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Consider the short-time probability distribution P (H, t ) of the one-point interface height difference h(x =
0, τ = t ) − h(x = 0, τ = 0) = H of the stationary interface h(x, τ ) described by the Kardar-Parisi-Zhang (KPZ)
equation. It was previously shown that the optimal path, the most probable history of the interface h(x, τ ) which
dominates the upper tail of P (H, t ), is described by any of two ramplike structures of h(x, τ ) traveling either
to the left, or to the right. These two solutions emerge, at a critical value of H , via a spontaneous breaking of
the mirror symmetry x ↔ −x of the optimal path, and this symmetry breaking is responsible for a second-order
dynamical phase transition in the system. We simulate the interface configurations numerically by employing
a large-deviation Monte Carlo sampling algorithm in conjunction with the mapping between the KPZ interface
and the directed polymer in a random potential at high temperature. This allows us to observe the optimal paths,
which determine each of the two tails of P (H, t ), down to probability densities as small as 10−500. At short times
we observe mirror-symmetry-broken traveling optimal paths for the upper tail, and a single mirror-symmetric
path for the lower tail, in good quantitative agreement with analytical predictions. At long times, even at moderate
values of H , where the optimal fluctuation method is not supposed to apply, we still observe two well-defined
dominating paths. Each of them violates the mirror symmetry x ↔ −x and is a mirror image of the other.

DOI: 10.1103/PhysRevE.104.054125

I. INTRODUCTION

Large deviations of fluctuating quantities in stochastic
macroscopic systems out of equilibrium continue to attract
much interest from the statistical mechanics community.
Of special interest are situations where the large-deviation
functions exhibit singularities (see Refs. [1–5] for reviews).
Among these there are singularities which can be classified
as dynamical phase transitions (DPTs) [6–9] because the per-
tinent large-deviation functions involve time t , and t → ∞.
Here we consider the celebrated Kardar-Parisi-Zhang (KPZ)
equation [10] in 1+1 dimensions:

∂τ h = ν∂2
x h + (λ/2)(∂xh)2 +

√
D ξ (x, τ ). (1)

It has been shown recently [11,12] that the KPZ equation also
exhibits a DPT, but in the opposite limit of t → 0. This DPT,
and breaking of the mirror symmetry x ↔ −x of the optimal
paths of the interface, i.e., the interface height histories h(x, t )
which contribute most to rare-event statistics which we will
specify shortly will be the focus of attention of this work.

The KPZ equation (1) describes the stochastic dynamics
of the height h(x, τ ) at point x and at time τ of an inter-
face without overhangs, driven by a delta-correlated Gaussian
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noise
√

Dξ (x, τ ) with zero mean:

〈ξ (x, τ )〉 = 0,

〈ξ (x1, τ1)ξ (x2, τ2)〉 = δ(x1 − x2)δ(τ1 − τ2). (2)

In Eq. (1), ν > 0 is the diffusion constant, and the nonlinearity
coefficient λ can be set to be positive (or negative) without loss
of generality.

The fluctuating quantity of our interest here is the interface
height difference

h(x = 0, τ = t ) − h(x = 0, τ = 0) = H,

at a specified point x = 0 at time t [13]. The complete
statistics of the height difference is encoded in the prob-
ability distribution P (H, t ) which has been the focus of
multiple recent studies (see Refs. [14–16] for reviews). Note
that the distribution P (H, t ) depends on the initial condition
h(x, τ = 0). Commonly studied are the sharp-wedge (also
called droplet), flat, and stationary initial conditions [14–16].

We will be mostly interested in the short-time regime,
when the observation time t is much smaller than the charac-
teristic nonlinear time of the KPZ equation tNL = ν5/(D2λ4).
At short times typical fluctuations of the KPZ interface, which
corresponds to the body of P (H, t ), are still Gaussian. How-
ever, the KPZ nonlinearity is already fully manifest in the tails
of P (H, t ). The DPT [11,12] occurs, in the short-time regime,
for the stationary initial condition, where it is assumed that
the interface has evolved for a long time prior to τ = 0. For
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the stationary interface, initial configurations h(x, τ = 0) are
sampled from a statistical ensemble of random realizations of
a two-sided Brownian motion:

h(x, τ = 0) =
√

D

2ν
B(x). (3)

Here B(x) is the two-sided Wiener process with diffusion con-
stant 1

2 , so that 〈B2(x)〉 = |x| [17]. The short-time probability
distribution P (H, t ) scales, up to a pre-exponential factor, as
[11,18]

− lnP (H, t ) � ν5/2

Dλ2
√

t
s

( |λ|H
ν

)
, (4)

where the scale function s(. . . ) is given by the (rescaled)
effective action along the optimal path of the interface, as we
explain below. The function

