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Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based super-
conductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several
models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations
promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom,
charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an
unbiased approach, inwhichwe treatmagnetic and orbital fluctuations on equal footing.Key to our approach is
the inclusion of the orbital character of the low-energy electronic states into renormalization group (RG)
analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are
known to promote sþ− superconductivity, also promote an attraction in the orbital channel, even if the bare
orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi
pockets are small, the system first develops a spontaneous orbital order, then sþ− superconductivity, and
magnetic order does not develop down to T ¼ 0. We argue that this scenario applies to FeSe. In systems with
larger pockets, such as BaFe2As2 and LaFeAsO, we find that the leading instability is either towards a spin-
density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin
fluctuations and is vestigial to stripe magnetism. Our results provide a unifying description of different iron-
based materials.
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I. INTRODUCTION

The interplay between magnetism and orbital order and
how the two affect superconductivity are the most interest-
ing, yet most controversial, aspects of the physics of iron-
based superconducting materials (FeSCs). Both orbital and
magnetic fluctuations have been proposed as the glue that
binds electrons together for superconductivity, yielding
different pairing states [1–9]. However, which of the two
degrees of freedom, orbital or spin, is the driving force, is a
hotly debated topic [10–23].
The proponents of either orbital or magnetic fluctuations

put forward models in which the unwanted degree of
freedom is quenched. In a class of models where spin
degrees of freedom are quenched [6,8,24], density fluctua-
tions with opposite signs on the Fe dxz and dyz orbitals are
enhanced as the temperature is lowered. Consequently,
below a temperature Ts the occupations of the dxz and dyz
orbitals become unequal, breaking the tetragonal symmetry

of the system and triggering a structural transition. This C4-
breaking orbital order can either have zero wave vector, in
which case it does not break translational symmetry, or
have a finite modulation. In the band basis, orbital order
with zero momentum is a Pomeranchuk-type order in the
d-wave charge channel (d-POM) [25,26]. Such an order
has been extensively studied in recent years in the context
of quantum criticality [8,27]. Orbital order with a finite
momentum connecting hole and electron pockets also
attracted interest [1,6,8,9] as fluctuations of such order
parameter mediate superconductivity (SC) and favor a sign-
preserving sþþ SC order.
In models where orbital degrees of freedom are

quenched, orbital order is a spin-off of stripe spin-
density-wave (SDW) magnetism. Stripe SDWorder breaks
the tetragonal symmetry between the x and y directions in
addition to breaking the spin-rotational symmetry [28]. It
has been shown [10,18] that the breaking of the discrete
tetragonal symmetry occurs prior to the breaking of the
continuous spin-rotational symmetry, via the development
of a composite Ising-nematic order. By symmetry argu-
ments, this order induces orbital order [29]. Magnetic
fluctuations that drive Ising-nematic order also favor a
sign-changing sþ− SC [2,3,5,10,30].
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Each set of models uses approximations that have been
strongly questioned. Orbital models assume attractive local
(Hubbard) intraorbital interaction [6,8], in variance with
first-principles calculations [31], while magnetic models
assume a priori that magnetic fluctuations are the strongest
[4], and often neglect the orbital content of low-energy
excitations [32,33]. In reality, however, magnetic and orbital
degrees of freedomare coupled and affect eachother [34,35].
In this work, we treat magnetism, superconductivity, and

orbital order on equal footing. We use the analytical renorm-
alization group (RG) technique, which is the most unbiased
way to analyze how different interaction channels affect each
other and what is the leading (and the subleading) instability
in the system [25,32,33,36–39]. We list potential instabilities
in Fig. 1 and show how each reconstructs the fermionic states.
We consider a model with repulsive intrapocket and inter-
pocket interactions, like in earlier studies of the interplay
between magnetism and superconductivity. However, in
distinction to earlier works [18,22,32,33], we explicitly
include into consideration the orbital composition of the
low-energy electronic states. This allows us to consider
fluctuations in the orbital channel on equal footing with
fluctuations in the magnetic and superconducting channels.
TheRGanalysis allows one to understandhow interactions

in different channels evolve as fermions with higher energies
are gradually integrated out, and how the system behaves at
progressively lower energies, which for practical purposes
means lower temperatures. In RG language, this evolution is
described by the flow of the couplings in various channels.
All previous RG-related studies, either analytical (parquet
RG, denoted pRG) or numerical (functional RG, denoted
fRG), found that at the beginning of RG flow the interaction
in the SDW channel is the strongest, i.e., spin fluctuations
increase first. Increasing spin fluctuations affect the inter-
action in the sþ− SC channel by providing an attractive
pairing component. As a result, at low energies the sþ−

channel is necessarily attractive, even if the bare interaction in
this channelwas repulsive. To see this, one does not even need
to do full-scale RG analysis as attraction in the sþ− channel
due to spin fluctuations appears already in RPA-type
approaches, which use a subset of processes included in RG.
In this paper, we report new results that go beyond earlier

studies. First, we argue that the “push” from magnetic
fluctuations not only makes the SC interaction attractive,
but it also gives rise to attraction in the orbital (d-POM)
channel. The latter effect cannot be obtained within RPA
and requires the full RG analysis. Second, if we compare
running interactions in various channels, as was done in
earlier RG works on FeSCs, we find that at low energies the
largest attractive interactions are in the SDW and SC
channels, while the interaction in the d-POM channel is
a distant third [25]. We argue, however, that the result
changes in two aspects once we extend the RG analysis
and compute susceptibilities in SDW, SC, and d-POM
channels and compare the exponents. Then we find that

(i) the SDW susceptibility does not actually diverge down
to the lowest energies as the growth of SDW fluctuations is
halted by feedback effects from SC and d-POM fluctua-
tions and (ii) the susceptibility in d-POM channel has a
larger exponent than the one in sþ− SC channel. The
outcome of this analysis is that, upon lowering the
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−
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FIG. 1. Low-energy states and potential instabilities. The
orbital content of the 2D Fermi surface of the Fe-based super-
conductors is plotted together with the changes in the fermionic
excitations promoted by one of three electronic instabilities—sþ−

superconductivity, stripe SDW magnetism, and nematicity
(breaking of C4 lattice rotational symmetry), which necessarily
gives rise to orbital order. The low-energy excitations live near
hole pockets centered at the Γ point (kx ¼ ky ¼ 0), and near
electron pockets centered at ð0; πÞ ðπ; 0Þ in the 1-Fe Brillouin
zone. Excitations near the hole pockets are made out of dxz and
dyz orbitals, while the ones near the ð0; πÞ [ðπ; 0Þ] electron
pockets are made out of dxz and dxy (dyz and dxy) orbitals [3,4]. In
some systems, there exists a third hole pocket (not shown)
centered at ðπ; πÞ and made out of the dxy orbital. sþ− super-
conductivity gaps out low-energy excitations, and the super-
conducting order parameter changes sign between hole and
electron pockets. Stripe SDW magnetism with momentum
ð0; πÞ or ðπ; 0Þ (shown) mixes hole and electron states by band
folding and splits hole and electron pockets into even smaller
subpockets. Orbital order elongates the two hole pockets in
opposite directions and makes one electron pocket larger and the
other one smaller.
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temperature, the system first develops d-POM order (i.e.,
a spontaneous orbital order), then, at a lower T, it
develops sþ− SC, while SDW order does not develop
down to T ¼ 0.
This sequence of transitions is consistent with what is

observed in FeSe [24], andwe argue that nematicity in FeSe is
the consequence of a spontaneous orbital order.We apply our
results to FeSe in Sec. V. We, however, do not argue that this
sequence of transitions should hold in all FeSCs because the
RG flow extends only down to energies comparable to the
(largest of) Fermi energies EF. If EF is small enough, as was
argued in Ref. [40] based on several measurements, the
leading instability (in our case, d-POM) occurs at T ins ∼ EF
and is captured within RG. If, however, EF is larger, the RG
flow runs only down toOðEFÞ, as at smaller energies different
channels no longer “talk” to each other. In this situation, the
d-POM channel remains weak, and the system develops
either SDW or sþ− SC order. This is the case for most iron-
based systems (see, e.g., Ref. [41], which detected EF ∼
200 meVon electron pockets inweakly dopedBaFe2As2). In
this situation, the nematic order is most likely promoted by
composite stripe SDW fluctuations, which force the C4

symmetry to break at a higher temperature than O(3) spin-
rotation symmetry (an Ising-nematic order).
The structure of the paper is the following. In Sec. II,

we introduce the model and discuss the approximations.
In Sec. III, we consider the RG flow for the couplings,
vertices, and susceptibilities for the model in which we
approximate the orbital content of the electron pockets as
either pure dxz or pure dyz. In Sec. IV,we do the same analysis
for the model in which we approximate the orbital compo-
sition of the two electron pockets as pure dxy. We show that
the outcome of RG flow is the same in both cases. In Sec. V,
we compare our results with the experiments, and in Sec. VI,
we compare our approach with other theoretical scenarios for
FeSe. We present our conclusions in Sec. VII. To keep the
presentation focused, some aspects of our analysis aremoved
into Appendixes. Some technical details of RG analysis are
presented in the Supplemental Material (SM) [42].

