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Relaxation and Diffusion for the Kicked Rotor
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The dynamics of the kicked rotor, which is a paradigm for a mixed system, where the motion in
some parts of phase space is chaotic and in other parts is regular, is studied statistically. The evolution
operator of phase space densities in the chaotic component is calculated in the presence of noise, and
the limit of vanishing noise is taken in the end. The relaxation rates to the equilibrium density are
calculated analytically within an approximation that improves with increasing stochasticity. The results
are tested numerically. A global picture is presented of relaxation to the equilibrium density in the
chaotic component when the system is bounded and to diffusive behavior when it is unbounded.

PACS numbers: 05.45.Ac
Statistical analysis is most appropriate for the explo-
ration of global properties of systems that exhibit com-
plicated dynamics [1–4]. For chaotic systems, Û, the
evolution operator of distributions of phase space trajecto-
ries, which is sometimes called the Frobenius-Perron (FP)
operator, describes the statistical properties of the dynam-
ics. For many idealized systems exponential relaxation to
the equilibrium density takes place. This was established
rigorously for hyperbolic systems (A systems), such as the
baker map [2–6]. The relaxation rates relate to the Ru-
elle resonances that are poles of the matrix elements of
the resolvent R̂ � �z 2 Û�21 in a space of functions that
are sufficiently smooth [5]. These poles are inside the unit
circle in the complex z plane while the spectrum of Û is
confined to the unit circle because of unitarity. Most physi-
cally realistic models are not hyperbolic, but mixed where
the phase space consists of chaotic and regular compo-
nents. For mixed systems sticking to regular regions takes
place. If the regular regions are small this effect is neg-
ligible for finite time, which may be long, much longer
than the time relevant to the experiment. In this Letter the
FP operator and the relevant approximate relaxation rates
are calculated analytically and numerically for the chaotic
component of the kicked rotor that is a mixed system [7].

The kicked rotor is a paradigm [8] for chaotic behavior
of systems where one variable may be either bounded or
unbounded in phase space. If it is unbounded, diffusion is
found for the classical system [8,9]. In quantum mechanics
this diffusion is suppressed by a mechanism similar to
Anderson localization [10]. The kicked rotor is defined
by the Hamiltonian

H �
1
2

J2 1 K cos u
X
n

d�t 2 n� , (1)

where J is the angular momentum, u is the conjugate angle
�0 # u , 2p�, and K is the stochasticity parameter. Its
equations of motion reduce to the standard map ū � u 1

J̄ and J̄ � J 2 K sinu, where �u, J� and �ū, j̄� are the
angle and the angular momentum before a kick, and just
before the next kick, respectively. For K . Kc � 0.9716,
diffusion in phase space was found.
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In this paper the FP operator will be calculated for the
kicked rotor on the torus: �0 # J , 2ps; 0 # u , 2p�,
where s is an integer. The operator is defined in the space
spanned by the Fourier basis:

fkm � �Ju j km� �
1

p
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exp�imu� exp

µ
i

kJ
s

∂
.

(2)

The FP operator was studied rigorously for the hyperbolic
systems and many of its properties are known [2–6]. It
is a unitary operator in L 2, the Hilbert space of square
integrable functions. Therefore its resolvent

R̂�z� �
1

z 2 Û
�

1
z

X̀
n�0

Ûnz2n (3)

is singular on the unit circle in the complex z plane. The
matrix elements of R̂ are discontinuous there, and one
finds a jump between two Riemann sheets. The sum (3) is
convergent for jzj . 1, therefore it identifies the physical
sheet as the one connected with this region. The Ruelle
resonances are the poles of the matrix elements of the re-
solvent, on the Riemann sheet, extrapolated from jzj . 1
[6]. These describe the decay of smooth probability distri-
bution functions to the invariant density in a coarse grained
form [3]. In spite of the solid mathematical theory, there
are very few examples where the Ruelle resonances were
calculated for specific systems [3,6]. For the baker map
it is easy to see that, as the resonances approach the unit
circle, corresponding to slower decay, they are associated
with coarser resolution in phase space [6]. For the kicked
rotor (1) the operation of Û on a phase space density r is
Ûr�u, J� � r���u 2 J, J 1 K sin�u 2 J����. To make the
calculation, well-defined noise is added to the system. If
noise that conserves J and leads to diffusion in u is added
to the free motion, the matrix elements of Û in the basis
(2) are

�k2m2jÛjk1m1� � Jm22m1

µ
k1K

s

∂
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µ
2
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∂
dk22k1,m2s . (4)
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For s � 0 the operator is unitary as required. It is shown
explicitly that addition of the noise acts effectively as
coarse graining and the resulting evolution operator is not
unitary (see also [11]).̌ For a large stochasticity parameter
K , it is shown here, by a direct order by order calculation
without any additional assumptions (of the nature made in
[8,9]), that in the Fourier basis (2) the slowest relaxation
modes, in the limit of infinitesimal noise, are found to be
identical to the modes of the diffusion operator [7]. Also
the fast relaxation modes are calculated analytically in this
paper, and the approximate analytical results are tested nu-
merically [7]. These modes are not related to the spectrum
of the FP operator that is confined to the unit circle. We be-
lieve that we found all relaxation rates for distribution func-
tions that can be expanded in terms of the basis functions
(2). The immediate question is how is it possible that this
description, which was established only for hyperbolic sys-
tems, holds for a mixed system. It is clearly approximate,
and holds for large values of the stochasticity parame-
ter K , since most of the phase space is then covered by
the chaotic component. The physical reason for the decay
of correlations is that, in a chaotic system, the stretching
and folding mechanisms lead to a persistent flow in the di-
rection of functions with finer details, namely, larger jkj
and jmj in our case. Consequently, the projection on a
given function, for example, one of the basis functions (2)
in our case, decays [12]. The crucial point is that this func-
tion should be sufficiently smooth. This argument should
hold as an approximation also for the chaotic component
of mixed systems. For smaller values of K the weight of
the regular regions increases. In such a situation, in the
limit of increasing resolution, the resonances related to the
regular component are expected to move to the unit circle
in the complex z plane, corresponding to the quasiperiodic
motion, while the resonances associated with the chaotic
component stay inside the unit circle [13].

