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Abstract. We combine the Macroscopic Fluctuation Theory and the Inverse 
Scattering Method to determine the full long-time statistics of the energy density 
u(x, t) averaged over a given spatial interval,

U =
1

2L

ˆ L

−L
dxu(x, t) ,

in a freely expanding Kipnis–Marchioro–Presutti (KMP) lattice gas on the line,
following the release at t =0 of a finite amount of energy at the origin. In par-
ticular, we show that, as time t goes to infinity at fixed L, the large deviation
function of U approaches a universal, L-independent form when expressed in
terms of the energy content of the interval |x|< L. A key part of the solution is
the determination of the most likely configuration of the energy density at time
t, conditional on U.
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1. Introduction and MFT equations

Stochastic lattice gases are simple, versatile and instructive models which capture
universal aspects of large deviations of different fluctuating quantities (the density
field, the integrated current, etc) in macroscopic systems of interacting particles out
of equilibrium [1–4]. The last two decades have witnessed a major progress in this area
of nonequilibrium statistical mechanics. To a large extent, this progress has been made
possible by the development of fluctuational hydrodynamics (FHD) [1] and macroscopic
fluctuation theory (MFT) [5], the latter being a variant of the more general Optimal
Fluctuation Method (OFM). Stripped of irrelevant microscopic details, FHD and MFT
are ideally suited for probing late-time asymptotic regimes in the lattice gases, which
are usually the most interesting. This is especially true for non-stationary processes,
where exact results for full statistics—by any method—are scarce [6–16].

Here we focus on the continuous-time Kipnis–Marchioro–Presutti (KMP) lattice gas
model [17]. It involves immobile ‘agents’ occupying a lattice and carrying continuous
non-zero amounts of ‘energy’. At each random move a randomly chosen pair of nearest
neighbors randomly redistributes their combined energy among them according to uni-
form distribution. The original motivation behind the KMP model was a rigorous proof
of Fourier’s law of heat diffusion when starting from a microscopic model [17]. Since
then the KMP model has been extensively studied in the context of nonequilibrium
fluctuations of transport [7, 13, 15, 16, 18–32].

In a parallel development, the last two decades have witnessed remarkable
advancement [33–36] in the studies of the one-point statistics of the interface height at a
specified point in space, as described by the Kardar–Parisi–Zhang (KPZ) equation [45],
a paradigmatic model of nonconservative nonequilibrium stochastic interface growth.
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These works generated a renewed interest in the OFM as applied to the one-point
statistics in the KPZ equation [37–44].

A similar one-point statistics in a stochastic lattice gas would be the statistics of the
gas density (or temperature) at a specified point in space. It turns out, however, that
in the continuum description of conservative lattice gases, provided by the FHD, the
one-point statistics is ill-defined, as the variance of the one-point fluctuations diverges
at small scales. In fact, a similar ultraviolet catastrophe of the one-point fluctuations in
nonequilibrium stochastic growth is well known to experts [46, 47]. It occurs in a broad
family of continuous stochastic interface growth models when the dimension of space
exceeds a model-dependent critical dimension [47]. Fortunately, for the KPZ equation
the critical dimension is 2, which allows for unhindered studies of the one-point statistics
in one dimension. For the diffusive lattice gases, however, the ultraviolet catastrophe
occurs in all physical dimensions.

One possible regularization of the ultraviolet catastrophe would introduce a small-
scale cutoff: most naturally, the lattice constant. Such a regularization, however, would
imply abandoning continuous theory with its many benefits. An advantageous regular-
ization alternative is, therefore, to characterize local density/temperature fluctuations
by the probability distribution P(U ,T ) of the density (or energy density) averaged over
a small but macroscopic spatial interval, |x|< L, at the observation time t =T :

1

2L

ˆ L

−L
dxu(x, t= T ) = U . (1)

This type of regularization was proposed in [47] for the stochastic surface growth. Here
we apply it to a freely expanding KMP gas with a finite total energy W. Since we are
interested in the long-time limit, T →∞, we may assume that the energy is initially
released at a point, which we choose for simplicity to be x =0:

u(x, t= 0) =Wδ (x) . (2)

The expected value of the locally averaged energy density U at the same point at time
T,