II. MODEL

A. Free-fermion Hamiltonian

We depart from the microscopic model containing
several neighbors hopping among all five 3d Fe orbitals
and convert it into the band basis in order to distinguish
high-energy and low-energy states. The orbital composition
of the excitations does not show up in the kinetic part of the
Hamiltonian in the band basis, but it imposes angular
dependencies on the four-fermion interaction terms. As we
show, the terms with different angular dependencies flow
differently under RG.
The fermionic structure in the band basis contains hole

and electron pockets. Two hole pockets are centered at the
Γ point (kx ¼ ky ¼ 0) and are constructed out of dxz and

dyz orbitals [43] (Fig. 1). To construct the low-energy
Hamiltonian for states near hole pockets, we follow
Ref. [44] and introduce the low-energy spinor wave
function ψ†

σðqÞ ¼ ½f†1;σðqÞ; f†2;σðqÞ; d†1;σðqÞ; d†2;σðqÞ�, where
the subscripts μ, ν ¼ 1, 2 refer to the xz and yz orbital
content, respectively. We use 1-Fe Brillouin zone notations
and neglect processes with momentum transfer ðπ; πÞ,
which may be present due to the difference between the
hopping via pnictogen or chalcogen atoms above and
below the iron layer [45].
The quadratic part of the Hamiltonian is expressed in

terms of the components of the spinor ψ†
σðqÞ as

H0 ¼
X
k;α

X
μ;ν¼1;2

d†μ;αðkÞHΓ
μ;νðkÞdν;αðkÞ: ð1Þ

The effective Hamiltonian for hole pockets is specified by

HΓðkÞ¼
"
ϵΓþ k2

2mΓ
þak2cos2θk ck2 sin2θk

ck2 sin2θk ϵΓþ k2
2mΓ

−ak2cos2θk

#
;

ð2Þ
where θk ¼ arctanðky=kxÞ, and ϵΓ, 1=mΓ, a, and c are the
parameters of the model, which are determined by com-
parison with the angle-resolved photoemission (ARPES)
experiments. We emphasize that these parameters already
absorb regular renormalizations of the dispersions due to
interactions, including the renormalizations of the band-
widths [46] and terms that shift separately chemical
potentials of hole and electron bands [47]. Such terms
are not double counted in our approach because they
predominantly come from fermions with energies compa-
rable to the bandwidth. The RG analysis, on the other hand,
accounts for singular logarithmic renormalizations coming
from fermions with progressively smaller energies, but
neglects self-energy contributions from these fermions.
The transformation to the band basis is a rotation:

d1kσ ¼ ckσ cos θkσ þ hkσ sin θkσ;

d2kσ ¼ −ckσ sin θkσ þ hkσ cos θkσ: ð3Þ

For a ¼ c, the rotation angle θkσ is identical to the angle θ
formed by the vector k with a given axis, and the two hole
Fermi surfaces (FSs) are circular. For simplicity, below we
focus on this case. The extension to a ≠ c is straightfor-
ward and does not change the results and the conclusions.
The kinetic energy of excitations around hole pockets

in the band basis is H2;h ¼
P

kϵc;kc
†
kck þ ϵh;kh

†
khk, where

ϵc;k ¼ μ − k2=ð2mcÞ and ϵh;k ¼ μ − k2=ð2mhÞ, with k near
the Γ point. The two dispersions are not identical when
mc ≠ mh, but are degenerate by symmetry at k ¼ 0 in the
absence of spin-orbit coupling [44]. The degeneracy
implies that both Γ-centered hole pockets must be present
simultaneously already in the minimal model.
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The two electron pockets are centered at Q1 ¼ ð0; πÞ
and Q2 ¼ ðπ; 0Þ in the 1-Fe Brillouin zone (Fig. 1).
The kinetic energy of the fermions near the electron
pockets is H2;e ¼

P
kϵf1;kf

†
1;kf1;k þ ϵf2;kf

†
2;kf2;k, where

ϵf1;k ¼ ϵ0 þ k2x=ð2mxÞ þ k2y=ð2myÞ − μ and ϵf2;k ¼
ϵ0 þ k2x=ð2myÞ þ k2y=ð2mxÞ − μ, with k measured with
respect to Qi for fi;k ≡ fi;kþQi

. The two electron pockets
are related by C4 symmetry and transform into each other
under a π=2 rotation. The band fermions f1;kþQ1

and
f2;kþQ2

are linear combinations of dxz=dxy and dyz=dxy
orbitals, respectively [3,4]. The relative amplitude of the
spectral weights depends on system parameters.
We assume that there is a substantial energy range of

metallic behavior and do not discuss orbitally selective
tendency towards electron localization [46].

B. Interacting Hamiltonian

We depart from the local Hubbard-Hund interaction, in
the notations of Ref. [4]:

Hi ¼ U
X
i;μ

ni;μ↑ni;μ↓ þ U0 X
i;μ<μ0

niμniμ0

þ J
X
i;μ0<μ

X
σσ0

ψ†
iμσψ

†
iμ0σ0ψ iμσ0ψ iμ0σ

þ J0
X
i;μ0≠μ

ψ†
iμ↑ψ

†
iμ↓ψ iμ0↓ψ iμ0↑; ð4Þ

where the index i enumerates the iron sites located at
Ri and

ψμσðRjÞ ¼
1ffiffiffiffi
N

p
X
k

h
dμσðkÞ þ fμσðkÞeiQ1ð2Þ·Rj

i
eik·Rj ð5Þ

is the annihilation operator of an electron at the iron
site located at Rj with spin σ in the orbital state labeled
by μ (μ ¼ 1 and μ ¼ 2 refer to xz and yz orbitals,
respectively). Further, niμσ ¼ ψ†

iμσψ iμσ is the density oper-
ator, niμ ¼ niμ↑ þ niμ↓, and N is the number of iron atoms.
Equation (4) can be rewritten in an SU(2) invariant form as

Hi ¼
U
2

X
i;μ

ni;μni;μ þ
U0

2

X
i;μ≠μ0

niμniμ0

þ J
2

X
i;μ0≠μ

X
σσ0

ψ†
iμσψ

†
iμ0σ0ψ iμσ0ψ iμ0σ

þ J0

2

X
i;μ0≠μ

ψ†
iμσψ

†
iμσ0ψ iμ0σ0ψ iμ0σ: ð6Þ

Substituting Eq. (5) into Eq. (6), we obtain

HUJ ¼
U
2

X0½ðf†1σf1σ þ d†1σd1σÞ2 þ ðf†2σf2σ þ d†2σd2σÞ2 þ ðf†1σd1σ þ d†1σf1σÞ2 þ ðf†2σd2σ þ d†2σf2σÞ2�

þ U0 X0ðf†1σf1σ þ d†1σd1σÞðf†2σ0f2σ0 þ d†
2σ0d2σ0 Þ

þ J
X0ðf†1σf2σf†2σ0f1σ0 þ d†1σd2σd

†
2σ0d1σ0 þ f†1σd2σd

†
2σ0f1σ0 þ d†1σf2σf

†
2σ0d1σ0 Þ

þ J0

2

X0ðf†1σf2σf†1σ0f2σ0 þ d†1σd2σd
†
1σ0d2σ0 þ f†1σd2σf

†
1σ0d2σ0 þ d†1σf2σd

†
1σ0f2σ0 þ H:c:Þ: ð7Þ

Here, the momenta of the fermion operators in each term,
k1, k2, k3, k4, are omitted for clarity.

P0 stands for the
summation over the spin indices (σ, σ0) and over
fermion momenta subject to momentum conservation
k1 − k2 þ k3 − k4 ¼ 0, and also includes the normalization
factor 1=N.
The initial observation, which sets the stage for the RG

analysis, is that Eq. (7) is not the most general one
consistent with the tetragonal symmetry. The actual number
of topologically distinct invariant combinations of 4-
fermion terms involving states near the Fermi pockets is
much higher and equals 30 for a generic 4-band model in
the absence of spin-orbit coupling [44]. The bare values of
all 30 couplings are expressed in terms of U, U0, J, J0, but
under RG the couplings flow to different values. To make

the problem analytically tractable, in Sec. III we neglect
interactions involving fermions from dxy orbitals on elec-
tron pockets. This effectively implies that we approximate
ð0; πÞ [ðπ; 0Þ] pockets as purely dxz [dyz], i.e., set f1;kþQ1

¼
dxz;kþQ1

and f2;kþQ2
¼ dyz;kþQ2

. This approximation
reduces the number of couplings to a manageable 14.
We emphasize that this does not imply that we change the
tight-binding electronic structure, as the approximation
involves only low-energy fermions.
In Sec. IV, we consider the opposite case, keeping only

the dxy spectral weight on the two electron pockets. This
last approximation also reduces the number of couplings to
14. We show that the outcome of the RG flow for the case
of purely dxy electron pockets is the same as with pure dxz
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(dyz) pockets. This gives us confidence that we capture the right physics even with the reduced number of
couplings.