S(H ) = − lim
t→0

√
t lnP (H, t ) = ν5/2

Dλ2
s

( |λ|H
ν

)
(5)

is the short-time large deviation function. Remarkably, S(H )
exhibits a second-order DPT (that is a jump in the sec-
ond derivative d2S/dH2) at a critical value of H such that
λHc/ν = 3.7063 . . . . The DPT originates from a spontaneous
breaking of mirror symmetry of the optimal path which we
will discuss shortly. A rather complete analogy of this DPT
with the classical mean-field second-order transition in equi-
librium was established in Ref. [12], where a proper phase
order parameter was identified, and an effective Landau theory
was developed.

Reference [11] also determined the large-|H | asymptotics
of S(H )

S(H ) �
⎧⎨
⎩

4
√

2 ν
3D|λ|1/2 |H |3/2, λH → +∞
4
√

2|λ|
15πD |H |5/2, λH → −∞

(6)

(7)

which correspond to the (stretched-exponential) upper and
lower tails of the distribution P (H, t ).

In this paper we report observations of the optimal paths
of the KPZ interface, which determine the distribution tails
(6) and (7) for the stationary interface, in numerical simula-
tions. Here is some background information. The results of
Refs. [11,12] were obtained by the optimal fluctuation method
(OFM) (see also Ref. [19]). The OFM, by now a standard
asymptotic tool of theoretical physics, relies on a saddle-
point evaluation of the path integral of the KPZ equation (1),
conditioned on reaching a specified height H at short times
(or reaching a sufficiently large height H at any time). This
procedure brings about a classical field theory, formulated as a
conditional variational problem. The solution of this problem,
obeying the proper initial and boundary conditions, is called
the optimal path of the conditioned process. It represents a
time-dependent deterministic field which describes the most
probable time history of the system, dominating the contri-
bution of different paths to the statistics of interest. Once the
optimal path is determined, the action along it (plus the “cost”
of the optimal initial condition, if this additional optimiza-
tion is present) yields the scale function s(. . . ) which enters
Eq. (4). The OFM has been extensively used for studying the
single-point height statistics of the KPZ equation in different

settings and dimensions and for different initial conditions
[20–33]. Until very recently, exact analytical solutions of the
OFM equations for the KPZ interface were only possible
when using additional small parameters, such as a very large
or very small |H |. But in Refs. [34,35] the complete short-
time large-deviation functions for P (H, t ) have been obtained
analytically for the droplet, flat, and stationary initial condi-
tions by masterfully exploiting exact integrability of the OFM
equations pointed out in Ref. [11].

Without losing generality, we will suppose that λ > 0.
Crucially, at H > Hc the OFM predicts the existence of two
optimal paths of the interface, each leading to the same
scaling function s(. . . ) [11,12]. The two optimal solutions
bifurcate from a single solution at the critical point H =
Hc via a spontaneous breaking of the mirror symmetry, the
spatial reflection symmetry x ↔ −x, leading to the second-
order DPT in s(. . . ). Each of the two optimal solutions is
a mirror-symmetric “twin” of the other with respect to x ↔
−x. At large positive H , each of the two solutions has the
form of a ramplike traveling structure of h(x, τ ) or, equiva-
lently, a shock-antishock pair of the interface slope V (x, τ ) =
∂xh(x, τ ). For −∞ < H < Hc, that is below the transition, the
optimal path is unique and mirror symmetric with respect to
x = 0.

Aside from their role in the calculation of large-deviation
functions, optimal paths provide a valuable insight into the
physics of large deviations, and this insight is inaccessible
by other methods. However, a direct observation of optimal
paths in conventional numerical simulations (and of course
in experiments) is often difficult due to the very low prob-
ability of the large deviations in question [36]. Fortunately,
this difficulty can be overcome by using large-deviation al-
gorithms, e.g., based on importance sampling approaches, as
was recently shown for the KPZ equation in Refs. [37–39].
In these works a mapping from the KPZ equation to the
(discrete) directed polymer in a random potential at high
temperature was employed, and Monte Carlo simulations with
an importance sampling algorithm were performed. As a re-
sult, the tails of the height distribution of the KPZ interface
were measured, for different initial conditions and at different
times, down to probabilities as small as 10−1000 [37,39]. In
particular, Ref. [39] measured the whole short-time distribu-
tion of P (H, t ) for the stationary interface and, in particular,
verified the asymptotics (6) and (7). In Ref. [38] the interface
configurations at τ = t/2, corresponding to the height dis-
tribution tails at τ = t , were observed for the droplet initial
condition. The observed configurations turned out to be in
good agreement with those predicted from the OFM [24].