Ū =
W erf

(
L√
4T

)
2L

, (3)

readily follows from the mean-field (that is, zero-noise) solution,

ū(x, t) =
W√
4π t

e−
x2

4t , (4)

of the diffusion equation ∂tū(x, t) = ∂2xū(x, t) that governs the mean coarse-grained
energy density of the KMP gas at long times [1, 3, 17]. Here we study fluctuations,
including large deviations, of U around the expected value (3). In the long-time limit,
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T ≫ L2, the error function in equation (3) can be expanded at small argument, and we
obtain

Ū ≃ W√
4πT

, (5)

which is independent of the regularization length 2L.
It is convenient to rescale t, x and u by T,

√
T and W/

√
T , respectively. The initial

condition (2) becomes

u(x, t= 0) = δ (x) , (6)

while the condition (1) on the locally averaged density at t =T can be written as

ˆ ℓ

−ℓ
dxu(x, t= 1) = κ≡ 2ℓν , (7)

where ℓ= L/
√
T ≪ 1. The quantity ν = U

√
T/W is the rescaled regularized local energy

density, while κ= 2ℓν is the fraction of the total energy observed at t =T inside the
interval |x|< L.

The (rescaled) optimal path of the process conditioned on U is described by the well-
known MFT equations for the KMP model [5, 7]. They can be recast in the following
symmetric form [10, 26]:

∂tu= ∂x
(
∂xu+2u2v

)
, (8)

∂tv = ∂x
(
−∂xv+2uv2

)
. (9)

Equations (8) and (9) follow from a minimization of the action functional of a proper
path integral, constrained by equation (7), with respect to variations of u(x, t) [5, 7,
10, 26]. The minimization also yields, aside from equations (8) and (9), a boundary
condition at the (rescaled) final time,

v (x, t= 1) = λ [δ (x− ℓ)− δ (x+ ℓ)] , (10)

where λ is a Lagrange multiplier, to be ultimately expressed through ν and ℓ with the
help of equation (7) [47]. Importantly, the MFT equations and boundary conditions for
this problem obey the mirror symmetry and antisymmetry relations

u(−x, t) = u(x, t) and v (−x, t) =−v (x, t) . (11)

Once u(x, t) and v(x, t) have been found, one can calculate the rescaled action s
[7, 26]

s=

ˆ 1

0

dt

ˆ ∞

−∞
dxu2 (x, t) v2 (x, t) . (12)
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It is often simpler, however, to determine the action by using the ‘shortcut relation’

ds

dκ
= λ(κ) , (13)

which follows from κ and λ being conjugate variables, see e.g. [48]. The action gives the
desired probability distribution P up to a sub-leading, pre-exponential factor that we
do not attempt to evaluate:

lnP (U ,T ,ℓ)≃−
√
T s(ν,ℓ) . (14)

Since
√
T ≫ 1, equation (14) clearly has a large-deviation structure, with the rescaled

action s(ν,ℓ) playing the role of a rate function.
The main objective of this work is to determine the large-deviation function s(ν,ℓ) in

the leading order in the small regularization parameter ℓ but for arbitrary ν. In section 2
we describe typical, small fluctuations of ν around its expected value ν̄ = Ū

√
T/W . Here

one can use the Lagrange multiplier λ as a small expansion parameter [23]. We also
present in section 2 a free-energy argument that, as we argue, applies in a broad range of
the densities ν. In section 3 we apply the Inverse Scattering Method to obtain important
relations which, for sufficiently small ℓ, enable us to determine the rate function s(ν,ℓ),
to justify the free-energy argument and establish its applicability limits, and to find
additional asymptotics of the rate function. In particular, we show that, in the limit of
ℓ→ 0 at constant κ= 2ℓν, the rate function expressed in terms of κ= 2ℓν acquires a
universal (ℓ-independent) form. We also present two instructive examples of the optimal
configurations u(x, t= 1) at small ℓ and different λ (or ν), as predicted by the ISM,
as well as an example of the complete optimal path, computed by solving the MFT
equations numerically. In section 4 we briefly summarize and discuss our results.