III. MODEL WITH dxz=dyz ELECTRON BANDS

As we explain above, there are 14 topologically different interaction terms. They are

H ¼ U1

X0½f†1σf1σd†1σ0d1σ0 þ f†2σf2σd
†
2σ0d2σ0 � þ Ū1

X0½f†2σf2σd†1σ0d1σ0 þ f†1σf1σd
†
2σ0d2σ0 �

þU2

X0½f†1σd1σd†1σ0f1σ0 þ f†2σd2σd
†
2σ0f2σ0 � þ Ū2

X0½f†1σd2σd†2σ0f1σ0 þ f†2σd1σd
†
1σ0f2σ0 �

þU3

2

X0½f†1σd1σf†1σ0d1σ0 þ f†2σd2σf
†
2σ0d2σ0 þ H:c:� þ Ū3

2

X0½f†1σd2σf†1σ0d2σ0 þ f†2σd1σf
†
2σ0d1σ0 þ H:c:�

þU4

2

X0½d†1σd1σd†1σ0d1σ0 þ d†2σd2σd
†
2σ0d2σ0 � þ

Ū4

2

X0½d†1σd2σd†1σ0d2σ0 þ d†2σd1σd
†
2σ0d1σ0 �

þ ~U4

X0
d†1σd1σd

†
2σ0d2σ0 þ ~~U4

X0
d†1σd2σd

†
2σ0d1σ0 þ

U5

2

X0½f†1σf1σf†1σ0f1σ0 þ f†2σf2σf
†
2σ0f2σ0 �

þ Ū5

2

X0½f†1σf2σf†1σ0f2σ0 þ f†2σf1σf
†
2σ0f1σ0 � þ ~U5

X0
f†1σf1σf

†
2σ0f2σ0 þ ~~U5

X0
f†1σf2σf

†
2σ0f1σ0 : ð8Þ

One can verify that each term in Eq. (8) obeys the tetragonal symmetry separately.

Out of the 14 interactions, four involve fermions near the two hole pockets (U4, Ū4, ~U4,
~~U4), another four involve

fermions near the two electron pockets (U5, Ū5, ~U5,
~~U5), and six involve fermions near both hole and electron pockets

(U1, Ū1, U2, Ū2, U3, Ū3). Comparing Eqs. (7) and (8), we find the bare values of the couplings U1;0 ¼ U2;0 ¼
U3;0 ¼ U4;0 ¼ U5;0 ¼ U, Ū1;0 ¼ ~U4;0 ¼ ~U5;0 ¼ U0, Ū2;0 ¼ ~~U4;0 ¼ ~~U5;0 ¼ J, Ū3;0 ¼ Ū4;0 ¼ Ū5;0 ¼ J0. These relations,
however, hold only for bare couplings. As we see, they are not preserved under the RG flow. On the other hand, the RG
flow does not generate new couplings in addition to the 14 in Eq. (8); i.e., the model with 14 coupling is fully
renormalizable.
In the band basis, these 14 different interaction parameters are the prefactors for 14 combinations of the original 152

interaction terms in the band basis (96 involving c and h fermions, eight involving f1 and f2 fermions, and 48 cross terms),
combined using the symmetry condition that under rotation by π=2, ck → −hk, hk → ck, and f1 → f2. We do not present
the full expression (it is too lengthy), but show a representative set from each combination:

H4 ¼
X
ki

c†k1;αf
†
1;k2;β

f1;k3;βck4;α½U1 cos θk1
cos θk4

þ Ū1 sin θk1
sin θk4

�

þ
X
ki

c†k1;αf
†
1;k2;β

ck3;βf1;k4;α½U2 cos θk1
cos θk3

þ Ū2 sin θk1
sin θk3

�

þ
X
ki

c†k1;αc
†
k2;β

f1;k3;βf1;k4;α

�
U3

2
cos θk1

cos θk2
þ Ū3

2
sin θk1

sin θk2

�

þ
X
ki

c†k1;αc
†
k2;β

ck3;βck4;α

�
U4

2
cos θk1

cos θk2
cos θk3

cos θk4
þ Ū4

2
cos θk1

cos θk2
sin θk3

sin θk4

�

þ
X
ki

c†k1;αc
†
k2;β

ck3;βck4;α½ ~U4 cos θk1
sin θk2

sin θk3
cos θk4

þ ~~U4 cos θk1
sin θk2

cos θk3
sin θk4

�

þ
X
ki

U5

2
f†1;k1;αf

†
1;k2;β

f1;k3;βf1;k4;α þ
Ū5

2
f†1;k1;αf

†
1;k2;β

f2;k3;βf2;k4;α

þ
X
ki

~U5f
†
1;k1;α

f†2;k2;βf2;k3;βf1;k4;α þ
~~U5f

†
1;k1;α

f†2;k2;βf1;k3;βf2;k4;α þ � � � ; ð9Þ

where � � � stand for other terms in each of the 14 combinations in Eq. (9).
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In the mean-field approximation, the bare values of these
14 couplings are used to compute susceptibilities in SDW,
SC, d-POM, and other channels. A simple analysis shows
that in this case SDW wins over SC and orbital order.
However, the mean-field approximation is strongly ques-
tionable because it effectively isolates each electronic
channel, neglecting their interplay and mutual feedback.
To overcome this limitation, below we implement the
parquet RG approach and calculate how the couplings
and the susceptibilities in different channels evolve as
high-energy degrees of freedom are progressively inte-
grated out. In this approach, each dimensionless coupling
ui ¼ ðAi=4πÞUi, where Ai are combinations of effective
masses, acquires a dependence on the running energy or
temperature scale E via L ¼ logW=E, where W is the
upper energy cutoff for the low-energy theory, which in a
generic case is of the order of the bandwidth.

A. RG equations

The derivation of the one-loop RG equations is tedious
but straightforward. We present the details of the deriva-
tions and the full equations in the SM [42] and here list the
14 pRG equations in the approximation mc ¼ md ¼ mh,
mx ¼ my ¼ me:

_u1 ¼ u21 þ u23=C
2; _̄u1 ¼ ū21 þ ū23=C

2;

_u2 ¼ 2u1u2 − 2u22; _̄u2 ¼ 2ū1ū2 − 2ū22;

_u3 ¼ −u3u4 − ū3ū4 þ 4u3u1 − u5u3 − ū5ū3 − 2u2u3;

_̄u3 ¼ −ū3u4 − u3ū4 þ 4ū3ū1 − u5ū3 − ū5u3 − 2ū2ū3;

_u4 ¼ −u24 − ū24 − u23 − ū23; _̄u4 ¼ −2u4ū4 − 2u3ū3;

_u5 ¼ −u25 − ū25 − u23 − ū23; _̄u5 ¼ −2u5ū5 − 2u3ū3;

_~u4 ¼ −ð ~u24 þ ~~u24Þ; _~~u4 ¼ −2~u4 ~~u4;

_~u5 ¼ −ð ~u25 þ ~~u25Þ; _~~u5 ¼ −2~u5 ~~u5; ð10Þ

where C ¼ ðme þmhÞ=ð2 ffiffiffiffiffiffiffiffiffiffiffiffi
memh

p Þ ≥ 1. We present the
dimensionless interactions ui in terms ofUi in Appendix A.
One can immediately verify that the running couplings

flow to different values under the RG, and these new values
cannot be reexpressed just in terms of running U, U0, J, J0.
This implies that the model with only onsite interactions
does not survive under renormalization and longer-range
interactions emerge in the process of the RG flow. We
discuss this in more detail later in this section.

B. RG flow

The analysis of Eq. (10) readily reveals that the last four
RG equations decouple from the other ten, and that ~u4;5
and ~~u4;5 flow to zero under RG. The remaining ten RG
equations are all coupled and have to be solved self-
consistently. We analyze the RG equations for nonzero bare

couplings (i.e., nonzero U, U0, J, J0) and find that the
system flows towards a single stable fixed trajectory, along
which ui and ūi become equivalent. We show the RG flow
in Fig. 2. The equivalence of ui and ūi along the stable fixed
trajectory implies that the terms ūi, which were originally
of order U0 or even J, grow under RG and eventually
become comparable to ui, which were originally of order
U. In other words, the initial hierarchy of interactions
disappears under the RG flow. When electron pockets are
approximated as pure dxy, the behavior along the stable
fixed trajectory is the same, but some of ui and ūi turn out
to be equal already at the bare level; see Sec. IV.

0.5

u1

L

(a)

(b)

1.0 1.5 2.0 2.50

0.1

ui u1

0.5
L

1.0 1.5 2.0 2.5
0

−2

−4

2

4
u3 u1

u1 u1

u2 u1

u4 u1

0.2

0.3

FIG. 2. RG flow of the couplings. (a) u1ðLÞ, where L ¼
logW=E is the RG scale, W is the bandwidth, and E is the
running energy (temperature) at which one probes the system.
The flow of other couplings is similar. The couplings u1 − u5 and
ū1 − ū5 all diverge as 1=ðL0 − LÞ when L approaches L0, whose
value depends on the initial conditions. The couplings ~u4, ~~u4, ~u5,
~~u5 tend to zero at L → L0. (b) Flow of the ratios of the couplings.
All ratios tend to fixed finite values as L approaches L0: ū1 ¼ u1,
u3 ¼ ū3 ¼ 4.7u1, u4 ¼ u5 ¼ ū4 ¼ ū5 ¼ −3.8u1 [see Eq. (11)].
The ratios u2=u1 and ū2=u1 tend to zero as L approaches L0.
The initial values used are ū1=u1 ¼ 0.7, u2=u1 ¼ 2, u3=u1 ¼ 2.8,
u4=u1 ¼ 0.4. In both panels, we set C ¼ ðme þmhÞ=
ð2 ffiffiffiffiffiffiffiffiffiffiffiffi

memh
p Þ ¼ 1.1 for definiteness. For the model with dxy

electron pockets, the fixed trajectory is the same, but the system
approaches it much faster (see Sec. IV).
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Along the stable fixed trajectory, the ratios between
various couplings become pure numbers: u2 ¼ γ2u1,
u3 ¼ ū3 ¼ γ3u1, u4 ¼ ū4 ¼ γ4u1, u5 ¼ ū5 ¼ γ5u1.
Solving Eq. (10) for u1 and γi, we obtain

u1 ¼
1

8C2 þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2 þ 4C4

p 1

L0 − L
;

