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Dynamic Response of One-Dimensional Interacting Fermions
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We evaluate the dynamic structure factor S�q;!� of interacting one-dimensional spinless fermions with
a nonlinear dispersion relation. The combined effect of the nonlinear dispersion and of the interactions
leads to new universal features of S�q;!�. The sharp peak S�q;!� / q��!� uq�, characteristic for the
Tomonaga-Luttinger model, broadens up; S�q;!� for a fixed q becomes finite at arbitrarily large !. The
main spectral weight, however, is confined to a narrow frequency interval of the width �!� q2=m. At the
boundaries of this interval the structure factor exhibits power-law singularities with exponents depending
on the interaction strength and on the wave number q.
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Low-energy properties of fermionic systems are sensi-
tive to interactions between fermions. The effect of inter-
actions is the strongest in one dimension (1D), where
single-particle correlation functions exhibit power-law sin-
gularities, in a striking departure from the behavior in
higher dimensions. Much of our current understanding of
1D fermions is based on the Tomonaga-Luttinger (TL)
model [1]. The crucial ingredient of the model is the
assumption of a strictly linear fermionic dispersion rela-
tion. The TL model, often used in conjunction with a
powerful bosonization technique [2], allows one to evalu-
ate various correlation functions, such as momentum-
resolved [3,4] and local [5] single-particle densities of
states.

Unlike the single-particle correlation functions, the two-
particle correlation functions of the TL model exhibit
behavior rather compatible with that expected for a
Fermi liquid with the linear spectrum of quasiparticles.
For example, the dynamic structure factor (the density-
density correlation function)

S�q;!� �
Z
dxdtei�!t�qx�h��x; t���0; 0�i (1)

at small q takes the form [3] STL�q;!� / q��!� uq�. It
means that the quanta of density waves propagating with
plasma velocity u are true eigenstates of the TL model;
these bosonic excitations have an infinite lifetime.

Below we show that such a simple behavior is an artifact
of the linear spectrum approximation. In reality, the spec-
trum of fermions always has some nonlinearity,

�R=L;k � �vk� k2=2m� � � � ; (2)

where the upper (lower) sign corresponds to the right (R)
[left (L)] movers, and k � p	 pF are momenta measured
from the Fermi points �pF. [For Galilean-invariant sys-
tems the expansion (2) terminates at k2.]

The finite curvature (1=m � 0) affects drastically the
functional form of S�q;!�. In a clear deviation from the
results of TL model, power-law singularities now arise not
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only in the single-particle correlation functions, but in the
structure factor as well. We show that the singularities in
these two very different objects have a common origin,
proliferation of low-energy particle-hole pairs, and evalu-
ate the corresponding exponents.

Because of the success of the bosonization technique
[2], it is tempting to treat the spectrum nonlinearity as a
weak interaction between the TL bosons. Indeed, the non-
linearity gives rise to a three-boson interaction with the
coupling constant / 1=m [6]. However, attempts to treat
this interaction perturbatively fail as the finite-order con-
tributions to the boson’s self-energy diverge at the mass
shell [7]. A reliable method of resumming the correspond-
ing series is yet to be developed.

We found it more productive to approach the problem
from the fermionic perspective. One has then a benchmark
reference point: the structure factor of free fermions. At
zero temperature, the structure factor has a simple physical
meaning of the absorption rate of a photon with energy !
and momentum q [8]. Without interaction, absorption of a
photon results in a creation of a single particle-hole pair.
For a fixed q < 2pF, the energy of this pair lies within the
interval

!� <!<!�; !� � uq� q2=2m (3)

(for free fermions u � v). The bounds !� (!�) corre-
spond to particle-hole pairs in which a hole (a particle) is
created just below (just above) the Fermi energy. If ! is
outside the interval (3), the energy and momentum conser-
vation laws cannot be satisfied and the structure factor
vanishes. Within this interval, S�q;!� is independent of !,

S�q;!� � S0�q� � m=q; !� <!<!�; (4)

see Fig. 1. Accordingly, S�q;!� at a fixed q exhibits a peak
which has a ‘‘rectangular’’ shape with the width �! �
!� �!� � q2=m [10].