2. Linear theory and free-energy argument

Typical fluctuations of ν around its expected value ν̄ = Ū
√
T/W are Gaussian. Here

one can linearize equations (8) and (9) with respect to |λ| ≪ 1 [23]. Then equation (9)
becomes simply ∂tv =−∂2xv. This anti-diffusion equation can be solved backward in
time with the ‘initial’ condition (10). The solution, for arbitrary ℓ, is

v (x, t) =
λ√

4π (1− t)

[
e−

(x−ℓ)2

4(1−t) − e−
(x+ℓ)2

4(1−t)

]
. (15)

The action s in the leading (second) order in λ can be obtained from equation (12)
by using the solution (15) for v(x, t) and setting u(x, t) = ū(x, t) from (a rescaled)
equation (4). Evaluating the double integral, we arrive at the following expression:

s(λ,ℓ) =
λ2

4
√
2π

[
e−

ℓ2

2 − erfc

(
ℓ√
2

)]
. (16)
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Then, using the shortcut relation (13), we can express the rescaled action in terms of
ν:

s(ν,ℓ) =
4
√
2π ℓ2 e

ℓ2
2

1− e
ℓ2

2 erfc
(

ℓ√
2

) (ν− ν̄)2 , (17)

where

ν̄ ≡ Ū
√
T

W
=

1

2ℓ
erf

(
ℓ

2

)
, (18)

and the validity of the linear theory requires that |ν− ν̄| ≪ ν̄.
For ℓ≪ 1, that is at sufficiently long time at fixed L, equations (17) and (18) simplify

to

s(ν,ℓ)≃ 4πℓ(ν− ν̄)2 (19)

and

ν̄ ≃ 1√
4π

, (20)

respectively. The variance of fluctuations of ν is equal to 1/(8πℓ). It diverges in the limit
of ℓ→ 0, exhibiting the ultraviolet catastrophe [47]. The 1/ℓ scaling of the variance is
to be expected. Indeed, the final rescaled energy density inside the small interval |x|< ℓ
is already almost constant and equal to 1/(8πℓ). In its turn, the variance of ν scales as
one over the energy content of this interval.

For future reference, the small-ℓ asymptotic of the action (16) in terms of λ is

s(λ,ℓ≪ 1) =
ℓλ2

4π
. (21)

Alongside with the shortcut relation (13), this again leads to the small-ℓ asymptotic (19).
When ℓ is small, the linear theory predicts that the optimal density profile at the

observation time in the ‘interior region’ |x| ≪ ℓ is flat:

u(|x|< ℓ, t= 1) =
1√
4π

+
λ

4π
+ . . . , (22)

where the ellipsis denotes sub-leading corrections in ℓ≪ 1. By assuming a flat density
profile u(|x|< ℓ,1) = ν from the start, one can obtain equation (22) from equations (13),
(19) and (20).

Importantly, at ℓ≪ 1, the gas in the small interior region |x|< ℓ has a sufficient
time to reach thermal equilibrium [47]. It is not surprising, therefore, that the Gaussian
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asymptotic (21), and hence (19), for the action also follows from the Boltzmann–Gibbs
free energy difference [7, 23]

s≃
ˆ ℓ

−ℓ
dx [F (u(x,1))−F (ū)−F ′ (ū)(u(x,1)− ū)] , (23)

where F (u) =− lnu is the equilibrium free energy density of the KMP gas, see e.g.
references [7, 23]. To see it, one should set in equation (23) ū= ν̄ = 1/

√
4π, use

equation (22) for u(|x|< ℓ,1) and expand the integrand in powers of λ up to, and
including, a quadratic term.

As we will show in section 3.3, at ℓ≪ 1 equation (23) actually holds well beyond
the linear theory, once the density at the final time t =1 is approximately uniform in
the interior region: u(|x|< ℓ,1)≃ ν = const. In this case equation (23) predicts

sequil (ν,ℓ)≃ 2ℓ
(ν
ν̄
− ln

ν

ν̄
− 1
)
. (24)

Notice that the equilibrium rate function (24) diverges logarithmically at ν→ 0, imply-
ing zero probability of forming a void—that is, a zero-energy region of a finite size—in
the KMP model [49]. This important property is characteristic of the KMP gas, and it
can be traced down to the nature of its microscopic model, which deals with a continuous
energy variable rather than with discrete particles.

