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Environmental noise can cause an exponential reduction in the mean time to extinction (MTE) of an

isolated population. We study this effect on an example of a stochastic birth-death process with rates

modulated by a colored (that is, correlated) Gaussian noise. A path integral formulation yields a

transparent way of evaluating the MTE and finding the optimal realization of the environmental noise

that determines the most probable path to extinction. The population-size dependence of the MTE changes

from exponential in the absence of the environmental noise to a power law for a short-correlated noise and

to no dependence for long-correlated noise. We also establish the validity domains of the white-noise limit

and adiabatic limit.
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Extinction of a long-lived self-regulating population can
occur as a large fluctuation resulting from the intrinsic
discreteness of individuals and random nature of birth-
death processes [1,2]. Extinction is a key negative factor
in viability of small populations [3,4], whereas extinction
of epidemic [3,5] is a favorable development. As a large
fluctuation far from equilibrium, extinction is also of great
interest to physics [1,2]. Population dynamics often occurs
in time-varying environments. Understanding the impact
of environmental noise on the mean time to extinction
(MTE) of a population is both important [4] and interest-
ing. Early models assumed that the environmental noise,
which modulates the population birth-death rates, is delta-
correlated in time [6,7]. More recently, numerous studies
have focused on the effect of temporal autocorrelation, or
color, of environmental noise on population extinction, see,
e.g., Refs. [8]. Numerical simulations, performed by many
population ecologists, provide only a partial insight into
the complex and rich interplay between the nonlinear
kinetics and intrinsic (demographic) stochasticity of the
population on the one side and the magnitude and spectral
and correlation properties of the environmental noise on
the other.

In this Letter we formulate a theoretical framework for
this problem by considering a prototypical example of a
stochastic birth-death process with rates modulated by a
positively correlated Gaussian noise with given magnitude
and correlation time. We evaluate the MTE analytically
and find that the qualitative and quantitative details of the
exponential reduction of the MTE by the environmental
noise are very sensitive to the noise color. It was discovered
by Leigh [6,7] that white environmental noise changes the
population-size dependence of the MTE from an exponen-
tial to a power-law with a large exponent. Here we show
that noise color changes this exponent, reducing it at a
fixed noise magnitude. For a long correlation time of the

environmental noise, where we develop an adiabatic the-
ory, the MTE becomes independent of the population size
for a strong enough noise. We also establish the validity
domains of the white-noise limit and adiabatic limit.
The effect of the environmental noise on theMTE comes

from special noise realizations which affect the birth and
death rates in an optimal way. The optimization involves a
statistical ‘‘cost’’ of a given reaction rate variation along
with a ‘‘gain’’ due to a facilitated extinction. We find that
the optimal realization of noise (ORN), which determines
the most probable path to extinction, changes considerably
with the noise correlation time. For a short-correlated noise
the ORN has a form of a sudden ‘‘catastrophe’’, reducing
the reproduction rate, for a certain period of time, to a value
which cannot sustain a steady population. For a long-
correlated noise the ORN reduces the population size
gradually. While not directly causing extinction, it makes
a fatal demographic fluctuation much more probable. The
ORNs in different intermediate regimes (depending on the
rescaled noise magnitude and correlation time) can be
found numerically.
To be specific, consider a continuous-time birth-death

process of a population of n individuals with the birth rate
�n and death rate �n given by

�n ¼ n

2
ð�þ r� anÞ; �n ¼ n

2
ð�� rþ anÞ: (1)

For time-independent rate constants�, r and a (we assume
r < �), this is a symmetrized version of the logistic
Verhulst model: a well-studied model of population dy-
namics, see, e.g., [9,10]. The terms linear in n describe the
birth and death rates at small n, whereas the nonlinear
terms describe, at a > 0, competition for resources which
limits the exponential population growth. The pertinent
rate equation _�n ¼ r �n� a �n2 predicts, at r > 0, a stable
population of the average size �n ¼ K � r=a � 1 which
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sets in after the relaxation time tr ¼ 1=r. Demographic
noise, however, makes this ‘‘stable’’ population meta-
stable. The population actually goes extinct, as a large
fluctuation ultimately brings it to the absorbing state n ¼
0. Large fluctuations are rare and therefore statistically
independent. As a result, the long-time survival probability
obeys Poisson’s law

X1
n¼1

PnðtÞ ¼ 1� P0ðtÞ ¼ e�t=�0 ; (2)

where PnðtÞ is the probability to find n individuals at time t,
and �0 is the MTE. It is a well-known result (that we will
reproduce shortly) that �0 scales exponentially withK, see,
e.g., [9,10]. In the limit of r � �, that we will be inter-
ested in, one obtains with exponential accuracy:

�0 / expðrK=�Þ; (3)

where we have assumed rK=� � 1.
Environmental noise manifests itself as a time-

modulation of the birth and death rates. We will assume
a modulation of the parameter r:

r ! rðtÞ ¼ r� �ðtÞ; (4)

where �ðtÞ is a ‘‘red’’ (positively correlated) Gaussian
random process with zero mean, variance v � �2 and
correlation time tc. For convenience, we choose the
Ornstein-Uhlenbeck noise defined by the correlator

h�ðtÞ�ðt0Þi ¼ ve�jt�t0j=tc . The statistical weight of a given
realization of this noise is P ½�ðtÞ� / expf�S½�ðtÞ�g, where

S½�ðtÞ� ¼ 1

4v

Z
dtðtc _�2 þ t�1

c �2Þ: (5)

The environmental noise does not change the Poisson
character of the survival probability, Eq. (2). Unless the
noise is too weak, however, it exponentially reduces the
MTE. We found that the noise-reduced MTE �� can be

expressed in terms of the unperturbed MTE �0 and two
dimensionless parameters: the rescaled noise variance V ¼
vK=ðr�Þ and the rescaled noise correlation time T ¼
tc=tr ¼ rtc:

ln�� ¼ FðV; TÞ ln�0; (6)

where function FðV; TÞ describes different parameter re-
gimes summarized in Fig. 1. Importantly, each of these
regimes is also characterized by a different ORN which
causes population extinction with the highest probability.

Our theory, which leads to Eq. (6), Fig. 1 and other
results, starts from the master equation

_P n ¼ �n�1Pn�1 � ð�n þ�nÞPn þ�nþ1Pnþ1; (7)

with the birth and death rates given by Eq. (1). One can
show that, for K � 1 and r � �, this master equation can
be accurately approximated by the Fokker-Planck equa-
tion, derivable via the van Kampen system size expansion

[1,2]. Switching to the continuous notation n ! q, one can

write the Fokker-Planck equation as _P ¼ ĤP, with the
linear differential operator

Ĥðq; p̂Þ ¼ �

2
p̂2qþ p̂ðrq� aq2Þ: (8)

Here p̂ ¼ �@q so that ½q; p̂� ¼ 1. In the presence of envi-

ronmental noise, see Eq. (4), one obtains the Hamiltonian

Ĥ�ðq; p̂; tÞ ¼ Ĥðq; p̂Þ � �ðtÞp̂q.
The evolution operator Ûðqf; tf; qi; tiÞ of the Fokker-

Planck equation can be represented as a path integral
over time-dependent trajectories qðtÞ and pðtÞ. Below we
specify the boundary conditions for such trajectories in the
case of population extinction. Eventually the evolution
operator must be averaged over realizations of the envi-
ronmental noise, resulting in

hÛi ¼
Z

D�DqDpe�S½���
R

dt½p _q�Hðq;pÞþ�pq�; (9)

where pðtÞ and Hðq; pÞ are understood as ‘‘classical’’
variables rather than operators.
Rare events in general, and population extinction in

particular, are described by classical trajectories accumu-
lating a large action (and therefore having exponentially
small probabilities). For this reason the corresponding path
integral can be evaluated via the saddle point approxima-
tion near the most probable trajectory describing a given
rare event. To find the optimal trajectory one should con-
sider the variation of the exponent in Eq. (9) over qðtÞ, pðtÞ
and �ðtÞ. The variation over � yields the ORN which
determines the most probable realization of a given rare
event. Executing this program, one arrives at the following
set of classical equations of motion for qðtÞ, pðtÞ, and �ðtÞ:

_q ¼ @H

@p
� �q; _p ¼ �@H

@q
þ �p; (10)

t2c €�� � ¼ 2vtcpq: (11)
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FIG. 1 (color online). Various regimes of extinction on the
plane of rescaled parameters V and T. The dashed lines are
schematic borders of the adiabatic, Eq. (16), and white-noise,
Eq. (14) limits. The dotted line is the border of the weak-noise,
Eq. (17), regime. The shaded area is a crossover region.
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The boundary conditions, corresponding to extinction of
the metastable population of average size K, are qðt ¼
�1Þ ¼ K; qðt ¼ þ1Þ ¼ 0, and �ðt ¼ �1Þ ¼ 0. The
conditions for � follow from the fact that the ORN must
have a finite duration. Indeed, there is no need in environ-
mental variations well before a large fluctuation starts and
well after the population goes extinct. With exponential
accuracy, the extinction probability of the large fluctuation
is given by the full action, see Eq. (9), calculated on the
solution of Eqs. (10) and (11).