If even a weak interaction is now turned on, its effect on
the structure factor is dramatic; see Fig. 1. The structure
factor still vanishes below the (renormalized) lower ab-
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FIG. 2. (a), (b) First-order correction to S�q;!�, logarithmi-
cally divergent at !! !� � 0 and !! !� � 0. Each arc
denotes a Green function for right-movers. (c), (d) Second-order
contributions that diverge logarithmically at !! !� � 0; in-
ternal loops correspond to left-movers.

FIG. 1. (a) Without interactions, the structure factor differs
from zero only for !� <!<!�. In the presence of interac-
tions, S � 0 at !>!� as well. For repulsive interactions,
S�q;!� has a power-law divergence at ! � !��q� with an
exponent depending on q. (b) Sketch of S�q;!� at a fixed small
q
 pF; see Eqs. (5) and (7).
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sorption ‘‘edge’’ ! � !�, but above the edge S�q;!�
develops a power-law singularity,

S�q;!�
S0�q�

�

�
�!

!�!�

�
�
; 0<!�!� 
 �!: (5)

The exponent � here is a smooth function of q,

��q� �
m
�q
�V0 � Vq� (6)

[Vp is the Fourier component of the intrabranch interaction
potential; see Eq. (10) below]. The divergence in Eq. (5)
has the same origin as the familiar x-ray edge singularity in
metals [11].

In the presence of interactions, absorption of a photon is
accompanied by the creation of multiple particle-hole
pairs, which allows the conservation laws to be satisfied
at arbitrarily high ! [9], so that S�q;!� � 0 for !>!�.
However, at ! � !� the structure factor still exhibits a
power-law singularity. At j!�!�j 
 �! we find

S�q;!�
S0�q�

�

(
�!��!�! �

� � �
� ; ! < !�

�
� �1� �

!�!�
�! �

��; ! > !�
(7)

with

��q� �
�
q

4mu

�
2
�
U0

2�u

�
2

 ��q�: (8)

Here U0 is the interaction between the right and left
movers; see Eq. (10) below.

Finally, at high frequencies S�q;!� can be evaluated
[12] in the second order of perturbation theory in the
interaction between fermions,

S�q;!� � 2�
uq2

!2 � u2q2 ; !�!�  �!: (9)

Note that S / q4 in Eq. (9), as expected for a multipair
contribution to the photon absorption rate [9]. Therefore,
for q
 pF the high-frequency ‘‘tail’’ yields a negligible
contribution to the f-sum rule: the main spectral weight of
S�q;!� is still confined within the narrow frequency win-
dow (3). At the borders of this interval S�q;!� develops
power-law singularities; see Eqs. (5) and (7). The resulting
rather peculiar shape of the peak in S�q;!� is sketched in
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Fig. 1(b). It is certainly very different from a simple
Lorentzian assumed in, e.g., Ref. [13]. If one were to
interpret the finite width of the peak as a lifetime of the
TL bosons, one would conclude that the boson’s decay is
manifestly nonexponential. Instead, it is governed by
power laws, indicating strong nonlinearity-induced corre-
lations between the TL bosons.

Equations (5)–(8) represent the main result of this
Letter. We now outline their derivation. We describe spin-
less 1D fermions by the Hamiltonian

H �
X
�;k

��;k 
y
�;k �;k

�
1

2L

X
p�0

�
Vp
X
�

��;p��;�p � 2Up�R;p�L;�p

�
; (10)

where � � R;L, the single-particle energies ��;k are given
by Eq. (2), ��;p �

P
k 
y
�;k�p �;k, and L is size of the sys-

tem. We consider short-range interaction, so that V0; U0 are
finite and V0 � Vp / p2 (and similarly for Up) for small
p
 pF. (Note that Vp � Up for Galilean-invariant
systems.)

Let us concentrate on the immediate vicinity of the
lower absorption edge, !! !�. Divergent corrections
to S�q;!� appear already in the first order in the interaction
strength; see the diagrams (a) and (b) in Fig. 2. Evaluation
of these contributions (which differ from zero only at
!� <!<!�) yields

�S�q;!�
S0�q�

� � ln
�

�!
!�!�

�
; 0<!�!� 
 �!