γ2 ¼ γ̄2 ¼ 0;

γ3 ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8C2 − 1þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2 þ 4C4

pq
;

γ4 ¼ γ5 ¼ 1 − 2C2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2 þ 4C4

p
: ð11Þ

We emphasize that this behavior is completely universal
and does not depend on initial parameters U, U0, J, J0,
except for L0, which is the energy or temperature scale at
which couplings diverge and the system becomes unstable
towards either SC or SDW or d-POM order. We also
emphasize that the RG equations are valid up to
LF ¼ logW=EF, where, we remind the reader, EF is the
largest of the Fermi energies associated with the different
Fermi pockets. For E < EF, particle-particle and particle-
hole channels no longer talk to each other and the flow
equation is different (see below).
Note in passing that the different flow of the 14

couplings in Eq. (9) under RG implies that the system
self-generates nonlocal interactions. The information
extracted from the low-energy sector only is not sufficient
to fully specify which nonlocal interactions are generated,
but the model with 14 couplings can be constructed if
one also adds to the local interactions U, U0, J, J0 the
interactions of the same Hubbard and Hund type, but
involving fermions from different sites of each plaquette on
a square lattice. Thus, five terms involving fermions from
the same orbital dxz or dyz (U1, U2, U3, U4, and U5 terms)
appear with different couplings if we also introduce, in
addition to the on-site U, the terms

Hnonlocal ¼
X
r

Uad
†
xzðrÞdxzðrÞd†xzðrþ ayÞdxzðrþ ayÞ

þUbd
†
xzðrÞdxzðrÞd†xzðrÞdxzðrþ ayÞ

þUcd
†
xzðrÞdxzðrþ ayÞd†xzðrþ axÞ

× dxzðrþ ax þ ayÞ þ Udd
†
xzðrÞdxzðrþ axÞ

× d†xzðrþ ayÞdxzðrþ ax þ ayÞ þ H:c:; ð12Þ

and analogous (symmetry-related terms) for the dyz
orbital. In Eq. (12), ax and ay are the components of
the lattice spacing a. The couplings Ui (i ¼ 1–5) are now
given by

U1 ¼ U þ Ua −Ub −Uc −Ud;

U2 ¼ U −Ua −Ub − Uc − Ud;

U3 ¼ U −Ua þUb þUc −Ud;

U4 ¼ U þ Ua þ Ub þ Uc þ Ud;

U5 ¼ U þ Ua −Ub þUc þ Ud: ð13Þ

One can easily verify that the interactions within a given
plaquette involving fermions from different orbitals split
the U0, J, and J0 terms into subsets, each consisting of
three different interactions [there are five terms in each
subset, like in Eq. (12), but there are only three non-
equivalent combinations of different U0

i, Ji, and J0i].

C. Competition between channels

We now use the results for the RG flow to find in which
of the many electronic channels the system actually
develops an instability upon lowering the temperature T.
For this, we introduce order parameters in different
channels Δi [i ¼ SDW, SC, POM, CDW (charge-density
wave)] and also introduce infinitesimally small vertices Γ0;i

for the coupling between fermions and these order param-
eters. Next, we identify the combinations of the couplings

Ui, which renormalize Γð0Þ
i into Γi ¼ Γð0Þ

i ð1þ UiΠi þ � � �Þ,
where Πi are the corresponding polarization bubbles.
We list all potential order parameters, bilinear in

fermions, and all Ui in Appendix B. These bilinear combi-
nations form irreducible representations of the D4h group
separately for electron and hole pockets. In particular,
Pomeranchuk order parameters are even under inversion
and belong to one of four one-dimensional irreducible
representations A1g, A2g, B1g, B2g. They include intraorbital
and interorbital s-wave (A1g and A2g) and d-wave order
(B1g and B2g). An intraorbital A1g s-wave Pomeranchuk
order parameter is characterized by separate order parameters
on the hole pockets Δh

POM;s ¼
P

khc†kck þ h†khki and on

the electron pockets Δe
POM;s ¼

P
khf†1;kþQ1

f1;kþQ1
i ¼P

khf†2;kþQ2
f2;kþQ2

i. In each term, the summation over k
is restricted to near the Fermi surface. In the orbital basis, the
corresponding order parameter is Δs;POM ¼ P

kðd†xz;kdxz;kþ
d†yz;kdyz;kÞgðkÞ, where gðkÞ is symmetric under transforma-
tions fromD4h (inversions and C4 rotations), but gðkÞ ≠ 1 if
Δe

POM;s andΔh
POM;s are different. The nontrivial component of

this order parameter is the sþ− one, withΔh
POM;s ¼ −Δe

POM;s.
The components of the intraorbitalB1g d-wave Pomeranchuk
order parameter are Δh

POM;d ¼
P

khc†kck − h†khki cos 2θk þP
khc†khk þ h†kcki sin 2θk and Δe

POM;d ¼
P

khf†1;kþQ1
×

f1;kþQ1
i ¼ −

P
khf†2;kþQ2

f2;kþQ2
i. In the orbital basis, the

corresponding order parameter is Δd;POM ¼ P
kðd†xz;kdxz;k−

d†yz;kdyz;kÞ~gðkÞ, where ~gðkÞ is again symmetric under
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transformations from D4h. In real space, the d-wave
Pomeranchuk order parameter does not depend on the
coordinate of the center of mass and, hence, does not break
translational symmetry. However, it depends on the
relative coordinate if ~gðkÞ ≠ 1, and, hence, generally
has both site and bond orbital order components. We label
bond order withΔh

POM;d ¼ −Δe
POM;d as d

þ− and site order is
Δh

POM;d ¼ þΔe
POM;d as dþþ, in analogy with the s-

wave case.
We list the relevant combinations of Ui for SC, SDW,

and POM in Table I. We see that along the fixed trajectory
the interaction in the d-POM channel is Ud−POM ¼ −U4 ¼
−U5, where, we remind the reader, U4 and U5 are density-
density intrapocket interactions on hole and on electron
pockets (sign convention is such that attraction corresponds
to positive sign of USDW; USC, or UPOM). The bare values
U4;0 ¼ U5;0 ¼ U are positive; hence, if we use the bare
values, we would find that the interaction in d-POM
channel is repulsive. However, in the process of RG flow,
the couplings U4 ¼ U5 change sign and become negative
due to the “push” from the SDW channel onto the orbital
channel [see Fig. 2(b)]. As a result, the interaction in the d-
POM channel becomes attractive below a certain energy.
We emphasize that this result could not be obtained in the
RPA approximation. We also emphasize that the interaction
in the d-POM channel changes sign when the interaction in
the sþ− SC channel is already attractive. The interaction in
the sþ− SC channel is USC ¼ −U4 þ U3, and the attraction
develops when the running U4 gets smaller than U3. The
couplingU3 contributes to both SC and SDW channels, and
it increases under RG [see Fig. 2(b)]. As a consequence, the
pairing interaction USC changes sign when U4 is still
positive.
Earlier RG studies assumed that the channel with the

largest Ui along the fixed trajectory wins, setting the
hierarchy of instabilities based on the values of Ui. We
argue that this is not always true, and to compare different
channels one actually needs to obtain and solve another set
of RG equations for Γi, then compute the corresponding
susceptibilities, find which ones diverge, and compare the
exponents. The leading instability will be in the channel in
which the exponent is the largest. This procedure has been

applied to other problems [37,48,49], but it has not been
applied yet to analyze the interplay between orbital order
and other orders in FeSCs. The advantage of using
analytical RG for this procedure is that (i) the number of
interaction is set by symmetry rather than the number of
patches on the Fermi surface and (ii) the RG equations for
Γi and for the susceptibilities can be obtained in a
straightforward way.
The analysis of the susceptibilities is different for the

SC and SDW channels and the POM channel. For the SC
and SDW channels, Πi is logarithmic, and, to logarithmic
accuracy,

χSDWðLÞ ∝
Z
L
dL0Γ2

SDWðL0Þ;

χSC ¼
Z
L
dL0ðΓsþ−

SC Þ2ðL0Þ; ð14Þ

where ΓSDWðL0Þ and Γsþ−
SC ðL0Þ are the fully renormalized

SDWand SC vertices obtained from the solutions of the RG
equations _Γi ∝ ΓiUi. Along the fixed trajectory,

_ΓSDW ¼ ΓSDWu1

�
1þ γ3

C

�
;

_ΓSC ¼ ΓSCu1ð2γ3 þ 2jγ4jÞ; ð15Þ

where γ3;4 are given by Eq. (11) (see SM [42] for details).
Solving these two equations and substituting the results
into Eq. (14), we obtain

χSDWðLÞ ∝
1

ðL0 − LÞαSDW ;

χSCðLÞ ∝
1

ðL0 − LÞαSC ; ð16Þ

with the exponents

αSDW ¼ 2
1þ γ3=C
1þ γ23=C

2
− 1;

αSC ¼ 4
jγ4j þ γ3
1þ γ23=C

2
− 1; ð17Þ

where C ¼ ðme þmhÞ=ð2 ffiffiffiffiffiffiffiffiffiffiffiffi
memh

p Þ ≥ 1.
We plot αi as a function of C in Fig. 3(a), and show the

schematic behavior of the susceptibilities in the SDW and
SC (sþ−) channels along the fixed trajectory in Fig. 3(b).
We see that for all values of C, 0 < αSC < 1, while
αSDW < 0. This implies that only SC order develops.
SDW order does not develop, despite that at the bare level
the SDW channel is the only attractive channel.
The phenomenon in which the SDW interaction creates

an attraction in the SC channel and eventually SC wins had
already been found in earlier numerical and analytical RG
studies in multiband FeSCs [33,38] and in doped graphene

TABLE I. The interactions in different channels along the
stable fixed trajectory. Positive sign of an interaction implies
an attraction. All interactions scale as 1=ðL0 − LÞ and diverge at
RG scale L0. We use these interactions to compute vertices and
susceptibilities in SDW channel, sþ− superconducting channel,
and s-wave and d-wave Pomeranchuk channels (POM s and
POM d).