Here we employ the same simulation strategy as in
Refs. [37–39]. Our primary goal is to observe the optimal
paths of the stationary KPZ interface which correspond to the
distribution tails (6) and (7). Apart from the short-time regime,
where the OFM is well known to apply, we also consider a
long-time regime where the mere existence of optimal paths
has not been established.

Here is a layout of the remainder of the paper. In
Sec. II we extend and elaborate on theoretical predictions of
Refs. [11,12] for the optimal paths. In Sec. III we present
our simulation strategy. In Sec. IV we compare the simulation
results with theory at short times, where the OFM is expected
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to apply [11,12]. In Sec. V we present the results of our
simulations in a long-time regime. This includes probing a
range of moderate (not too large) values of H , where one
does not expect OFM to be applicable. In Sec. VI we briefly
summarize and discuss the main results of this work.

II. OPTIMAL PATHS: THEORETICAL PREDICTIONS

Here we present and extend the theoretical predictions of
Refs. [11,12]. To be in line with the notation of Refs. [11,12],
we will temporarily switch to the convention λ < 0. The final
results of this section will be presented in a fully dimensional
form with an arbitrary sign of λ. Introduce rescaled variables
τ/t → τ , x/

√
νt → x, and |λ|h/ν → h. Then, Eq. (1) be-

comes dimensionless:

∂τ h = ∂2
x h − 1

2 (∂xh)2 + √
ε ξ (x, τ ), (8)

where

ε = Dλ2
√

t

ν5/2
=

(
t

tNL

)1/2

(9)

is the rescaled noise magnitude. We choose the reference
frame of the interface position so that

h(x = 0, τ = 0) = 0 (10)

and condition the rescaled stochastic process h(x, τ ) on the
equality

h(x = 0, τ = 1) = H, (11)

where H is rescaled by ν/|λ|. Formally, the OFM demands
that ε → 0, but later on we will also consider regimes of finite
and even large ε. The saddle-point procedure brings about
a minimization problem for an effective action functional
s[h(x, τ )]. For the stationary interface this functional includes
two terms [11]:

s[h(x, τ )] = sdyn[h(x, τ )] + sin[h(x, 0)], (12)

where

sdyn[h(x, τ )] = 1

2

∫ 1

0
dτ

∫ ∞

−∞
dx

[
∂τ h − ∂2

x h + 1

2
(∂xh)2

]2

(13)
is the dynamical contribution, whereas

sin[h(x, 0)] =
∫ ∞

−∞
dx(∂xh)2|τ=0 (14)

is the “cost” of the initial height profile (3) [11]. The ensuing
Euler-Lagrange equation can be recast in the Hamiltonian
form

∂τ h = ∂2
x h − 1

2 (∂xh)2 + ρ, (15)

∂τρ = −∂2
x ρ − ∂x(ρ∂xh), (16)

where ρ(x, τ ), the optimal realization of the (rescaled) noise
ξ (x, τ ), plays the role of the “momentum density” field, which
is canonically conjugate to the “coordinate density,” which is
the optimal path h(x, τ ) itself.

The minimization over h(x, τ = 0) yields an initial condi-
tion in the form of a relation between a priori unknown h(x, 0)

and ρ(x, 0) [11]:

ρ(x, τ = 0) + 2∂2
x h(x, τ = 0) = �δ(x). (17)

This condition is specific to the stationary interface. The one-
point condition (11) leads to the singular condition

ρ(x, τ = 1) = �δ(x), (18)

where �, which plays the role of a Lagrangian multiplier, is
to be ultimately expressed through H .

Once the optimal path, including the optimal initial height
profile, is determined, one can evaluate the rescaled total
action (12), and obtain the scaling function s = s(H ) which
enters Eqs. (4) and (5).

In Refs. [11,12] asymptotic solutions of the OFM problem
(15)–(18) were obtained in the two limits, corresponding to
the upper and lower tails of P and described by Eqs. (6)
and (7), respectively. We now extend and elaborate on the
pertinent optimal solutions for h(x, t ), to be compared with
our simulations in Sec. IV.

A. Optimal path for the upper tail λH > 0

Here we use the dimensional variables. At supercritical val-
ues of H there are two mirror-symmetry-broken optimal paths
[11]. In the λH → +∞ tail, each of them represents a simple
ramplike structure for h(x, τ ) [or, equivalently, a shock-
antishock pair of the interface slope V (x, τ ) = ∂xh(x, τ )],
traveling to the left or to the right. In terms of h(x, τ ) the
left-traveling ramp has the form [11]

h(x, τ )

H
�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, x � � (1 − t)

x
�

+ t, −� t � x � � (1 − t)

0, x � −� t

(19)

(20)

(21)

where t = τ/t and

� = �(H, t ) =
( |λH |t

2

)1/2

. (22)

The right-traveling ramp solution can be obtained from
Eqs. (19)–(21) by replacing x by −x. Snapshots of the right-
and left-traveling solutions for h(x, τ ) are depicted in Fig. 1.