(11)

with � given by Eq. (6). It is not difficult to pinpoint the
origin of the logarithmic divergencies in the perturbation
theory. Absorption of a photon results in the creation of a
‘‘deep’’ hole at k � �q. Particles near the Fermi level may
then scatter off the hole with a small (
q) momentum
transfer. Excitation of multiple low-energy particle-hole
pairs then leads to the power-law enhancement of the
absorption rate, similar to the edge singularity in the
x-ray absorption spectra in metals [11]. Unlike the conven-
tional x-ray singularity problem, in our case the deep hole
5-2
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is mobile. It is known, however, that in 1D the edge
singularity remains intact even when the dynamics of the
hole is taken into account [14].

The above perturbation theory analysis and the analogy
with the x-ray singularity suggest that the most divergent
terms of the perturbative expansion can be summed by
replacing the original model Eq. (10) with an appropriate
effective Hamiltonian [11]. It should include two narrow
(of the width k0 
 q) strips of states: one around the
(right) Fermi point k � 0, and another around k � �q.
The former accommodates low-energy particle-hole pairs,
while the later hosts a deep hole. The corresponding effec-
tive Hamiltonian H� is then obtained by projecting
Eq. (10) onto the states of right-movers with jkj< k0 

q and jk� qj< k0 (the r and d subbands in Fig. 3), while
states outside these intervals are regarded as either empty
or occupied.

Furthermore, for k0 
 q the spectrum within the two
subbands can be linearized. Using

 r�x� �
X
jkj<k0

eikx����
L
p  R;k;  d�x� �

X
jk�qj<k0

ei�k�q�x����
L
p  R;k;

we write the projected Hamiltonian in the coordinate rep-
resentation [15],

H� �
Z
dx yr ��iu0@x� r�

Z
dx yd ��!� � iu�q@x� d

��V0�Vq�
Z
dx�d�x��r�x�: (12)

Here �r�x� �:  yr �x� r�x�: and �d�x� �  d�x� 
y
d �x� are

densities of particles and holes in the corresponding sub-
bands (the colons denote the normal ordering). The veloc-
ities u0 and u�q are given by

up � v� V0=2�� p=m (13)

with p � 0;�q, and include corrections due to both the
interaction and the spectrum nonlinearity (we neglected
Vp � V0 / p2 here). Finally, !� is the lower absorption
edge given by Eq. (3) with u � u0.

In terms of the effective Hamiltonian (12), the structure
factor Eq. (1) takes the form

S�q;!� �
Z
dxdtei!thB�x; t�By�0; 0�i: (14)

The operator By �  yr  d creates an intersubband particle-
hole pair (an exciton). With the effective Hamiltonian (12),
the correlation function (14) can be evaluated by known
FIG. 3. The states of right-movers included in the effective
Hamiltonian (12).
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methods [14,16]. Indeed, the total number of d holes Nd �R
dx�d�x� commutes with H�. Since the entire d subband

lies below the Fermi level, the ground state of H� corre-
sponds to Nd � 0. The operator By in Eq. (14) creates one
d hole, which propagates until it is annihilated by the
operator B. Therefore, as far as the evaluation of Eq. (14)
is concerned, H� can be simplified even further by replac-
ing  d�x� ! P d�x�P , where P is a projector onto states
withNd � 0; 1. It is easy to see that the projected operators
satisfy

 d�y��d�x� � 0; �d�x� d�y� � ��x� y� d�y�;

from which it follows that ��d�x�; �d�y�� � 0.
We now bosonize  r field in (12) according to [2]

 r�x� �
�����
k0

p
ei’�x�; �’�x�; ’�y�� � i�sgn �x� y�;

(15)

which yields H� � H0 � �H, where

H0 �
u0

4�

Z
dx�@x’�

2 �
Z
dx yd ��!� � iu�q@x� d;

�H � �
1

2�
�V0 � Vq�

Z
dx�d�x�@x’: (16)

The Hamiltonian H� can be diagonalized by the unitary
transformation [16] ~H� � eiWH�e�iW with

W � �
Z
dx�d�x�@x’; � �

1

2�

V0 � Vq
u�q � u0

� �
�
2
;

where � is given by Eq. (6). To the linear order in V, the
transformation yields ~H� � H0. At the same time, the
transformation modifies the operator By,

~B y�x� � eiWBy�x�e�iW �
�����
k0

p
e�i�1��=2�’ d: (17)

Since ~H� � H0 is quadratic, evaluation of Eq. (14) is
straightforward. The structure factor vanishes identically
at !<!�, while at !>!� it is given by Eq. (5), valid
with logarithmic accuracy [i.e., up to a numerical factor in
the large parentheses in Eq. (5)].