SDW SC sþ− POM s POM d
U1 þU3 −U4 þU3 −U4 þ 4U1 −U4
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[50,51]. We find in the analysis of the susceptibilities that
not only SC wins over SDW, but the feedback effect from
the rising superconducting fluctuations halts the growth of
the SDW susceptibility.
We now turn to the POM channel. Here, the situation is

different because the particle-hole polarization bubble at
energy E is determined by fermions with energies of

order E. As a result, the Pomeranchuk susceptibilities obey
algebraic rather than differential equations (see SM [42] for
details). We find that the susceptibilities in the sþ− and dþ−

subchannels increase under RG and behave as

χsPOM ∝
1

1 − u1ð4Cþ jγ4jÞ
¼ 1

LPs
− L

;

χdPOM ∝
1

1 − u1jγ4j
¼ 1

LPd
− L

: ð18Þ

For both susceptibilities, the exponent αPOM ¼ 1 is larger
than αSC < 1. Furthermore, for all values of C, LPs

and LPd

are smaller than L0. As a result, χ
s;d
POM diverge with a larger

exponent and at a smaller L than the SC susceptibility [see
Fig. 3(b)]; i.e., within one-loop RG, the first instability
upon lowering the temperature actually occurs in the
Pomeranchuk channel. Note that at L ¼ LPs;d

, u1 ∼ 1,
and the corrections to one-loop RG may become
relevant. Still, the comparison of the susceptibilities clearly
favors the POM channel over the SC and SDW channels.
Also, number wise, for L ¼ LPd

and C ¼ 1, u1 ¼
ð1=16Þ=ðL0 − LÞ ¼ 1=6, which is still a small number.
Of the two Pomeranchuk susceptibilities, the larger one

is in the sþ− channel. This order has been analyzed in
Ref. [25], where it was noticed that the corresponding
coupling Us−POM ¼ −U4 þ 4U1 (see Table I) contains U1,
which also contributes to SDW channel and grows under
RG; i.e., Us−POM is positive (attractive) at all energies. The
s-POM order with Δh

POM;s ¼ −Δe
POM;s splits the chemical

potentials on the hole and electron pockets, but conserves
the total number of carriers. Because this does not corre-
spond to a true symmetry breaking, the divergence of χsPOM
must be softened by terms beyond RG, such as regular
terms in the fermionic self-energy [47]. Yet, the relative
chemical potential shift μh − μe must be enhanced near the
temperature at which χsPOM diverges within the RG.
Interestingly, the analysis of ARPES data for several
FeSCs did find [52] evidence for temperature-dependent
μh − μe, which behaves much like order parameter
below 300 K.
The true Pomeranchuk instability is in the dþ− channel,

signaled by the divergence of χdPOM. This order, with
sgnΔh

POM;d ¼ −sgnΔe
POM;d implies that the symmetry

between the on-site energies of dxz and dyz orbitals is

spontaneously broken, hd†xzdxzi ≠ hd†yzdyzi, and hd†xzdxz −
d†yzdyzi changes sign between hole and electron pockets.
Note that in our solution, the function ~gðkÞ is not exactly
−1; hence, the order parameter has both dþþ and dþ−

components.
We emphasize that the origin of the dþ− orbital order is

not just an attraction in the POM channel, as proposed by
other works. In our case, the bare interaction may well be
repulsive (when U þ J > 2U0, see above), yet the POM
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FIG. 3. RG flow of the susceptibilities. (a) The exponents for
the susceptibilities χi ∝ 1=ðL0 − LÞαi in SDW, sþ− SC, and POM
channels as functions ofC ¼ ðme þmhÞ=ð2 ffiffiffiffiffiffiffiffiffiffiffiffi

memh
p Þ. The largest

exponent αPOM ¼ 1 is in the Pomeranchuk channel. The ex-
ponent αSDW < 0, which implies that within RG χSDW does not
diverge. (b) The schematic behavior of susceptibilities in SDW,
sþ− SC, and POM channels. We use the couplings along the
fixed trajectories as inputs for the RG equations for the suscep-
tibilities. The Pomeranchuk susceptibility actually diverges at
L ¼ LP < L0. As a result, the leading instability upon lowering
the temperature is towards d-wave orbital ordering. sþ− super-
conductivity develops at a smaller T, and SDW instability does
not develop. This holds when L0 is smaller than LF ¼ logW=EF,
i.e., if the instability develops at an energy or temperature larger
than EF. If LF < L0, the RG flow runs up to L ¼ LF, and at
larger L, SDW and SC channels decouple and develop indepen-
dent of each other, while the Pomeranchuk channel gets frozen. In
this situation, the system first develops either SDW or SC order,
depending on the interplay between LF and L0 and the degree of
nesting.
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channel becomes attractive in the process of the RG flow
and eventually wins over SC and SDW. The attraction in
the POM channel is driven by the coupling to magnetic
fluctuations, and in this respect the RG scenario for orbital
ordering falls into the orbit of “magnetic scenarios” for
nematicity.
Therefore, the full one-loop RG analysis shows that the

system first develops dþ− orbital order at Ts and then
becomes a superconductor at a lower Tc. SDW order does
not develop. This sequence of transitions is fully consistent
with that in FeSe. In other FeSCs, however, the system does
develop SDWorder at TN at small dopings, and the nematic
transition line follows TN very closely, suggesting that
nematic order is a vestige of the SDW order.
To understand the difference between FeSe and other

FeSCs, we note that in our analysis we assume that the
RG flow reaches the fixed trajectory at L ¼ LPd

≈ L0,
before the RG analysis breaks down at an energy
comparable to the largest EF in the system, i.e., at
L ¼ LF. This holds when L0 < LF, i.e., when all Fermi
energies are very small compared to the bandwidth. This
is the case of FeSe [40,53]. If LF < L0, the RG flow runs
up only to L ¼ LF, and at larger L, different instability
channels decouple from each other. As a result, the
divergence of the Pomeranchuk susceptibility is cut and
this channel no longer competes with SC or SDW. Also,
because the SC and the SDW channels do not mix below
EF, each develops independently in a mean-field fashion
with the couplings taken at L ¼ LF (Refs. [5,33]). If LF
is small enough, these values are close to the bare ones
and the system develops SDW order (and Ising-nematic
order above it, if SDW order is a stripe). When doping
gets larger (and nesting gets weaker), the SDW channel
becomes less singular and SC order develops first. This
last behavior is consistent with the one observed in, e.g.,
122 systems, for which the largest EF ≤ 200 meV
(Ref. [41]) well exceeds TN , Tc ∼ 10 meV.
We also emphasize that the behavior that we find along

the fixed trajectory of the RG flow is universal in the
sense that it holds for arbitrary ratios of U, U0, J, and J0,
as long as they are all positive. The values of Hubbard
and Hund interactions determine only how quickly the
system reaches the fixed trajectory and how quickly the
susceptibility in the orbital channel gets larger than
the ones in SDW and SC channels. To make this point
explicit, in Appendix C, we show the behavior of the
SDW, SC, and Pomeranchuk susceptibilities along the
full RG flow (i.e., not only along a fixed trajectory) for
two different values of the couplings: the one for which
the bare interaction in the orbital channel is attractive,
and the one for which it is repulsive. As expected, the
interplay between different channels is the same in both
cases, but the susceptibility in the Pomeranchuk channel
diverges faster when the bare interaction in this channel
is attractive.

IV. MODEL WITH dxy ELECTRON POCKETS

We now consider another approximation for the full 4-
band model, in which we approximate the two electron
pockets as purely dxy. The hole pockets are made out of dxz
and dyz orbitals, like before.
One can use the same reasoning as in the previous

section and construct the most generic model describing the
interaction between low-energy fermions. We argue that
this model again contains 14 topologically different inter-
action terms and is described by the same Eqs. (8) and (7),
only now f fermions correspond to dxy orbitals. The bare
values of the couplings are, however, different from the
case considered in the previous section, because now
intraorbital Hubbard interaction acts within the subset of
the two hole pockets and within the subset of the two
electron pockets. The corresponding interaction terms are

the U4, U5, Ū5, ~U5,
~~U5 terms in Eq. (7). The bare values of

all these couplings are the Hubbard U; i.e.,

U4;0 ¼ U5;0 ¼ Ū5;0 ¼ ~U5;0 ¼ ~~U5;0 ¼ U: ð19Þ

Interorbital Hubbard terms include the density-density
interactions U1 and Ū1 between hole and electron pockets
and the interaction ~U4 within the dxz and dyz components of
hole pockets. Because the dxy orbital interacts equally with
the dxz and dyz orbitals, the bare values of U1 and Ū1 are
equal; i.e.,

U1;0 ¼ Ū1;0 ¼ ~U4;0 ¼ U0: ð20Þ

The exchange Hund interaction J acts in the subspace of

dxz and dyz orbitals (
~~U4 term) and between dxy and dxz=dyz

orbitals (U2 and Ū2 terms). Again, the dxy orbital interacts
equally with the dxz and dyz orbitals; hence, the bare values
of U2 and Ū2 are equal:

U2;0 ¼ Ū2;0 ¼ ~~U4;0 ¼ J: ð21Þ

Finally, the pair-hopping interaction J0 also acts in the
subspace of the dxz and dyz orbitals (Ū4 term) and between
the dxy and dxz=dyz orbitals (U3 and Ū3 terms). Like for
other interactions, the bare values of U3 and Ū3 are equal:

U3;0 ¼ Ū3;0 ¼ Ū4;0 ¼ J0: ð22Þ

Because the structure of the low-energy electronic states is
the same as in the model that we consider in the previous
section, the 14 RG equations are the same as in Eq. (10).