3. Solution by the inverse scattering method

3.1. Solving the scattering problem: general

It was noticed in [10] that the MFT equations (8) and (9) formally coincide with
the derivative nonlinear Schrödinger equation (DNLSE) in imaginary space and time
[50]. Application of the Inverse Scattering Method (ISM) to the DNLSE was pion-
eered by Kaup and Newell [51] for initial-value problems. Adaptation of the method
to boundary-value problems in time has been described in detail in several papers [10,
13–15]. Nevertheless, we outline here the main steps of the method, as it applies to the
current problem, forgoing a derivation of equation (28) below, and skipping some of the
actual calculations, as they can be easily recovered. Following Kaup and Newell [51],
one starts with the auxiliary scattering problem for the vector field ψ(x, t;k),

∂xψ (x, t;k) = V (x, t;k)ψ (x, t;k) , (25)

where

V (x, t;k) =

(
− ζ2

2 −iv (x, t)ζ

−iu(x, t)ζ ζ2

2

)
(26)

and ζ =
√
ik. The variable k is a wave number describing the plane-wave boundary

conditions at x→∞ for ψ(x, t;k), while the t-dependence comes into play in the form
of dependence of V on t through u and v. We omit here those details of the scattering
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theory which we do not use directly, such as the time dependence of ψ, referring the
reader to [10] where more details are given. At this point, one assumes ψ(x, t;k) =(
αe−ikx

βeikx

)
at x→−∞. Then, using the linearity of equation (25) and the asymptotic

behavior of the solution at infinity, where u and v vanish, one obtains the following
asymptotic behavior of ψ(x, t;k) at x→+∞:

ψ (x, t;k) =

(
αa(k; t)e−ikx+βb̃(k; t)e−ikx

αb(k; t)eikx+βã(k; t)eikx

)
. (27)

The integrability of the problem manifests itself in the fact that the time evolution of
the parameters a, ã, b and b̃ is very simple:

a(k; t) = a(k;0) , ã(k; t) = ã(k,0) , ek
2tb(k, t) = b(k,0) , and

b̃(k, t) = b̃(k,0)ek
2t . (28)

These relations, alongside with the fact that a(k; t) is analytic in the upper half k -plane,
while ã(k; t) is analytic in the lower half plane [51], allows one to find explicit expressions
for v(x,0) and u(x,1), as we will see below. Another useful relation, although we will

not explicitly use it here, is given by a(k; t)ã(k; t)− b(k; t)b̃(k; t) = 1.

Now we proceed to calculating b̃(k;0) and ã(k;0) by solving the scattering problem,
equation (25), at time t =0 setting α=0 and β=1. The solution of the scattering
problem is greatly aided by the fact that u(x,0) = δ(x), see equation (6). We obtain

b̃(k;0) =
ã(k;0)a(k;0)− 1

−iζ
, b(k;0) =−iζ, ã(k;0) = 1− ikQ− (k)

a(k;0) = 1− ikQ+ (k) , (29)

where

Q+ (k) =

ˆ ∞

0

eikxv (x,0)dx, Q− (k) =

ˆ 0

−∞
eikxv (x,0)dx and

Q(k) =Q+ (k)+Q− (k) . (30)

A similar exercise can be performed at t =1, this time making use of the simple
form of v(x,1), given by equation (10), to solve the scattering problem, equation (25).
Let us define the following quantity, which will prove useful in the sequel:

Iba (k) =

ˆ b

a

e−ikxu(x,1)dx . (31)

This produces the result

b̃(k;1) = λ2kζI+ℓ−ℓ +2λζ sin(kℓ) , ã(k,1) = 1+2λkI∞ℓ sin(kℓ)+

+λike−ikℓI+ℓ−ℓ +λ2k2I+ℓ−ℓI
∞
ℓ . (32)

One could also derive equations for the other scattering parameters, a and b, at t =1,
and then use equation (28) to obtain a set of closed nonlinear integral equations for u

https://doi.org/10.1088/1742-5468/ad8b39 8
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and v, as it was recently done in another context in [52], see also references [43, 44].
It is not known, however, how to solve these nonlinear integral equations analytically,
and their numerical solution, although useful in general, offers no clear advantage over
directly solving the original MFT equations (8) and (9).

We thus omit the expressions for a and b for the sake of brevity and proceed by invok-
ing a simplifying asymptotic limit of small ℓ which, as explained in the Introduction, is
directly relevant in the context of the regularized local energy density at long times. In
the next subsection, we use this limit to obtain closed-form expressions for u(x,1) and
v(x,0), up to a single parameter which can be computed numerically. This parameter
is the value of the rescaled regularized local energy κ, and the equation to be solved
numerically is equation (45) below.

3.2. Solving the scattering problem for small ℓ

For small ℓ it is natural to assume that the integral Iℓ−ℓ(k) is approximately independent

of k. Indeed, Iℓ−ℓ(k) is the Fourier transform of a function, u(x,1)H(ℓ− |x|) (where H (x )
is the Heaviside function), which is concentrated in a vanishingly small region around
the origin. Essentially, this function behaves like a delta function, therefore its Fourier
transform is nearly constant. We proceed with this assumption and check its validity a
posteriori.

