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We present the expression for differential resistance of a disordered two-dimensional elec-
tron gas placed in a perpendicular magnetic field and subject to microwave irradiation.
We demonstrate that in strong dc electric fields the current oscillates as a function of
the strength of the applied constant electric field. We demonstrate that the amplitude of
oscillations of the differential resistivity is characterized by the back-scattering rate off
disorder. We argue that the dominant contribution to the non-linearity in strong elec-
tric fields originates from the modification of electron scattering off disorder by electric
fields, or so-called ”displacement” mechanism. The non-equilibrium mechanism, which
is related to modification of electron distribution function by electric fields turns out to
be inefficient in strong electric fields, although it describes current in weak electric fields.
We further analyze the positions of maxima and minima of the differential resistance as
a function of the applied electric field and frequency of microwave radiation.
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1. Introduction

The measured transport coefficients of the two-dimensional electron systems (2DES)
formed in high-mobility GaAs/AlGaAs heterostructures are strongly non-linear
functions of external parameters. One manifestation of such non-linear behavior is
the effect of the microwave radiation on dc conductivity of 2DES, which results in gi-
ant magnetooscillations 1 and an appearance of the zero resistance states (ZRS) 2,3.
This phenomenon was also observed by many other experimental groups 4,5,6 and
was the focus of numerous theoretical publications 7,8,9,10,11,12,13,14. Similar oscil-
latory dependence on magnetic field of the differential resistivity of 2DES in static
electric fields was discovered 15,16,17,18. Further experiments 19,20 demonstrated even
more complicated behavior of 2DES in combined dc and microwave electric fields.
All these observations call for further theoretical work in this area. Quantitative the-
ory will help to extract various microscopic parameters of 2DES from experimental
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data.
In this paper we discuss the behavior of current in mixed constant and oscillating

electric fields. We focus on the limit of strong electric fields, the regime where the
current oscillations develop. In this limit, we can neglect the non-equilibrium con-
tribution to current 12, which arises due to the modification of electron distribution
function by electric fields. The non-equilibrium contribution is characterized by the
inelastic rate of electron distribution function, and this rate is typically small at
low temperatures and in weak electric fields 21. However, the electron scattering off
disorder in strong electric fields also leads to suppression of the non-equilibrium dis-
tribution function and therefore, the contribution to current due to non-equilibrium
mechanism turns out to be smaller than the contribution, arising from the displace-
ment mechanism 22,7,11.

2. Differential resistivity

We present the expressions for the differential resistance

ρ = ∂E‖/∂j, (1)

where E‖ is the electric field in the direction parallel to the current in the 2DES,
details of calculations will be presented elsewhere 23. We consider the effect of inter-
play between electron motion in crossed magnetic and electric fields and scattering
off disorder. We assume that disorder is completely characterized by electron scat-
tering rate 1/τθ on angle θ. In particular, the quantum scattering rate and the
transport scattering rate, which appear below, are determined by 1/τθ through
standard expressions

1
τtr

=
∫

1− cos θ

τθ

dθ

2π
,

1
τq

=
∫

1
τθ

dθ

2π
. (2)

Within this model, the differential resistivity in the limit of large constant cur-
rents can be represented as a sum of the Drude resistivity ρD and the non-linear
correction δρ, i.e.

ρ = ρD + δρ; ρD =
2

e2ν0v2
Fτtr

,
δρ

ρD
=

(4λ)2τtr

πτπ
F (εdc, εac,Pω). (3)

Here ν0 is the electron density of states in zero magnetic field and vF is the
Fermi velocity. The non-linear correction to the resistivity is proportional to the
rate of backscattering off disorder 1/τπ and the square of parameter λ. Parameter
λ = exp(−π/ωcτq) gives the amplitude of oscillations in the density of states for
overlapping Landau levels, ν(ε) = ν0 [1− 2λ cos(2πε/ωc)], when ωcτq . 1. Function
F (εdc, εac,Pω) is defined as

F (εdc, εac,Pω) = cos 2πεdcJ0

(
4
√
Pω sin πεac

)

−2εac
εdc

sin 2πεdc cos πεac
√
PωJ1

(
4
√
Pω sin πεac

)
, (4)
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where Jn(x) are the Bessel functions. Here we introduced dimensionless parameters

εdc =
4πj

enλFωc
, εac =

ω

ωc
, Pω =

v2
F e2E2

ω

ω2 (ω ± ωc)
2 . (5)

These parameters are proportional to the magnitude of constant current j, the
frequency ω and the power of microwave radiation, respectively.

The above result, Eq. (3), is applicable when the following conditions are met:
(i) Landau levels overlap, or ωcτq . 1; (ii) the electron temperature T is large,
T À max{ωc, ω}; (iii) constant electric current is large, εdc À 1. The latter in-
equality allows us to neglect contribution to current from the formation of the
non-equilibrium distribution function. We also note that the expression for the mi-
crowave power is written for a circular polarization of microwave radiation, the sign
in the denominator should be chosen according to the orientation of magnetic field
and sense of microwave polarization.

In the absence of microwave radiation F (εdc, εac, 0) = cos 2πεdc, we recover the
previous result of 21. Figure 1 shows F (εdc, εac,Pω) as a function of εdc for several
values εac and Pω. We now analyze behavior of F (εdc, εac,Pω) at small values of
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Fig. 1. (Color online) The function F (εdc, εac,Pω) as defined by Eq. (4) for (a) εac = 2.25,
Pω = 0, solid line (black); (b) εac = 2.25, Pω = 0.1, dashed line (red); (c) εac = 2.5, Pω = 1
dashed dotted line (blue); (d) εac = 2.5, Pω = 8, dotted line (green).
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microwave power, Pω ¿ 1. Using the series expansion of Bessel functions, J0(x) '
1− x2/4 and J1(x) ' x/2, we obtain

F (εdc, εac,Pω) = (1− 2Pω) cos 2πεdc (6)

+ 2Pω

[
cos 2πεdc cos 2πεac − εac

εdc
sin 2πεdc sin 2πεac

]
.

We briefly investigate the position of maxima and minima of the differential resis-
tance as a function of εdc and εac at small powers of microwave radiation, Pω . 1.
In this case, F (εdc, εac,Pω) ∝ (εdc + εac) cos(εdc + εac) + (εdc − εac) cos(εdc − εac).
The resistance reaches the maximum when both terms of the last expression are
at their maximum. For εac > εdc this gives (εac, εdc)max = (m ± 1/4, n ∓ 1/4),
with m,n being integers. The condition for the minimum of the resistance reads
(εac, εdc)min = (m±1/4, n±1/4). In particular, if εdc ' εac, function F (εdc, εac,Pω)
can be written in the form

F (εdc, εac,Pω) ≈ (1− 2Pω) cos 2πεdc + 2Pω cos [2π(εdc + εac)] . (7)

We notice that a direct addition of two different parameters εdc and εac has no
physical meaning. However, we believe that, in the considered region εdc ' εac, it
is the second term which is responsible for experimentally observed structure 19 of
the differential resistance as a function of the sum εac + εdc.

3. Conclusions

We calculated the differential resistivity of two dimensional electron gas at large
values of magnitude of direct current. We found that the differential resistivity
indeed exhibits magneto-oscillations and the phase of these oscillations is affected
by the frequency of microwave radiation. The amplitude of magnetooscillations of
the resistivity is proportional to the rate of electron backscattering off impurities,
and therefore, measurements of the differential resistivity can be used to characterize
the structure of disorder in two-dimensional electron systems in heterostructures.
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