B. Optimal path for the lower tail λH < 0

At λH → −∞ the leading-order solution is very different
[11,12,23,24]. In the “pressure-dominated” region the solu-
tion describes an ideal hydrodynamic flow of an effective
gas with density ρ(x, τ ), velocity V (x, τ ) = ∂xh(x, τ ), and
a negative pressure −(1/2)ρ2(x, τ ). There is also a region
of a zero-pressure hydrodynamic flow (also called the Hopf
flow) [12] and a trivial “static region” where h(x, τ ) = H/2 =
const.

The results of Refs. [11,12,23,24] were presented in terms
of V (x, τ ) rather than h(x, τ ). Here we calculated h(x, τ ) by
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FIG. 1. Two mirror-symmetry-broken optimal paths correspond-
ing to the upper tail λH > 0 of the height distribution P (H, t ) [see
Eq. (6)]. Shown is the leading-order prediction of Ref. [11] for
h(x, τ ) as described by Eqs. (19)–(21) for the ramp traveling to the
right (a), and its mirror reflection with respect to x = 0 for the ramp
traveling to the left (b).

integrating V (x, τ ) over x. After some algebra we obtained, in
the three regions,

h(x, τ )

H
�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

hg
(

πx
2�

, t
)+ 1

2 ,
π |x|

2 < �
1+w(t)2 ,

hv

(
π |x|
2�

, t
)+ 1

2 , �
1+w(t)2 <

π |x|
2 <�,

1
2 ,

π |x|
2 > �,

(23)

(24)

(25)

where � is defined in Eq. (22), and we have introduced three
functions: w, hg, and hv . The function w(t) is the inverse of
the function

t = 1

2
+ w

π (1 + w2)
+ 1

π
arctan w, (26)

the function hg(χ, t) is defined explicitly:

hg(χ, t) = 1

π
arctan w(t) − 1

π
w(t)[1 + w2(t)]χ2, (27)

and the function hv (χ, t) is defined in a parametric form:

hv (z, t) = u2

(
t − 1

2

)
+ 1

π
[u + (u2 − 1) arctan u], (28)

z = πu

(
t − 1

2

)
+ 1+u arctan u, (29)

where the domain of u in Eqs. (28) and (29) is defined by the
double inequality

−w(t)
(
t − 1

2

)
< u

(
t − 1

2

)
< 0. (30)

FIG. 2. The mirror-symmetric optimal paths corresponding to
the lower tail λH < 0 of the height distribution P (H, t ) [see
Eq. (7)]. Shown are the leading-order theory prediction for h(x, τ )
vs x as described by Eqs. (23)–(25) at rescaled times t = τ/t = 0, 1

4 ,
1
2 , 3

4 , and 1.

Overall, the optimal h profiles (23)–(25) as a function of x at
different times 0 � τ � t are depicted in Fig. 2. Notice that
the optimal initial height profile has a plateau at h = H/2 at
large |x|. This property holds exactly for all subcritical values
of H : −∞ < λH < |λ|Hc, where the mirror symmetry of the
optimal path is preserved.

III. SIMULATIONS

A. Directed polymer mapping

Let us recall the lattice version of the mapping between the
KPZ height h(x, t ) and the free energy of a directed polymer
in a two-dimensional random potential at high temperature T
[40]. To follow the evolution of the height profiles in time, it is
convenient to work with a right-triangular domain, defined on
a half-square lattice with side length L as shown in Fig. 3.
The lattice is indexed by points (x, τ ) with τ = 0, 1, . . . , t
(t = 2L) playing the role of a time and x = −xmax,−xmax +
1, . . . , xmax − 1, xmax where xmax = (t − τ )/2. We consider
all directed polymers which start at a lattice point on the
hypotenuse (x, 0) and end at the apex (0, 2L). The random
value of the potential V at each lattice point is normally
distributed with zero mean and unit variance. The partition
function Z (x, τ ) of a given realization of the potential obeys

FIG. 3. A lattice realization of the directed polymer (see the text).
t = 2L.
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the exact recursive equation [40]

Z (x, τ + 1) = [
Z
(
x − 1

2 , τ
) + Z

(
x + 1

2 , τ
)]

e− V (x,τ+1)
T , (31)

where 〈V (x, τ )V (x′, τ ′)〉 = δxx′δττ ′ , and δxx′ and δττ ′ are Kro-
necker deltas.