In the absence of environmental noise, � ¼ 0, Eqs. (10)
admit an integral of motion: H ¼ const. Then it is easy to
see that the trajectory obeying the proper boundary con-
ditions has H ¼ 0 and is therefore implicitly given by the
relation ð�=2Þpþ r� aq ¼ 0, see Eq. (8) and Fig. 2.
Calculating the action along this trajectory one finds S ¼R
0
K pdq ¼ r2=ð�aÞ ¼ rK=� which yields �0 from Eq. (3).

Solving for qðtÞ and pðtÞ for this trajectory, one finds the
unperturbed optimal path to extinction:

q0ðtÞ ¼ K

et=tr þ 1
; p0ðtÞ ¼ �2r=�

e�t=tr þ 1
: (12)

In what follows we analyze, in different limits, Eqs. (10)
and (11) in the presence of environmental noise.

Short-correlated noise.—Here the term t2c €�ðtÞ in Eq. (11)
can be neglected, and the ORN becomes enslaved to the
dynamics of q and p: �ðtÞ ’ �2vtcpq. As a result,
Eqs. (10) become Hamiltonian equations of motion with
the effective Hamiltonian

Hvðq; pÞ ¼ Hðq; pÞ þ vtcp
2q2: (13)

The same result follows from a Gaussian integration over
D� in Eq. (9) with the white-noise action S½�� ¼R
dt�2=ð4vtcÞ. Now, Hv is an integral of motion of

Eqs. (10). By virtue of the boundary conditions Hv ¼ 0.
As a result, extinction proceeds along the line ð�=2Þpþ
r� aqþ vtcpq ¼ 0; see Fig. 2. Evaluating the action
S ¼ R

0
K pdq along this line, one arrives at Eq. (6) with

FðV; TÞ ¼ 1

VT

�
1þ 2VT

2VT
lnð1þ 2VTÞ � 1

�
: (14)

As the (effectively) white noise is fully characterized by
the product vtc, F only depends on the product VT.
For a weak noise, VT � 1, Eq. (14) yields F ’

1� 2VT=3. The corresponding reduction of the MTE is
still exponentially large as, according to Eqs. (3) and (6),

�� ¼ �0e
�2vtcrK

2=3�2 � �0. The most dramatic reduction

of the MTE is predicted, in the spirit of the pure-white-
noise result [6,7], in the strong-noise limit, VT � 1. Here
F ’ lnðVTÞ=ðVTÞ, and one obtains

�� / ðvtcK=�Þr=ðvtcÞ: (15)

One can see that the exponential scaling of the MTE with
the population size K, cf. Eq. (3), gives way to a power law
with a large exponent. To clearly see the origin of this
qualitative change in the MTE, let us find the ORN leading
to Eq. (15). The logarithmic term in Eq. (14) comes from
the hyperbolic part of the extinction trajectory, see Fig. 2,
where vtcpq ’ �r. Here �ðtÞ ’ �2vtcpq ’ 2r ’ const,
and therefore _q ’ �rq. This equation describes the popu-
lation size decay from the initial value K down to �=ðvtcÞ.
At this population size [and at time ~t ¼ tr lnðKvtc=�Þ], the
demographic noise takes over the environmental one; see
Eq. (13). That is, the ORN of the short-correlated environ-
mental noise is a catastrophic event, see Ref. [11], where
the parameter r > 0 suddenly drops to �r and keeps
this value for a logarithmically long time ~t � tr, see
Fig. 3. The MTE (15) merely reflects the statistical weight
of this ORN. This argument also shows that the validity of
Eq. (14) requires a less restrictive condition than tc � tr.
Indeed, it suffices to demand that tc � ~t ¼ tr lnðVTÞ; see
Fig. 1.
Long-correlated noise.—Here an adiabatic theory can be

developed. The rare fluctuation, causing extinction, takes
time about tr; see Fig. 3. As the environmental noise
changes on a much longer time scale tc, the extinction
fluctuation samples an almost constant value of the noise
�ð0Þ ¼ �0, to be determined below. The effective parame-
ter r is therefore equal to r� �0 ¼ const. The correspond-
ing extinction rate is � exp½�ðr� �0Þ2=ð�aÞ�, cf. Eq. (3).