A similar procedure can be employed to calculate the
structure factor near the upper edge ! � !�. At !!
!� � 0 the first order in V correction to S�q;!� [see
Figs. 1(a) and 1(b)] diverges,

�S�q;!�
S0�q�

� � ln
�
!� �!
�!

�
; 0<!� �!
 �!:

(18)

The nonvanishing contributions to S�q;!� at !>!�
appear in the second order inU; see diagrams (c) and (d) in
Fig. 2. These diagrams describe a process in which an
absorption of a photon results in the final state that has
two particle-hole pairs on the opposite branches of the
Fermi surface [12]. The corresponding contribution reads
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�S�q;!�
S0�q�

� � ln
�

1�
�!

!�!�

�
2!�

!�!�
; ! > !�

(19)

with � given by Eq. (8). Equation (19) reduces to Eq. (9) at
!�!�  �!, and diverges logarithmically at !! !�.

As above, the divergent contributions can be summed up
by replacing the original model Eq. (10) with an appro-
priate effective Hamiltonian. In this case the d subband lies
well above the Fermi level (near k � q), and contains at
most a single high-energy particle. However, unlike at
!! !�, the interaction with the left-movers now has to
be explicitly taken into account [17]. The counterpart of
Eq. (12) then reads

H� �
Z
dxfiu0� 

y
l @x l� 

y
r @x r�� 

y
d �!� � iuq@x� dg

�
Z
dxf�V0�Vq��d�r�U0��r��d��lg; (20)

where the field operators are defined similarly to  r;d in
Eq. (12), and �d; �r, and �l are the normal-ordered particle
densities. The structure factor is given by Eq. (14) with the
exciton creation operator By �  yd r. Similar to the
above, after bosonizing the r and l subbands, the effective
HamiltonianH� can be diagonalized by means of a unitary
transformation. A straightforward, although lengthy calcu-
lation [18] then yields Eq. (7) for the structure factor. Note
that at !! !� the edge singularity leads to the suppres-
sion of the absorption rate. Technically, the difference with
Eq. (5) arises because, unlike d holes in Eq. (12), d
particles in Eq. (20) move faster than the particles near
the Fermi level: uq � u0 � q=m> 0.

The above consideration, leading to power-law singu-
larities in S�q;!�, is limited to zero temperature T � 0.
However, as long as temperature remains low, T 
 �!, its
main effect is to cut off the power-law singularities. This
amounts to the replacement j!�!�j ! maxf�T; j!�
!�jg in Eqs. (5) and (7).

In conclusion, we found the dynamic structure factor
S�q;!� of interacting fermions in one dimension, without
resorting to the TL model. This allowed us to uncover
certain universal features in the behavior of S�q;!�. The
structure factor has a threshold, ! � !��q�, stemming
from kinematic constraints; see Fig. 1. The divergence of
S at the threshold, Eq. (5), is characterized by exponent �,
which is a smooth function of the wave number q. For
weak interactions, the explicit form of the function ��q�,
valid at any q < 2pF, is given in Eq. (6). We believe,
however, that the appearance of the power-law divergency
in S along the entire boundary ! � !��q� is a generic
feature, not limited to weak interactions. Indeed, the meth-
ods we employed to arrive at Eq. (5) rely on smallness of
��q�, which is achieved at sufficiently small q at any
strength of interactions V and U. Also, at q! 2pF the
power-law divergence of S is evident from the conven-
tional Luttinger liquid theory [2]. Remarkably, the origin
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of the threshold singularity in S can be traced back to the
physics of Mahan exciton in theory of x-ray edge singu-
larity [11], and remains universal at any q. The same
physics dictates the existence of a power-law singularity
in S�q;!� at ! � !��q�; see Eq. (7).

Besides being of a fundamental interest, the knowledge
of the structure factor with nonlinear dispersion relation is
crucial for understanding the Coulomb drag, photovoltaic
effect, and other phenomena that owe their existence to the
particle-hole asymmetry. The developed theory is also
applicable to the inelastic neutron scattering off antiferro-
magnetic spin chains [2,19].
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