Let us introduce Z∗(x, τ ) = 2−τ Z (x, τ ). To obtain the
mapping from the discrete equation (31) to the continuous
KPZ equation (1) we Taylor expand all the discrete quantities
in Eq. (31), including exp(−V/T ). For example,

Z∗(x − 1
2 , τ

) = Z∗(x, τ )− 1
2∂xZ∗(x, τ )+ 1

8∂2
x Z∗(x, τ ) + . . . .

(32)
To justify a truncation of this expansion we must demand
that Z∗ varies slowly on the scale of the lattice constant both
in space and in time: |Z∗(x, τ + 1) − Z∗(x, τ )| � Z∗(x, τ )
and |Z∗(x + 1, τ ) − Z∗(x, τ )| � Z∗(x, τ ). This leads to the
necessary conditions L � 1 and |H | � L. As we are study-
ing large deviations, we consider |H | � 1. Finally, the slow
variation of the potential V necessitates the condition T �
1. Overall, these necessary conditions can be rewritten as a
strong double inequality

1 � |H | � L. (33)

Under these conditions we can approximate the discrete equa-
tion (31) by the continuous stochastic heat equation

∂τ Z∗ = 1

8
∂2

x Z∗ − ξ

T
Z∗. (34)

The (multiplicative) noise term ξ is now continuous and delta
correlated in x and τ , and the mapping to the KPZ equation is
given by the Cole-Hopf transformation

h(x, τ ) = ln[Z∗(x, τ )/〈Z∗(0, τ )〉], (35)

where

λ = 1/4, ν = 1/8, D = T −2, and t = 2L. (36)

In particular, the height difference is given by

H = h(0, 2L) = ln[Z∗(0, 2L)/〈Z∗(0, 2L)〉]. (37)

The characteristic nonlinear time of the KPZ equation is tNL =
ν5/(D2λ4) = T 4/27, and ε = 16

√
L/T 2.

The Brownian initial condition is specified by

Z (x, 0) = e−[V (x,0)+2R(x)]/T , (38)

where R(x) = ∑x
0 η(x) describes a random walk starting at

the origin (0,0) and arriving at the site (x, 0) on the hy-
pothenuse, where −L � x � L. The random walk increments
η(x) are independent and normally distributed random num-
bers with zero mean and variance 1. At large values of |x|, the
random walk R(x) approaches the Brownian motion B(x), and
the coefficient 2/T in the exponent of Eq. (38) corresponds to
the coefficient D/(2ν) in Eq. (3).

B. Importance sampling algorithm

All measurable quantities, such as the height difference
H , depend on the set of calculated partition function values
{Z (x, τ )}. Furthermore, the partition function values depend
through Eqs. (31) and (38) deterministically on the realization
(V, η) of the quenched randomness, with V being the set

of (L + 1)(2L + 1) potential values {V (−L, 0),V (−L +
1, 0),...,V (L − 1, 0),V (L, 0),V (−L + 1

2 , 1),V (−L + 3
2 , 1),

..., V (− 1
2 , 2L − 1),V ( 1

2 , 2L − 1),V (0, 2L)} and η being the
set of 2L + 1 random walk increments {η(−L), η(−L + 1),
...,η(L − 1), η(L)}. As we already mentioned, all these
random values are independent and normally distributed with
zero mean and variance 1.

A straightforward way to sample measurable quantities
would be to generate independent realizations (V, η) of the
disorder, to calculate the partition function for each realiza-
tion and obtain the desired quantity. In this way, estimates
for expectation values can be obtained by averages, possibly
conditioned on certain values of a second observable, like H .
Estimates for distributions are obtained from histograms.

This procedure, however, would generate typical values
with respect to all quantities, in particular typical values with
respect to H . In this study we are rather interested in in-
vestigating the behavior of the system for very rare values
of H . Thus, we have to be able to address the underlying
distribution P (H ) over a large part of the support, in particular
the low-probability tails.

To achieve this, we use a biased distribution [41] of the
randomness by modifying the original quenched distribution
weight [42], which is a product of independent Gaussians,
by an additional exponential Boltzmann factor e−H/�, where
� is an adjustable temperaturelike parameter, allowing us to
address different regions of values of H . When � → ±∞,
we restore the original unbiased distribution. For � → 0+,
one will focus the sampling on large negative values of H ,
while for � → 0− the sampling will be in the region of large
positive values of H . The fundamental idea of this large-
deviation approach is versatile, and it has been applied to
various problems, e.g., to study large-deviation properties of
random graphs [43,44], of random walks [45,46], of energy
grids [47,48], of biological sequence alignments [42,49], of
nonequilibrium work distributions [50], and of traffic models
[51].