The couplings ~U4 and ~~U4 still flow to zero if the bare ~U4

exceeds the bare ~~U4, which is the case when U0 > J. The

couplings ~U5 and
~~U5 remain equal under RG, and both tend
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to zero when U > 0. One can further make sure that the
couplings u1 and ū1, u2 and ū2, u3 and ū3, and u5 and ū5,
which are equal at the bare level, remain equal under pRG.
This reduces the set of RG equations to

_u1 ¼ u21 þ u23=C
2;

_u2 ¼ 2u1u2 − 2u22;

_u3 ¼ −u3ðu4 þ ū4Þ þ 4u3u1 − 2u2u3 − 2u5u3;

_u4 ¼ −u24 − ū24 − 2u23;

_̄u4 ¼ −2u4ū4 − 2u23;

_u5 ¼ −2u25 − 2u23: ð23Þ

The transformation from Ui to dimensionless ui is
the same as before, and we remind the reader that
C ¼ ðme þmhÞ=2 ffiffiffiffiffiffiffiffiffiffiffiffi

memh
p

.
Introducing u4þ ¼ ðu4 þ ū4Þ=2 and u4− ¼ ðu4 − ū4Þ=2,

we immediately find that the equation for u4− decouples
from the rest and u4− tends to zero under pRG. The fixed
trajectory for the other five equations is the same as
for the model with dxz=dyz electron pockets; namely,
ui ¼ ūi, u2=u1 ¼ 0, u3 ¼ γ3u1, u4 ¼ u5 ¼ γ4u1, where

γ3 ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8C2 − 1þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2 þ 4C4

pp
, γ4 ¼ 1 − 2C2 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − C2 þ 4C4
p

, and

u1 ¼
1

1þ ðγ3CÞ2
1

L0 − L
: ð24Þ

These are the same expressions as in Eq. (11).
In distinction from the previous case, however, now

ui ¼ ūi, i ¼ 1, 2, 3, already at the bare level. As the result,
the system approaches the fixed trajectory faster than in the
model that we studied in the previous section, i.e., at a
larger running energy. We show the RG flow of the ratios of
the couplings in Fig. 4.
The analysis of the vertices and the susceptibilities

proceeds in the same way as in Sec. III. Again, the
SDW susceptibility is initially the largest one, but its
growth is halted by superconducting fluctuations, and
eventually χSDW does not diverge. The superconducting
sþ− susceptibility diverges, but with the exponent αSC < 1.
The d-wave Pomeranchuk susceptibility is initially the
smallest one, but it increases under RG with the exponent
αPOM ¼ 1. As a result, the instability towards Pomeranchuk
order becomes the leading one upon lowering the
temperature.
The d-wave Pomeranchuk order has two coupled com-

ponents. One is orbital order on the hole pockets, nxz − nyz,
another is the difference between the fermionic densities on
nxy orbitals between X and Y pockets, nXxy − nYxy. The last
term is not associated with the orbital order, as only the dxy
orbital is involved, but it breaks C4 symmetry, just like the
nxz − nyz term. In a generic case, when electron pockets are

composed of both dxy and dxz (dyz) orbitals, one can expect
that states near the electron pockets develop both an orbital
order, i.e., a nonzero hnxz − nyzi, and an order with nonzero
hnXxy − nYxyi. The simultaneous presence of both order
parameters should be visible at the M point in the 2-Fe
zone [i.e., ðπ; πÞ]. Without Pomeranchuk order, there are
two doubly degenerate fermionic states at theM point, even
in the presence of spin-orbit coupling—one degeneracy is
in the dxz=dyz subset, another is in the dxy subset
(Ref. [54]). Below the Pomeranchuk transition both have
to split, one due to nonzero hnxz − nyzi, another due to
nonzero hnXxy − nYxyi.

V. COMPARISON WITH EXPERIMENTS

Our results agree with five sets of experiments on FeSe.
First, a recent ARPES study [55] has found shifts of the
chemical potentials of the hole and electron pockets in
opposite directions at T ≥ Ts. This is fully consistent with
the enhancement of the sþ− Pomeranchuk susceptibility
found here. Second, orbital order, which breaks the
symmetry between the dxz and dyz orbitals, has been
detected in ARPES [53], and x-ray or neutron diffraction
studies [56] have shown that it does not break the trans-
lational symmetry of the system. Such an orbital order has
d-wave character and has zero transferred momentum, in
agreement with our results. Third, ARPES studies of
detwinned single crystals of FeSe [57] found strong
evidence for a sign inversion of the dxz=dyz on-site energy
splitting between the hole and electron Fermi pockets.
This is fully consistent with the sign-changing dþ− order
parameter we find here. We note that there is some
controversy at the moment about the magnitude of this
splitting on the electron pockets relative to hole pockets
[53,58,59]. To fully understand this issue, one has to extend

u5 u1

u2 u1

u4+ u1

ui u1

L

u3 u1

FIG. 4. The solution of the RG equations, Eq. (23), for the
model where the electron pockets have dxy orbital content. The
RG equations and the fixed trajectory are the same as in the model
with dxz=dyz electron pockets; however, initial values of the
couplings are different. The convergence towards the fixed
trajectory is much better than in the model with dxz=dyz electron
pockets.
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the analysis to T < Ts, which is beyond the scope of this
work. Fourth, recent neutron or x-ray diffraction measure-
ments revealed that the phase diagram of FeSe under
moderate pressures is very similar to those of Fe pnictides,
with the nematic phase existing only very close to the stripe
SDW transition [60]. This crossover from FeSe to Fe-
pnictide behavior with pressure is consistent with our
results, because at least one Fermi energy is expected to
increase with pressure, which would cause the RG flow to
stop at a L ¼ LF, where only the SDW and SC suscep-
tibilities are sizable. And fifth, very recent ARPES mea-
surements of the spectra near the M point (of the 2-Fe
Brillouin zone) in FeSe below the nematic transition at
85 K (Ref. [61]) have detected the splitting in both dxz=dyz
and dxy subsets. This is fully in line with the results that we
discuss at the end of Sec. IV.

VI. OTHER THEORETICAL SCENARIOS

There have been other proposals for nematicity in FeSe.
One early proposal [22] was that the origin of nematicity in
FeSe is essentially the same as in Fe pnictides (Ising-
nematic spin order). This paper associated the large differ-
ence between the nematic and the magnetic transition
temperatures in FeSe at ambient pressure (Ts ¼ 85 K
and TSDW ¼ 0) with stronger fluctuations of a continuous
order parameter, also because of smaller EF of FeSe. The
authors of Ref. [62] proposed a different magnetic scenario,
attributing the smallness of TSDW in FeSe to the softening
of magnetic fluctuations in the direction transverse to the
typical SDWordering vectors ðπ; 0Þ or ð0; πÞ. The proposal
for such soft magnetic fluctuations was motivated in
Ref. [62] by first-principles calculations that showed that
in FeSe several magnetic states with different ordering
vectors have near-equal energy. The authors argued that
this softening strongly reduces TSDW and also enhances Ts.
Other magnetic scenarios for the nematic phase in FeSe

were proposed in Refs. [63,64], in which the authors
associated nematic order below Ts with a more complex
type of long-range magnetic order—antiferroquadrupolar
order in Ref. [63] and ferroquadrupolar order in Ref. [64].
Inyet anothermagnetic scenario, the authors of Ref. [65] used
a local spin model and suggested that the nematic phase in
FeSe is a nematic quantum paramagnetic phase of spin
S ¼ 1 local moments with strongly frustrated exchange
interactions—similar, but not equivalent, to the dimer phase
of an S ¼ 1=2 antiferromagnet with frustrated interactions.
We do not believe that current experiments on FeSe have

ruled out any of these magnetic scenarios. The recent
pressure experiments of Ref. [60], however, offer important
benchmarks to test these different scenarios. In our case, the
quick suppression of Ts observed under pressure, com-
bined with the sudden appearance of stripe magnetism, is
explained by an increase in the Fermi energy EF with
pressure, signaling a crossover from FeSe to Fe-pnictide
behavior. If quantum oscillation measurements under

pressure can indeed confirm the predicted behavior of
EF, that would lend strong support to our proposal for a
spontaneous orbital order.
The possibility of spin-fluctuation-driven orbital order has

also been recently discussed in Ref. [9]. These authors
considered a large ratio of intraorbital Coulomb interaction
U andHund’s interaction J, inwhich case thebare interaction
in the orbital channel is attractive. They then analyzed how
this attraction is enhancedby spin fluctuations by focusingon
a particular Aslamazov-Larkin diagram. This diagram is one
of many diagrams that give rise to the RG flow that we study
in this paper. Our results are consistent with those of Ref. [9]
(modulo the fact that we include many other terms besides
the Aslamazov-Larkin diagram), but our analysis goes
beyond this work in two important aspects: (i) we argue
that at low energies the interaction in the orbital channel gets
attractive even if the bare interaction was repulsive (as is the
case ifU=J is not too large), and (ii) we argue that the orbital
susceptibility diverges not only faster than the susceptibility
in the SDW channel (as the authors of Ref. [9] argued), but
also faster than the susceptibility in the sþ− superconducting
channel, which the authors of Ref. [9] did not consider. The
latter is important for the elucidation of why orbital order
develops prior to superconductivity. Nematicity due to
orbital order was recently discussed in Ref. [66]. The authors
of this work, however, assumed that an orbital order develops
and studied how it is affected by impurities.