Assuming that Iℓ−ℓ(k) is a constant, we can write Iℓ−ℓ(k)≃ Iℓ−ℓ(0)≡ κ (see

equation (7)). Now, instead of having to determine the function Iℓ−ℓ(k) in order to
solve the problem, we only have to determine self-consistently the parameter κ. In the
limit of small ℓ, equation (32) yields the following approximations for b̃ and ã:

b̃(k;1)≃−iλζ3 (λκ+2ℓ) , (33)

ã(k;1)≃ 1+λikκ+λk2 (λκ+2ℓ) I∞ℓ . (34)

We now make use of the simple relation between b̃(k;1) and b̃(k;0), given by

equation (28) and the equation for b̃(k;0), given in equation (29), together with the
expression in equation (33), to write an equation for Q±:

(1− ikQ+ (k))(1− ikQ− (k)) = 1+λ(λκ+2ℓ)k2e−k
2

. (35)

Similar equations have recently appeared in the ISM as applied to several MFT and
OFM settings [10, 12–16, 44]. Equation (35) can be solved by the Wiener–Hopf method.
In our case, however, this equation still has one undetermined parameter κ. To obtain an
equation for this parameter we can use the simple relation between ã(k;1) and ã(k;0),
given in equation (28), and the equation for ã(k;0), given in equation (29) together with
the expression in equation (34). We obtain

λκ− ikλ(2ℓ+κλ)

ˆ ∞

ℓ

e−ikxu(x,1)dx=−
ˆ 0

−∞
eikxv (x,0)dx. (36)
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Integrating the second term by parts and making an obvious change of variables in the
last term, we can rewrite this equation in the following form:

λκ−λ(2ℓ+κλ)e−ikℓu
(
ℓ+,1

)
=

ˆ ∞

ℓ

λ(2ℓ+κλ)e−ikxu ′ (x,1)dx+

ˆ ∞

0

e−ikxv (x,0)dx,

(37)

where u(ℓ+,1) denotes the limiting value of u(x,1) as x approaches the point x= ℓ from
the right, and we have used the antisymmetry relation v(−x, t) =−v(x, t). For small ℓ
one then obtains, to leading order in ℓ, the following relation:

λκ−λ(2ℓ+κλ)u
(
ℓ+,1

)
=

ˆ ∞

ℓ

e−ikx [λ(2ℓ+κλ)u ′ (x,1) + v (x,0)]dx. (38)

Sending k to ∞, we observe that the integral on the right hand vanishes as 1/k, since
u ′(x,1) and v(x,0) are regular at x= ℓ. Therefore, the left hand side, being independent
of k, must vanish, and we obtain

κ= (2ℓ+λκ) u
(
ℓ+,1

)
. (39)

Then, since the left hand side of equation (38) is zero for any k, the right hand side
must vanish identically, which leads to

v (x,0) =−λ(2ℓ+λκ)u ′ (x,1) . (40)

Combining equation (39) and (40) we obtain the desired equation for κ:

κ=
1

λ

ˆ ∞

0

v (x,0)dx=
Q+ (0)

λ
. (41)

Together, equations (35) and (41) give a closed set of equations for v(x,0), since
Q±(k) are the Fourier transforms of v(x,0)H(±x). Indeed, as already mentioned, the
quantities 1− ikQ± are analytic in the upper and lower half k -planes, respectively.
Therefore, we can interpret this equation as the decomposition of the function on the
right hand side into a product of functions analytic in the upper and lower half planes,
respectively. It is then natural to take the logarithm of this equation. This is facilitated
by the following definition of M±:

1− ikQ± (k) = eM±. (42)

The decomposition of the logarithm of the right hand side of equation (35) into M±,
which in turn is the logarithm of 1− ikQ±, is performed in the usual way to give the
following result:

M± =±
ˆ ∞

−∞

ln
(
1+λ(2ℓ+λκ)k ′2e−k

′2
)

k ′− k∓ i0+
dk ′

2π i
, (43)
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which yields an expression for Q±:

ikQ± (k) = 1− exp

±ˆ ∞

−∞

ln
(
1+λ(2ℓ+λκ)k ′2e−k

′2
)

k ′− k∓ i0+
dk ′

2π i

 . (44)

We note that since u(x,1) vanishes at infinity, the functions Q±(k) are regular at
the origin, which means that the left hand side vanishes as k → 0. One then verifies that
the right hand side vanishes in this limit as well. This check is necessary, because an
additive constant may, in principle, appear on the right hand side of equation (43), a
possibility that we have tacitly ignored above.