−−

FIG. 2 (color online). Zero-energy trajectories of the
Hamiltonian H (the dashed line), of Hv (the dotted line), and
of both H and Hv (the solid lines). The shadowed area is the
extinction action for the short-correlated environmental noise,
leading to Eq. (14).

−

−

−

−

FIG. 3. Optimal realizations of the environmental noise in the
limit of short (the dashed line) and long (the solid line) corre-
lations of the noise. The duration of the catastrophe for the short-
correlated noise is ~t � tr lnðKvtc=�Þ.
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Now we notice that the right-hand side of Eq. (11) vanishes
everywhere except in a narrow time window jtj & tr � tc.

As a result, the solution of Eq. (11) for the ORN is �ðtÞ ’
�0e

�jtj=tc . Using it in Eq. (5), we find the statistical weight
of the ORN to be � exp½��2

0=ð2vÞ�. Finally, we need to

find the optimal value of �0 by optimizing the extinction
rate against the statistical weight of the ORN. This is done
by finding the minimum of �2

0=ð2vÞ þ ðr� �0Þ2=ð�aÞ
which is achieved at �0 ¼ r½1þ�a=ð2vÞ��1. The mini-
mum action, r2=ð�aþ 2vÞ, yields the logarithm of the
MTE, which is therefore given by Eq. (6) with

FðV; TÞ ¼ ð1þ 2VÞ�1: (16)

Notice that, for a strong long-correlated noise, V � 1 and
T � 1, one obtains ln�� ¼ r2=2v which is independent of

the population-size K.
When does Eq. (16) apply? It turns out that, for a strong

long-correlated noise, the condition T � 1 gives way to a
more restrictive one. Indeed, when deriving Eq. (16) we

assumed that rðtÞ ’ r� �0e
�jtj=tc does not change during

the relaxation time tr. This requires r0ð0Þtr � rð0Þ and
leads to the condition T � maxð1; VÞ, shown in Fig. 1 as
the border of the adiabatic regime.

Weak noise.—Here we solve Eqs. (10) and (11) per-
turbatively. This is equivalent to performing the integration
in Eq. (9) over the unperturbed extinction trajectory,
Eq. (12) [12]. The Gaussian integration over the noise is
done by going to the frequency space, and we obtain

FðV; TÞ ¼ 1� 4V
Z 1

�1
d!

2�

ð�!Þ2
sinh2�!

T

1þ ð!TÞ2 : (17)

For a short-correlated noise, T � 1, this expression yields
F ¼ 1� 2VT=3 in agreement with the limit of VT � 1 of
Eq. (14). For a long-correlated noise, T � 1, Eq. (17)
yields F ¼ 1� 2V in agreement with Eq. (16) at V � 1.
These arguments provide the border of the weak-noise
result (17) shown in Fig. 1. We reiterate that even a rela-
tively weak noise causes an exponentially large reduction
of the MTE.

Equation (17) shows that, for a weak environmental
noise, there is only one relevant scale for the noise corre-
lation time: T � 1. The situation is more complicated for a
strong noise, V � 1. As discussed above, the adiabatic
regime holds when T � V, whereas the effectively
white-noise regime holds for T � lnV. In the crossover
regime, lnV & T & V (see Fig. 1), the function F changes
by a numerical factor of order unity. Here the MTE can be
found by solving Eqs. (10) and (11) numerically.

To conclude, we have evaluated the reduction of the
mean time to extinction (MTE) of an isolated population
caused by environmental noise. We have also established
the validity domains of the white-noise limit and adiabatic
limit. Even a relatively weak environmental noise causes
an exponentially large reduction of the MTE. A strong
noise brings about qualitative changes in the scaling of

the MTE with the metastable population-size K. In the
absence of environmental noise (or if the environmental
noise is weak), the MTE scales exponentially with K. This
scaling changes to a power law in the limit of a strong
short-correlated noise, and becomes K–independent in the
limit of a strong long-correlated noise. The optimal real-
ization of the environmental noise (ORN), which results in
the population extinction with the highest probability, also
differs qualitatively in these two limits. For a short-
correlated noise the ORN is a sharp catastrophe which,
for a logarithmically long time, interchanges the birth and
death rates of the system. For a long-correlated noise the
ORN is a slow suppression of the birth rate down to a
positive value. It is still debated in population biology
‘‘whether and under which conditions red noise increases
or decreases extinction risk compared with uncorrelated
(white) noise’’, as put by Schwager et al. in Ref. [8]. We
hope that the analysis presented here will help resolve this
and related issues.
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