VII. SUMMARY

In this paper, we employ the analytical RG technique to
analyze the interplay between SDW, SC, and orbital d-
POM order in Fe-based superconducting materials. That
magnetic fluctuations promote attraction in the sþ− SC
channel is well known, and the RG analysis indeed
confirms this. However, we find that the same magnetic
fluctuations also promote attraction in the C4-symmetry-
breaking d-POM orbital channel, even if the bare inter-
action in the d-POM channel is repulsive. We go beyond
the analysis of the running couplings and compute running
susceptibilities in SDW, SC, and orbital channels. We find
that within the energy range where the RG approach is
valid, the susceptibility towards a spontaneous orbital order
increases in the process of RG flow and diverges with the
largest exponent. The SC susceptibility also diverges, but
with a smaller exponent, and SDW susceptibility does not
diverge. As a consequence, if the system reaches the scale
of the leading instability within the applicability range of
parquet RG, the leading instability is towards orbital order,
the subleading is towards SC, and SDW order does not
develop. This hierarchy of instabilities agrees with the
one observed in bulk FeSe at ambient pressure, and we
conjecture that nematic order without SDW magnetism,
observed in FeSe, is a spontaneous orbital order driven by
magnetic fluctuations. We argue that the orbital scenario
agrees with five sets of experiments on FeSe.
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If the order does not develop down to the lower boundary
of applicability of RG (which is set at an energy of order
EF), the leading instability (at a smaller energy or temper-
ature) will be in the channel in which the susceptibility is
the largest at this lower boundary. Because the susceptibil-
ity in the d-POM channel becomes the largest only near the
instability, d-POM order does not develop in this situation.
Instead, the competition becomes between SDW and SC,
with SC winning at higher doping and SDW winning at
smaller doping. In this situation, nematic order is most
likely caused by composite stripe SDW fluctuations, which
split the temperatures at which a discrete C4 and a
continuous O(3) symmetry get broken. This likely happens
in LaFeAsO, BaFe2As2, and NaFeAs. From this perspec-
tive, our work provides a unified microscopic description of
the behavior of different families of FeSCs.
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APPENDIX A: DIMENSIONLESS INTERACTIONS

In this Appendix, we list the expressions of the dimen-
sionless interactions in terms of the original interaction
constants, introduced in Eq. (8). For mc ¼ md ¼ mh
and mx ¼ my ¼ me that we consider in the main text,
we have

u1;2 ¼
A
4π

U1;2; ū1;2 ¼
A
4π

Ū1;2; u3 ¼
A
4π

CU3;

ū3 ¼
A
4π

CŪ3; u4 ¼
Ah

4π
U4; ū4 ¼

Ah

4π
U4;

~u4 ¼
Ah

4π
~U4; ~~u4 ¼

Ah

4π
~~U4;

u5 ¼
Ae

4π
U5; ū5 ¼

Ae

4π
Ū5;

~u5 ¼
Ae

4π
~U5; ~~u5 ¼

Ae

4π
~~U5; ðA1Þ

where

Ae;h ¼ me;h; A ¼ 2memh

me þmh
; C ¼ me þmh

2
ffiffiffiffiffiffiffiffiffiffiffiffi
memh

p
ffiffiffiffiffiffiffiffiffiffiffi
AeAh

A2

r
:

ðA2Þ

APPENDIX B: SDW, SC, AND OTHER
ORBITAL CHANNELS: VERTICES AND

RELEVANT INTERACTIONS

The tetragonal symmetry allows us to decompose the
running interactions in Eq. (8) into different channels. To
achieve this goal we construct bilinear fermion operators
that transform irreducibly under the symmetry group of
the lattice. We consider separately the bilinear combina-
tions in the particle-hole channel at zero momentum and at
momenta Q1;2, and the bilinear combinations in the
particle-particle channel at zero total momentum.

1. Bilinear fermion combinations in the charge
and spin particle-hole channels at large

momentum transfer

The two possible order parameters that describe charge-
density wave order with momenta ðπ; 0Þ and ð0; πÞ are

δr1;2 ¼ f†1;2d1;2 þ d†1;2f1;2; δi1;2 ¼ iðf†1;2d1;2 − d†1;2f1;2Þ:
ðB1Þ

Another two possible order parameters with large momen-
tum transfer describe anti-ferro-orbital order. The corre-
sponding order parameters are

δ̄r1;2 ¼ f†1;2d2;1 þ d†2;1f1;2; δ̄r1;2 ¼ iðf†1;2d2;1 − d†2;1f1;2Þ:
ðB2Þ

These order parameters differ from the ones in Eq. (B1)
because they are off diagonal in the orbital index.
The four possible SDW order parameters with the same

momenta are

sr1;2 ¼ f†1;2σd1;2 þ d†1;2σf1;2;

si1;2 ¼ iðf†1;2σd1;2 − d†1;2σf1;2Þ; ðB3Þ

s̄r1;2 ¼ f†1;2σd2;1 þ d†1;2σf2;1;

s̄i1;2 ¼ iðf†1;2σd2;1 − d†1;2σf2;1Þ: ðB4Þ

The components of Eq. (8) that describe the interactions
in CDW and SDW channels are

Hδ;π ¼
1

8
ð−U1 þ 2U2 þU3Þ½δr1δr1 þ δr2δ

r
2�

þ 1

8
ð−U1 þ 2U2 − U3Þ½δi1δi1 þ δi2δ

i
2�

þ 1

8
ð−Ū1 þ 2Ū2 þ Ū3Þ½δ̄r1δ̄r1 þ δ̄r2δ̄

r
2�

þ 1

8
ð−Ū1 þ 2Ū2 − Ū3Þ½δ̄i1δ̄i1 þ δ̄i2δ̄

i
2� ðB5Þ

and
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Hs;π ¼
1

8
ð−U1 − U3Þ½sr1sr1 þ sr2s

r
2�

þ 1

8
ð−U1 þ U3Þ½si1si1 þ si2s

i
2�

þ 1

8
ð−Ū1 − Ū3Þ½s̄r1s̄r1 þ s̄r2s̄

r
2�

þ 1

8
ð−Ū1 þ Ū3Þ½s̄i1s̄i1 þ s̄i2s̄

i
2�: ðB6Þ

The bare values of the couplings in Eqs. (B5) and (B6)
are

−U1 þ 2U2 þ U3 ¼ 2U; −U1 þ 2U2 − U3 ¼ 0;

−Ū1 þ 2Ū2 þ Ū3 ¼ −U0 þ 2J þ J0;

−Ū1 þ 2Ū2 − Ū3 ¼ −U0 þ 2J − J0;

−U1 − U3 ¼ −2U; −U1 þ U3 ¼ 0;

−Ū1 − Ū3 ¼ −U0 − J0; −Ū1 þ Ū3 ¼ −U0 þ J0:

ðB7Þ

2. Bilinear fermion combinations
in the particle-particle channel

We focus on the singlet pairing with zero total momen-
tum. These bilinear combinations form reducible repre-
sentations of the D4h group, separately for electrons f and
holes d. Accordingly, we introduce the notations

κfμμ0 ¼ fμ↑fμ0↓; κdμμ0 ¼ dμ↑dμ0↓: ðB8Þ

Spin-singlet bilinear combinations are even under inver-
sion, and form one-dimensional irreducible presentations of
the D4h group: A1g, A2g, B1g, and B2g. We have

κfðdÞA1
¼ κfðdÞ11 þ κfðdÞ22 ; κfðdÞB1

¼ κfðdÞ11 − κfðdÞ22 ;

κfðdÞB2
¼ κfðdÞ12 þ κfðdÞ21 ; κfðdÞA2

¼ κfðdÞ12 − κfðdÞ21 : ðB9Þ

The spin-singlet A2g combination κfðdÞA2
actually vanishes, as

κμμ0 is invariant under simultaneous interchange of orbital
indices and spin projections (the spin-triplet A2g combina-
tion does not vanish).
The interaction component in the Cooper channel is

obtained by setting k1 ¼ −k2 in Eq. (8). Expressing Eq. (8)
in terms of the combinations Eq. (B9), we obtain

Hκ ¼ HκA1
þHκB1

þHκB2
; ðB10Þ

HκA1
¼ 1

2
ðU5 þ Ū5Þ½κfA1

�†κfA1
þ 1

2
ðU4 þ Ū4Þ½κdA1

�†κdA1

þ 1

2
ðU3 þ Ū3Þð½κfA1

�†κdA1
þ H:c:Þ; ðB11Þ

HκB1
¼ 1

2
ðU5 − Ū5Þ½κfB1

�†κfB1
þ 1

2
ðU4 − Ū4Þ½κdB1

�†κdB1

þ 1

2
ðU3 − Ū3Þð½κfB1

�†κdB1
þ H:c:Þ; ðB12Þ

HκB2
¼ 1

2
ð ~U5 þ ~~U5Þ½κfB2

�†κfB2
þ 1

2
ð ~U4 þ ~~U4Þ½κdB2

�†κdB2
:

ðB13Þ

The bare values of the couplings in Eqs. (B11)–(B13) are

U5 þ Ū5 ¼ U þ J0; U4 þ Ū4 ¼ U þ J0;

U3 þ Ū3 ¼ U þ J0; U5 − Ū5 ¼ U − J0;

U4 − Ū4 ¼ U − J0; U3 − Ū3 ¼ U − J0;

~U5 þ ~~U5 ¼ U0 þ J; ~U4 þ ~~U4 ¼ U0 þ J: ðB14Þ

3. Bilinear fermion combinations in particle-hole
charge channel with zero momentum transfer

The bilinear combinations of fermions with zero momen-
tum transfer in the particle-hole charge channel are

ρfμμ0 ¼
X
σ

f†μσfμ0σ; ρdμμ0 ¼
X
σ

d†μσdμ0σ: ðB15Þ

Again, these combinations form reducible representations
of the D4h group, separately for electrons f and holes d
(Ref. [44]). The bilinear combinations from Eq. (B15) are
even under inversion; hence, we consider only one-
dimensional (even) irreducible presentations of the D4h
group:

ρfðdÞA1
¼ ρfðdÞ11 þ ρfðdÞ22 ; ρfðdÞB1

¼ ρfðdÞ11 − ρfðdÞ22 ;

ρfðdÞA2
¼ ρfðdÞ12 − ρfðdÞ21 ; ρfðdÞB2

¼ ρfðdÞ12 þ ρfðdÞ21 : ðB16Þ

To obtain the interactions in the particle-hole charge
channel at zero momentum transfer [the ones that renorm-
alize bilinear combinations in Eq. (B16)], we set k1 ¼ k2 or
k1 ¼ k4 in Eq. (B16). Expressing Eq. (8) in terms of the
combinations Eq. (8), we obtain

Hρ ¼ HρA1
þHρA2

þHρB1
þHρB2

; ðB17Þ

where

HρA1
¼ 1

8
ðU5 þ 2 ~U5 −

~~U5Þ½ρfA1
�2

þ 1

8
ðU4 þ 2 ~U4 −

~~U4Þ½ρdA1
�2

þ 1

4
ρfA1

ρdA1
ð2U1 −U2 þ 2Ū1 − Ū2Þ; ðB18Þ
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HρB1
¼ 1

8
ðU5 − 2 ~U5 þ ~~U5Þ½ρfB1

�2

þ 1

8
ðU4 − 2 ~U4 þ ~~U4Þ½ρdB1

�2

þ 1

4
ρfB1

ρdB1
ð2U1 − U2 − 2Ū1 þ Ū2Þ; ðB19Þ

where the contributions of direct and exchange processes in
Eq. (8) are taken into account. We further have

HρA2
¼1

8
ðŪ5−2

~~U5þ ~U5Þ½ρfA2
�2þ1

8
ðŪ4−2

~~U4þ ~U4Þ½ρdA2
�2;

ðB20Þ

HρB2
¼1

8
ðŪ5þ2

~~U5− ~U5Þ½ρfB2
�2þ1

8
ðŪ4þ2

~~U4− ~U4Þ½ρdB2
�2:

ðB21Þ

The bare values of the couplings in Eqs. (B18)–(B21) are

U5 þ 2 ~U5 −
~~U5 ¼ U4 þ 2 ~U4 −

~~U4

¼ 2U1 −U2 þ 2Ū1 − Ū2

¼ U þ 2U0 − J;

U5 − 2 ~U5 þ ~~U5 ¼ U4 − 2 ~U4 þ ~~U4

¼ 2U1 −U2 − 2Ū1 þ Ū2

¼ U − 2U0 þ J;

Ū5 − 2
~~U5 þ ~U5 ¼ Ū4 − 2

~~U4 þ ~U4

¼ J0 − 2J þU0;

Ū5 þ 2
~~U5 − ~U5 ¼ Ū4 þ 2

~~U4 − ~U4

¼ J0 þ 2J −U0: ðB22Þ

a. Pomeranchuk susceptibilities

We focus first on A1g and B1g channels, which we
abbreviate as just as A1 and B1. The equation for the vertex
function reads

�Γf

Γd

�
A1;B1

¼
"
Γ0
f

Γ0
d

#
A1;B1

− ÛA1;B1
Π̂
�Γf

Γd

�
A1;B1

; ðB23Þ

where the polarization matrix

Π̂ ¼
"

2me
π 0

0 2mh
π

#
ðB24Þ

has a diagonal element given by the static autocorrelation
functions of the bilinear operators ρfA1g;B1g

and ρdA1g;B1g
,

respectively, defined in Eq. (B16). We also have from
Eqs. (B18) and (B19):

ÛA1;B1
¼1

4

"
U5�2 ~U5∓ ~~U5 2U1−U2�2Ū1∓ Ū2

2U1−U2�2Ū1∓ Ū2 U4�2 ~U4∓ ~~U4

#
:

ðB25Þ

The instability occurs when one of the eigenvalues of the
matrix

−ÛA1;B1
Π̂ ¼ −2

�
u5 � 2~u5 ∓ ~~u5 ðAh=AÞð2u1 − u2 � 2ū1 ∓ ū2Þ

ðAe=AÞð2u1 − u2 � 2ū1 ∓ ū2Þ u4 � 2~u4 ∓ ~~u4

�
ðB26Þ

reaches unity. In the last equation, we use the definitions Eq. (A2) from Appendix A. These eigenvalues read

λþ−
A1;B1

¼ −ðu5 � 2~u5 ∓ ~~u5 þ u4 � 2~u4 ∓ ~~u4Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu5 � 2~u5 ∓ ~~u5 − u4 ∓ 2~u4 � ~~u4Þ2 þ 4C2ð2u1 − u2 � 2ū1 ∓ ū2Þ2

q
;

λþþ
A1;B1

¼ −ðu5 � 2~u5 ∓ ~~u5 þ u4 � 2~u4 ∓ ~~u4Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu5 � 2~u5 ∓ ~~u5 − u4 ∓ 2~u4 � ~~u4Þ2 þ 4C2ð2u1 − u2 � 2ū1 ∓ ū2Þ2

q
:

ðB27Þ

These expressions simplify on fixed trajectories defined by Eq. (11). And we consider now this case for the two channels
separately. For the A1g channel, we have from Eqs. (B27) and (11)

λþ−
A1

¼ 2u1ðjγ4j þ 4CÞ; λþþ
A1

¼ 2u1ðjγ4j − 4CÞ: ðB28Þ
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For the B1g channel, we similarly have from Eqs. (B27)
and (11)

λþ−
B1

¼ λþþ
B1

¼ 2u1jγ4j: ðB29Þ
The couplings λþ−

A1
¼ 2ð4u1Cþ u1jγ4jÞ ¼ 2ð2u1C − u4Þ

and λþ−
B1 ¼ 2u1jγ4j ¼ −2u4 are dimensionless analogs of

4U1 − U4 and −U4 in Table I. As we discuss in the main
text, the equality Eq. (B29) holds strictly only on the fixed
trajectory. In general, λþ−

B1
> λþþ

B1
, and the Pomeranchuk

instability occurs in the dþ− symmetry channel. The scaling
of susceptibilities is

χsPOM ∝
1

1 − 2u1ð4Cþ jγ4jÞ
¼ 1

LPs
− L

;

χdPOM ∝
1

1 − 2u1jγ4j
¼ 1

LPd
− L

: ðB30Þ

We now turn to the A2 and B2 channels. In this case,
within the RPA the instability occurs when one of the two
conditions is satisfied,

2ðu5�2~u5∓ ~~u5Þ¼1; 2ðu4�2~u4∓ ~~u4Þ¼1; ðB31Þ

where the upper (lower) sign refers to A2g and B2g channels,
respectively.
If we use the values of the couplings along the fixed

trajectory, we find that the susceptibilities in these two
channels occur at the same L as the one in the B1 channel.
However, once we include the corrections, we find that the
instability in the B1 channel occurs prior to the ones in the
A2 and B2 channels.

APPENDIX C: RG FLOW OF SUSCEPTIBILITIES
FOR DIFFERENT BARE VALUES OF

THE COUPLINGS

In this Appendix, we present the results of the calcu-
lations of the flow of the susceptibilities in SDW, SC (sþ−),

and the B1 Pomeranchuk channel for different values of the
bare parameters. The goal here is to show that the system
behavior at low energies is universal and is governed by the
flow of the couplings towards the stable fixed trajectory, but
the value of the RG scale L, at which the susceptibility in
the Pomeranchuk channel becomes the largest, depends on
the bare values of the couplings.
To demonstrate this, we obtain the flow of the couplings

numerically, and then solve the RG equations for the
vertices using the running couplings as inputs. We do
not assume in this calculation that the system is already
near the fixed trajectory.
We present the results in Figs. 5 and 6. The first is for the

case when the bare interaction in the Pomeranchuk channel
is repulsive, the second when it is attractive. We see that the
flow of the susceptibilities is virtually the same in both
cases, but for attractive bare interaction, the Pomeranchuk
susceptibility becomes the largest at a smaller L. Note that
for the parameters we have chosen, this happens before the
RG flow reaches the fixed trajectory, as evidenced by the
fact that the susceptibility in the SDW channel is still larger
than the one in the sþ− superconducting channel.
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