Note that any obtained statistics will initially follow the
biased weight, but this can be easily corrected by reweighting
with the inverse weight, i.e., e+H/�, and proper normalization
[42]. This reweighting is important if one is interested in
actually measuring P (H ). In the present case, where we only
measure some other quantities, conditioned on certain, e.g.,
extreme values of H , the reweighting is unnecessary. Thus,
we only have to be able to sample with respect to selected
values of H , which is achieved by the bias.

In the present case, the biased sampling of the disorder
realizations (V, η) cannot be performed directly. Therefore,
we applied Markov-chain Monte Carlo (MC) simulations
[52], where a configuration of the Markov chain at step
s is given by a disorder realization (V, η)(s). As explained
above, the corresponding height depends deterministically
on the disorder realizations, i.e., H (s) = H[(V, η)(s)]. Follow-
ing the Metropolis-Hastings algorithm, in each step some of
the entries of (V, η)(s) are redrawn according to the under-
lying Gaussian distribution, leading to a trial configuration
(V, η)′ which corresponds to a value H ′. This value has
to be obtained in each MC step by a full calculation of
the partition function using Eqs. (31) and (38) and finally
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evaluating H ′ with Eq. (37). To obtain a sampling according
to the biased distribution, the trial configuration is accepted,
i.e., (V, η)(s+1) = (V, η)′, with the usual Metropolis probabil-
ity pacc = min{1, e−�H/�} depending on the change �H =
H ′ − H (s). Otherwise the trial configuration is rejected, i.e.,
(V, η)(s+1) = (V, η)(s). As usual, one has to make the MC
simulations long enough to achieve equilibration and avoid
correlated configurations. For more details on the implemen-
tation of the large-deviation algorithm for the KPZ model,
including the choice of the values for �, the combination
of the results obtained for different values of �, the use of
the parallel tempering approach, and the parallelization using
Message Passing Interface, see Refs. [37,39].

The simulations were performed for the directed polymer
model with length t = 2L = 128 and two values of tempera-
ture: T = 2 and T = 8. We performed a parallel tempering
simulation for a total of 148 different values of the tem-
peratures � for T = 2. For T = 8 we used 487 values of
temperatures. We used a high-performance computer which
required a total of more than 94 000 core hours. During the
parallel simulation, we monitored equilibration by following
the convergence of the statistics of H . The convergence takes
different timescales depending on the values of �. During the
simulation we stored for T = 2 more than 1500 configurations
with corresponding values of H in the range [−7, 80]. For
T = 8 we stored about 23 000 configurations with values of
H ranging in the interval [−58, 86]. The configurations were
spread with respect to H more or less equally over the sam-
pling intervals, but with an emphasis on the extremes of the
intervals, because more values of the temperaturelike param-
eter � are needed for equilibrium sampling in this range.

IV. THEORY VERSUS SIMULATIONS: SHORT TIMES

Here we present the simulation results and compare them
with the theoretical predictions from the OFM for the set of
parameters (36) with T = 8 and L = 64. For these parameters
ε = 2 is not a small number but, as was found earlier [37–39],
it still corresponds to the short-time limit. We will start from
the case of H > 0, where breaking of the mirror symmetry
is expected to occur, and then proceed to the case of H < 0
where we expect the mirror symmetry to be preserved.

A. Large positive H

In the range 10 � H � 30, we obtained 935 indepen-
dent realizations (V, η), each allowing for an analysis of the
trajectories of h(x, τ ) for all values τ ∈ [0, 1]. (Note that
for standard sampling, realizations exhibiting such values of
H would occur with their natural probabilities which are
10−100 or smaller [39], so we indeed needed to employ large-
deviation algorithms to study this range of H .) We clearly
observed the mirror-symmetry breaking in the form of left-
and right-traveling ramps of h(x, τ ). To improve the statis-
tics, we exploited the mutual reflection symmetry of the
left- and right-traveling ramps with respect to each other:
We flipped around x = 0 the observed h(x, τ ) profiles of the
right-traveling ramp realizations and processed them together
with the left-traveling ramps. The resulting Fig. 4 shows the
average over all the simulated h(x, τ ) profiles for H � 20 at

FIG. 4. The average over 9 simulated height profiles h(x, τ ),
conditioned on H � 20 at rescaled times (from right to left) τ/t = 0,
0.35, and 0.65. The actual values of H are H ∈ [19.95, 20.1]. Eight
of these height profiles are actually right-traveling ramps flipped
around x = 0. The error bars show the standard deviation. The sim-
ulation parameters T = 8 and L = 64 correspond to a short-time
regime.