It is now possible to find Q+(0) from equation (44) and plug it into equation (41).
This calculation yields a closed equation for κ (or ν = κ/2ℓ),

λκ=

ˆ ∞

−∞

ln
[
1+λ(2ℓ+λκ)k2e−k

2
]

k2
dk

2π
, (45)

which can be solved numerically.
We note here an important point about the choice of branch of the logarithm in

equations (44) and (45). A linear analysis shows that for small |λ| (the corresponding
strong inequality for λ depends on ℓ) the correct solution is obtained by choosing the
standard branch of the logarithm. One can ask then whether a branch point of the
logarithmic function can cross the real k -axis at larger |λ|. If this happens, localized
soliton-like solutions may appear [13, 44], and a careful analysis of the choice of the
proper branch of the logarithmic function must be performed. Specifically for the KMP
model, the localized solution—coupled propagating u- and v pulses—is known as a
doublon [13, 26, 28]. Importantly, in the regime of small ℓ that we are dealing with
here, the doublons can be ruled out on the physical grounds [26, 28].

At this point we also mention that the assumptions that we have made about the
solution at small ℓ, e.g. that Iℓ−ℓ(k) is independent of k, that sin(kℓ) can be replaced by
kℓ, etc, can now be confirmed. This is done by examining relations (28), which now have
explicit expressions associated with them, and taking the small ℓ limit. The analysis
is aided by the fact that integrals, such as those appearing in (43) have dominant
contributions in the region k≪ ℓ−1.

Equation (45), combined with the shortcut relation (13), suffices for the purpose of
calculating the action s(ν,ℓ) which serves as the rate function of the probability density
P(U ,T ,ℓ), see equation (14). In their turn, equations (44) and (45) yield the optimal
solution for the conjugate field v(x,0), while the relationship (40) between v(x,0) and
u ′(x,1) allows one to find the optimal energy density u(x,1) as well.

3.3. Rate function and its asymptotics

For general λ, equation (45) for ν can only be solved numerically. As an example, the
left panel of figure 1 shows a fragment of the resulting dependence of ν upon λ for
ℓ= 0.01. The point λ=0 corresponds to the mean-field value ν = ν̄ = 1/

√
4π, as to

be expected from equation (20). The right panel of figure 1 shows the rate function
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Figure 1. Left panel: ν = ν(λ), found by numerically solving equation (45) for
ℓ= 0.01 and different λ. Right panel: the rate function s vs. ν for this ℓ (the solid
line), the linear theory prediction (19) (the dashed line) and the prediction from
the free-energy difference (24) (the dot-dashed line). The inset shows a blowup of
the interval 0< ν < ν̄.

s(ν) obtained from equation (13) by integrating numerically the inverse function λ(ν).
The inset compares this s(ν) with predictions from the linear theory, equation (19), and
from the free-energy difference, equation (24). As one can see, the Gaussian asymptotic,
predicted by the linear theory, applies only in a narrow region of ν around ν̄, whereas
the free-energy difference captures s(ν) in a much broader range of ν.

To understand the formal reason behind the success of the free-energy prediction, we
notice that, because of the factor e−k

2
of the integrand in equation (45), the characteristic

width of the integration region in k is O(1). Let us assume (and check a posteriori)
that

2|λℓ(1+λν) | ≪ 1, (46)

and expand the logarithm keeping only the linear term: ln [1+ 2λℓ(1+λν)k2e−k
2
]≃

2λℓ(1+λν)k2e−k
2
. Evaluating the elementary integral and solving the resulting simple

algebraic equation for ν, we obtain

ν =
1

λc−λ
, where λc =

√
4π ≡ 1/ν̄ . (47)

Now integrating the shortcut relation (13) with κ= 2ℓν = 2ℓ/(λc−λ), taken from
equation (47), we reproduce the free-energy prediction (24). As we already discussed,
the Gaussian asymptotic (19), predicted by linear theory, is a particular limit of
equation (24), only valid in the vicinity of ν = ν̄. To obtain this asymptotic directly
from equation (45), one should expand the integrand in the powers of λ up to and
including the second order, and keep only the leading (first-order) term in ℓ≪ 1.

