sufficiently close to a bifurcation corresponding
to emergence of established populations. For the SIS model
(scenario I) we can assume δ 	 1 and obtain, after some
algebra,

∂P (q,t)

∂t

= μ0

N∑
i=1

{
− ∂

∂qi

[qi(δ − qi)P (q,t)] + 1

K

∂2

∂q2
i

[qiP (q,t)]

}

−D0

N∑
i=1

∂

∂qi

[(qi−1 − 2qi + qi+1) P ] , (C3)

where we have rewritten the first-derivative migration term in a
divergence form and neglected the second-derivative migration
term (as it is of next order in δ). Similarly, for three reactions
A → 0 and (scenario II), we obtain, for δ 	 1 (a very strong
Allee effect):

∂P (q,t)

∂t
= μ0

N∑
i=1

{
∂

∂qi

[(qi − 1 + δ)(qi − 1 − δ)P (q,t)]

+ 2

K

∂2P (q,t)

∂q2
i

}

−D0

N∑
i=1

∂

∂qi

[(qi−1 − 2qi + qi+1) P ] . (C4)

The neglected second-derivative migration term includes an
additional δ2 factor. In the fast-migration limit, one can
replace the lattice formulation by a continuous one, arriving at
functional Fokker-Planck equations close to the bifurcations
of scenarios I and II.

Each of Eqs. (C3) and (C4) can be rewritten as a continuity
equation,

∂P

∂t
= −

∑
i

∂Ji

∂qi

. (C5)

For scenario I (at δ 	 1) the probability flux is

Ji = −∂F(q)

∂qi

P − μ0

K

∂

∂qi

(qiP ) , (C6)

with free energy

F(q) =
∑

i

[
μ0

(
q3

i

3
− δq2

i

2

)
+ D0

2
(qi − qi−1)2

]
. (C7)

For scenario II we have, also at δ 	 1,

Ji = −∂F(q)

∂qi

P − 2μ0

K

∂

∂qi

P (C8)

and

F(q) = μ0

∑
i

[
(qi − 1)3

3
− δ2 (qi − 1)

]

+ D0

2

∑
i

(qi − qi−1)2 . (C9)

Fokker-Planck Eq. (C8) is closely related to the Fokker-Planck
equation that appears in the homogeneous nucleation theory
of Langer; see Eqs. (2.15) and (2.16) of his paper [27]. This
close relation turns into a full equivalence if one goes, in
Langer’s equations, to the overdamped limit, Aij = 0, sets
� = kT = 2μ0/K , and specifies free energy F(q) as in our
Eq. (C9). It is crucial that the multidimensional effective force
that appears in the probability flux (C8) is potential, whereas
the diffusion coefficient 2μ0/K is q independent, as if coming
from additive white Gaussian noise in the equivalent Langevin
formulation of the problem. In this case the multidimensional
Fokker-Planck equation is integrable for the purpose of
calculating the stationary distribution, and this integrability
is closely related to the detailed balance property; see, e.g.,
Ref. [32]. For a fast migration one can go to the continuous
limit and rewrite the free energy (C9), upon rescaling, as
our Eq. (73). The corresponding infinite-dimensional problem
remains integrable for the purpose of finding the stationary
solution of the (functional) Fokker-Planck equation. More
precisely, the conservation law F (x,t) = 0, which appears in
Sec. V A, immediately follows, in WKB approximation, from
the continuous version of the zero probability flux condition
Ji = 0, which solves Eq. (C5). This clarifies the reason behind
the integrability of the zero-energy WKB problem, considered
in Sec. V A in the context of a very strong Allee effect (and,
in Ref. [6], in the context of population explosion).

The situation is less fortunate for extinction scenario I.
Although the multidimensional force, entering the probability
flux (C6), remains potential, the diffusion coefficient here is
q dependent, as if coming from multiplicative white Gaussian
noise in the Langevin formulation. As a result, the problem
of finding the stationary distribution is nonintegrable here,
and this manifests itself in the nonintegrability of the zero-
energy WKB problem considered in Sec. IV A.

The formal equivalence between Eqs. (C5), (C8), and
(C9) for a very strong Allee effect and the equations of
theory of homogeneous nucleation makes it possible to
go beyond the leading WKB order and calculate the sub-
leading correction (a pre-exponential factor) to the nucleation
rate [27].
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