τ/t = 0, 0.35, and 0.65. The error bars are small, and the
traveling ramp structure is very well pronounced. Figure 5
shows, at τ = 0.5t , that the theoretically predicted asymptotic
optimal path [11], described by Eqs. (19)–(21), is in good
agreement with the simulated ramp profile. The observed dis-
crepancies (�5% in terms of H) can be attributed to effects of
finite 1/H and H/L [see Eq. (33)].

B. Large negative H

Figure 6 shows the average over 60 simulated h profiles for
H � −20 (the actual values H ∈ [−20.2,−20]). Realizations
exhibiting such values of H appear with natural probabilities
about 10−450 or smaller [39]. Also shown is the theoreti-
cally predicted asymptotic optimal path for H = −20 [see
Eqs. (23)–(25)]. The mirror symmetry is manifestly preserved
here. Again, the discrepancy between the asymptotic theory
and simulations is of order of 5% in terms of |H |, and it can
be attributed to finite |H |/L effects. Indeed, we also simulated
the case of H � −40 (not shown here) and found that the

FIG. 5. A comparison, at time τ = 0.5t , of the simulated average
height profile conditioned on H � 20 (see Fig. 4) with the asymptotic
solutions (19)–(21) for the optimal path [11].
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FIG. 6. A comparison of the simulated average height profile
conditioned on H � −20 (symbols with error bars) with the asymp-
totic solutions (23)–(25) for the optimal path h(x, τ ) at rescaled times
τ/t = 0.35 (a), 0.5 (b), and 0.65 (c) for T = 8 (which corresponds
to a short time) and L = 64.

discrepancy between the theory (which assumes |H | � L)
and the simulations become quite large.

V. LONG TIMES

For arbitrary values of H , the OFM provides an asymp-
totically exact large-deviation function of the KPZ height
S(H ) [see Eqs. (4) and (5)] in the limit of t → 0 or ε → 0.
However, it was argued in Ref. [23] that the OFM should
remain accurate in its description of (sufficiently far) dis-
tribution tails at any time t , or at any ε. Since then it has
been firmly established, by different methods which include
rigorous mathematical proofs, that, for a broad class of initial
conditions, the distribution tails, as predicted by the OFM, are
indeed observed at all times [53–61]. This suggests (but does

not guarantee) that the dominant role of the optimal paths and
their shape can be described by the OFM at long times as well,
and we address this issue shortly.

Furthermore, there is an interesting difference in the struc-
ture of the lower and upper tails of P (H, t ) at long time.
This difference has been thoroughly studied (including rig-
orous proofs) for a class of deterministic initial conditions
and, first of all, for the droplet initial condition [53–60]. The
lower tail has a double structure. It consists of two distinct
tails: the near and the far. The near tail, which is located
at 1 � t1/3 � |H | � t , scales as − lnP ∼ |H |3/t . The far
tail, located at 1 � t � |H |, exhibits the OFM scaling (7):
− lnP ∼ H5/2/

√
t . (For brevity we dropped here the factors

λ, ν, and D.) An optimal path, predicted by the OFM, was
indeed observed in our previous simulations of the far tail
for the droplet initial condition [38], but no observations of
the interface profiles corresponding to the near tail have been
performed yet, for any initial condition.

The situation with the upper tail at long times is even less
clear. This tail also has a near and a far region, located at
1 � t1/3 � |H | � t and t � |H |, respectively. However, the
form of the tail in these two regions turns out to be the same
up to subleading corrections, and it is described by Eq. (6).
For stationary initial condition this was shown in Ref. [11]
by extracting the corresponding asymptotic of the Baik-Rains
distribution [62] which, according to Refs. [63,64], describes
typical fluctuations of the height at long times [65]. The
same situation, without exceptions, occurs for all other initial
conditions considered so far (for the flat initial condition this
has been known since Refs. [20,21]). The coincidence of the
near and far tails raises the question of whether a well-defined
“dominating path” of the interface exists only in the far region
of the upper tail H � t , or in the near region too.

To shed light on the latter issue, we extended our nu-
merical simulations of the interface dynamics to a lower
temperature T = 2, keeping L = 64. For these parameters we
obtain ε = 32 which already corresponds to the long-time
limit. We conducted two series of simulations: (a) conditioned
on H � 20, and (b) conditioned on H � 5. The value of
H � 20 is not far from the regime H > t , and here one can
expect to see an optimal path similar to that predicted by the
OFM. The value of H � 5 is already in the non-OFM regime
of t1/3 < H < t .