Importantly, for equation (47) to make sense, λ must obey the condition

−∞< λ < λc . (48)
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Figure 2. Left panel: κ= 2ℓν versus λ, found by numerically solving the universal
(ℓ→ 0) equation (49). The inset focuses on the region close to the tangent bifurc-
ation point λ= λc =

√
4π. Right panel: the rate function s>(κ) in terms of the

energy fraction κ alongside with its small-κ asymptotic s>(κ→ 0)≃
√
4πκ, and

the large-κ asymptotic (50).

In addition, the assumed strong inequality (46) can be justified only if λ is not too
close to λc: λc−λ≫ ℓ. As a result, the free-energy prediction (24) for the rate function
applies for all ν much smaller than O(1/ℓ)≫ 1.

What happens at ν ≳O(1/ℓ), that is far from equilibrium? Here the rate function
can be determined numerically from equations (13) and (45), as shown in figure 1.
However, an important simplification occurs in the limit of ℓ→ 0 while keeping κ= 2νℓ
constant. As can be checked a posteriori, here the term λν inside the parentheses in
equation (45), is much larger than 1. Neglecting this 1 in the zeroth order in ℓ at fixed
κ= 2ℓν, one arrives at a universal equation for κ= 2ℓν versus λ:

2πλκ=

ˆ ∞

−∞

ln
(
1+λ2κk2e−k

2
)

k2
dk . (49)

The resulting function κ(λ), obtained numerically, is shown on the left panel of figure 2.
In this limit κ(λ) vanishes identically for all λ < λc, and it undergoes a tangent bifurc-
ation at λ= λc. The right panel of figure 2 shows the resulting universal rate function
s>(κ) alongside with its two asymptotics: s>(κ→ 0)≃

√
4πκ, and the asymptotic at

κ→ 1. Importantly, the κ→ 0 asymptotic matches the ν≫ ν̄ asymptotic of the equilib-
rium rate function, which is described by the first term in the r.h.s. of equation (24).

The asymptotic at κ→ 1 can be expressed in terms of product log (Lambert W )
function, very similarly to how it has been done in [10]. Alternatively, it can be presented
in a parametric form as follows:

κ(λ→∞)≃ 1− 6
√
lnλ

πλ
, s> (λ→∞)≃ 4(lnλ)3/2

π
. (50)

When ℓ is small but finite, the tangent bifurcation at λ= λc is smoothed out, and
κ is non-zero even for λ < λc. As ℓ goes down, the functions κ(λ,ℓ), calculated from
equation (45) for different ℓ, converge to the universal curve κ(λ). This convergence in
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Figure 3. Convergence of κ(λ,ℓ) to the universal function κ(λ) for ℓ= 10−2, 3×
10−3 and 10−4 (from top to bottom).

evident in figure 3: at ℓ= 10−4 the function κ(λ,ℓ) is already almost indistinguishable
from the universal curve shown in the inset of the left panel of figure 2.

Now we are in a position to examine the validity of our analytical results. The
main assumption we made in order to arrive at equations (33) and (34) is that, to

a leading order in ℓ, the integral
´ ℓ
−ℓ e

−ikxu(x,1) is independent of k in the relevant
range of k in the problem, and therefore it can be approximated by 2νℓ. This requires
that the characteristic length scale of u(x,1), which is O(ℓ), be much smaller than the
relevant 1/k. The latter is determined by the effective width of the integration region
in equation (45). For −∞< λ < λc, ν is given by equation (47). As one can check, in
this case the relevant range of k is O(1), and the strong inequality ℓ≪ 1 suffices.

For λ≳ λc an additional condition appears. This is because in this case we obtain
νℓ≃ 1. As a result, the effective width of the integration region over k in equation (45)

is O(
√
lnλ2). This quantity should be much smaller than 1/ℓ:

ℓ
√
lnλ2 ≪ 1. (51)

This condition invalidates the rate function, that we found here, when κ becomes too
close to its (unreachable) maximum possible value 1.