Our simulation results for T = 2 are depicted in Figs. 7
and 8. For H � 20 [Fig. 7 (top)] we indeed observed two op-
timal paths which agree fairly well with the symmetry-broken
solutions, the two traveling ramps, predicted by the OFM
(see Fig. 8). There are, however, some noticeable differences,
clearly seen in the bottom panel of Fig. 8. The larger noise in
the profiles in the left and right plateau regions, in comparison
with the simulations for T = 8, can be explained by the larger
(by a factor of 4) diffusion constant of the Brownian initial
condition in this case.

Surprisingly, at H � 5 (the bottom panel of Fig. 7), we
still observed two well-defined paths with a broken mirror
symmetry. Qualitatively, these “dominating paths” h(x, τ ) re-
semble the optimal paths predicted by the OFM, but there is
no quantitative agreement anymore (see Fig. 9). Still, the mere
existence of two symmetry-broken dominating paths of the
conditioned process in this non-OFM regime is remarkable.
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FIG. 7. The average simulated height profiles h(x, τ ) condi-
tioned on H � 20 (a) and H � 5 (b) at rescaled times τ/t = 0, 0.5,
and 0.65. There were 11 measured profiles for H � 20 and 8 profiles
for H � 5. The actual values of H are H ∈ [18.81, 20.07] (a) and
H ∈ [4.41, 5.18] (b). 5 of the height profiles, both for H � 20 and
H � 5, were flipped around x = 0. The error bars show the standard
deviation. The simulation parameters T = 2 and L = 64 correspond
to a long-time regime.

Moreover, each of these two paths is again a mirror image of
the other.

VI. SUMMARY AND DISCUSSION

Optimal paths provide an instructive and fascinating
characterization of a whole class of large deviations in
nonequilibrium stochastic systems. By combining a mapping
between the KPZ interface and the directed polymer in a
random potential at high temperature with a large-deviation
Monte Carlo sampling algorithm, we were able to observe the
optimal paths of the KPZ interface which determine each of
the two tails of the one-point height distribution P (H, t ) at
short times, and extended the notion of the dominating path
to long times. Our algorithm allowed us to probe the optimal
paths which are responsible for extremely unlikely events,
with probability densities down to 10−500.

In the short-time regime we clearly observed mirror-
symmetry-broken “traveling-ramp” optimal interface height
profiles for the upper tail, and mirror-symmetric paths for
the lower tail, in good quantitative agreement with analytical
predictions from the OFM.

In the long-time regime we identified two different regions
in the upper tail of P (H, t ). In the far region (very large

FIG. 8. A comparison of the simulated average height profiles
conditioned on H � 20 [also shown in Fig. 7(a)] with the asymptotic
solutions (19)–(21) for the optimal path [11], shown by the dashed
lines, at times τ/t = 0 (a) and 0.5 (b). The simulation parameters
T = 2 and L = 64 correspond to a long-time regime. See Fig. 7 for
other details.

H) we observed an optimal path in fair agreement with the
predictions of the OFM, although some noticeable differences
appear. In the near region (moderately large H) the OFM is

FIG. 9. The simulated average height profile conditioned on H �
5 at long times [also shown in Fig. 7(a)] and the asymptotic solu-
tions (19)–(21) for the optimal path [11] (the dashed line), at time
τ = 0. The simulation parameters T = 2 and L = 64 correspond to a
long-time regime. There is a clear quantitative disagreement between
the OFM prediction and simulation results, but the mere presence
of two well-defined, mutually symmetric dominating paths of the
interface (where one of them represents a mirror image of the other)
is remarkable.
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invalid. Still, we clearly observed two well-defined dominat-
ing paths of the interface. Each of them violates the mirror
symmetry and represents a mirror image of the other. The
presence of dominating paths of the interface hints at a possi-
ble existence of a renormalized optimal fluctuation theory for
the near tails in the late-time regime of the KPZ equation.

Simulationwise our work, alongside with Ref. [38], shows
that, by using large-deviation approaches, one can not only
reliably determine extremely small probabilities, but also
sample complete realizations from the extreme tails of cor-
responding distributions. This gives a valuable insight into
the causes of extreme behavior of stochastic systems far from
equilibrium. In the present case this is especially clear in the
short-time regime because here the OFM predicts an intimate
connection between extremely small probabilities of observ-
ing very large |H | and extremely rare interface configuration
histories that are responsible for them. But, the possibility
of determining causal relations certainly also exists when no

theoretical predictions are available, as was already shown
earlier, e.g., in large-deviation studies of stability conditions
for energy grids [47,48]. Furthermore, even if no clear causal
relations emerge, large-deviation approaches allow for a much
enlarged view into correlations in complex systems.
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