3.4. Optimal paths

As we have seen, the ISM also predicts the optimal density profile u(x,1) and the optimal
profile of the conjugate field v(x,0). These can be found numerically, in a straightforward
manner, from equations (40), (44) and (45). Two examples of the optimal density profiles
u(x,1) for λ=10 and λ=−30 are shown in figure 4. For comparison, also shown is the

expected, that is mean-field, density profile e−x
2/4/

√
4π. As one can see, the two optimal

density profiles in these cases are very different and quite instructive.
By virtue of the shortcut relation (13) one does not have to know the full optimal

path u(x, t) and v(x, t) for the calculation of the rate function s(ν,ℓ). It is still inter-
esting, however, to compute the optimal path, as it provides a valuable insight into the
mechanism of the large deviation in question. Here the ISM, which focuses on u and v
only at t =0 and t =1, is insufficient, and one has to resort to a full numerical solution of
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Figure 4. Solid lines: u(x,1) for λ=10 (left panel) and −30 (right panel) as pre-
dicted by the ISM for ℓ= 0.05. Dashed lines: the expected (mean-field) density

profile (4π)−1/2e−x
2/4. Note the different vertical scales.

Figure 5. The optimal path for ℓ= 1 and λ=5, computed with the back-and-forth
iteration algorithm [54]. Shown are u(x, t) at t= 1/4, 1/2, 3/4 and 1 (left panel)
and v(x, t) at t =0, 1/4, 1/2 and 3/4 (right panel).

the nonlinear partial differential equations (8) and (9) with the boundary conditions (6)
and (10). Fortunately, such a solution—by the back-and-forth iteration algorithm due
to Chernykh and Stepanov [54] is available and has by now become standard. As an
example, figure 5 shows some snapshots of the optimal path for ℓ= 1 and λ=5, that
we computed with this algorithm. One salient feature of this finite-ℓ setting (in contrast
to the small-ℓ limit we dealt with in most of section 3) is a visibly non-uniform density
profile in the internal region |x|< ℓ.

4. Summary and discussion

By combining the MFT and the ISM, we determined the long-time large-deviation stat-
istics of the locally-averaged energy density in a freely expanding Kipnis–Marchioro–
Presutti lattice gas. We showed that the corresponding rate function exhibits two dis-
tinct regions. One region corresponds to relatively small local densities and is described
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by the equilibrium free-energy argument. The other region, associated with large densit-
ies, is fundamentally non-equilibrium. As time increases, the rate function as a function
of the energy content of the interval |x|< ℓ converges to a universal, ℓ-independent form.

An attempt to solve this problem without relying on the strong inequality ℓ≪ 1
would be an interesting endeavor. Such an extension is not required in the context of
regularization of the single-point density. On the other hand, it would make a natural
connection to the statistics of accumulated current of matter or energy in a specified
region of space [6, 7]. There is also an interesting formal analogy between the setting with
arbitrary ℓ and the problem of finding the joint distribution of two accumulated cur-
rents in the Simple Symmetric Exclusion Process. The latter problem has been recently
formulated in terms of the ISM (for the nonlinear Schrödinger equation rather than for
the DNLSE), and a possible approach to the solution has been explored [52].

At ℓ≳ 1 and sufficiently small ν (that is, sufficiently large negative λ), one should
expect a propagating doublon to appear, which will affect the choice of the branch of
the logarithm in equations (44) and (45). The physical mechanism behind the doublon
formation is quite simple [10, 26, 28]: it pays off in terms of the action for the fluctu-
ations to form a propagating doublon if the process is conditioned on evacuation of a
sufficiently large amount of energy from a sufficiently long interval |x|< ℓ. This regime
is quite interesting, as one would expect a breaking of mirror symmetry (11) in this case.
The reason is that the cost, in terms of the action, of two mirror-symmetric outgoing
doublons is expected to be higher than that of a single doublon with a larger amplitude
that transports the same amount of energy [28].

It is worth mentioning that the governing MFT equations (8) and (9) can be also
obtained for all diffusive lattice gases with a constant diffusivity and a quadratic density
dependence of the mobility. However, the delta-function initial condition (6), which was
crucial in our solution, can be relevant only for those lattice gases where the local density
is unbounded from above. These include, for example, the Simple Symmetric Inclusion
Process (SIP) [15, 55], but exclude the Simple Symmetric Exclusion Process (SSEP)
[1–3].

In conclusion, over the past three years, the ISM has been instrumental in solving an
increasing number of field-theoretical large-deviation problems [10, 12–16, 43, 44, 53].
The present work, however, appears to be the first instance where the ISM has been
combined with a perturbation approach exploiting a small parameter (in this case the
rescaled regularization length ℓ) unrelated to a Lagrange multiplier. We believe that
this approach holds significant promise.
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