How is the FP operator related to the quantum mechani-
cal evolution operator? It was shown numerically for the
baker map that if both operators are calculated with finite
resolution they exhibit the same Ruelle resonances [11].
Noise and coarse graining are introduced in field theoreti-
cal treatment of chaotic systems [14,15]. Since the FP op-
erator plays an important role in these theories, our work
is of relevance there. It also justifies some assumptions
made in the calculation of the typical localization length
for the kicked rotor [16,17].

We turn now to calculate the Ruelle resonances for the
kicked rotor with the help of the evolution operator (4).
The calculation will be done for finite noise s and then the
limit s ! 0 will be taken. These are the poles of matrix
elements R12 � �k1m1jR̂�z�jk2m2� of the resolvent opera-
tor R̂ of (3) when analytically continued from outside to
inside the unit circle in the complex plane. It is useful to
introduce R̂0�z� � 1��1 2 zÛ� �

P`
n�0 znÛn that is con-

vergent inside the unit circle, because kzÛk # 1. Its ma-
trix elements are R0

12 � �k1m1jR̂0�z�jk2m2� �
P`

n�0 anzn,
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where an � �k1m1jÛnjk2m2�. The relation between the
matrix elements inside and outside of the unit circle implies
that if zc is a singularity of R12 then 1�zc is a singular point
of R0

12. Consequently, the first singularity of the analytic
continuation of R0

12�z� from inside to outside the unit circle
gives the first singularity one encounters when analytically
continuing R12�z� from outside to inside the unit circle, i.e.,
it is just the leading nontrivial resonance. It is determined
from the fact that it is the radius of convergence r of the
series for R0

12 given by the Cauchy-Hadamard theorem:
r21 � limn!` sup n

p
janj [18].

The calculation of the coefficients an � �k0jÛnjk0� is
performed using the resolution of the identity [introducing
intermediate jkimi� �kimi j], and then substitution of (4)
and summation over the ki , leading to

an �
X
m1

X
m2

· · ·
X
mn21

nY
l�1

JM2
l

µ
kK
s

2 KM1
l21

∂

3 e2�s2�2�m2
l dM1

n21,0 , (5)

where m0 � mn � 0, while M1
l �

Pl
i�0 mi and M2

l �
ml21 2 ml . The calculation is performed for large s and
K and the limits are taken in order [7]:

�1� s ! ` ,

�2� K ! ` , (6)

�3� s ! 0 .

For a sufficiently low mode so that 0 , kK�s ø 1, the
leading order term in K�s and 1�

p
K is

an �
∑
1 2

k2K2

4s2 �1 2 2J2�K�e2s2

�
∏n

. (7)

The resonance closest to the unit circle, zk is the inverse of
the radius of convergence. Here zk � e2�k2�s2�D�K�, with

D�K� �
K2

4
�1 2 2J2�K�e2s2

� , (8)

which is just the value of the diffusion coefficient D�K�
found in [19]. In the limit of s ! 0 these are the relaxa-
tion rates in the diffusion equation. The analysis of the
off-diagonal matrix elements an � �kmjÛnjk0m0� leads to
the same result.

In order to obtain the fast relaxation rates we have to
calculate matrix elements which do not exhibit slow re-
laxation because such relaxation, if present, dominates the
long time behavior. For this purpose we calculated the re-
laxation rates of disturbances from invariant density which
involve functions from the subspace �j0, m�	 with m fi 0
and calculate an � �0mjÛnjkm0�. Again, the resolution
of the identity is introduced [introducing intermediate
jkimi� �kimij], and summation over the ki yields a nonvan-
ishing result only if k�s 
 q is an integer. The expression
for an is found to be independent of s. The resulting reso-

nances (for large K) are z̃p �
q

J2p�pK� exp�2s2p2�2�,
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where p � jmj or p � jq̃j, with q̃ � q if q fi 0 and
q̃ � m0 if q � 0, depending upon which choice gives the
larger absolute value [7]. For q � m0 � 0 and m fi 0,
one finds an � 0. If m � m0 � q � 0 the only contribu-
tion is when all mi vanish and then an � 1 for all n, result-
ing in the resonance z � 1, corresponding to equilibrium.

The FP operator is the evolution operator Û in the limit
of vanishing noise. Therefore the Ruelle resonances are the
poles of matrix elements of the resolvent R̂ in this limit.
They form several groups. There is z0 � 1, which is re-
lated to the equilibrium state. The resonances correspond-
ing to the relaxation modes related to the diffusion in the
angular momentum are

zk � exp

√
2

k2K2

4s2 �1 2 2J2�K��

!
. (9)

The resonances related to fast relaxation in the u direction
are

z̃p �
q

J2p�pK� . (10)

In certain cases this result does not hold for small intervals
around the values of K , where J2p�pK� � 0 [7]. The
relaxation rates are gk � j lnzkj and g̃p � j ln jz̃pk.

The analytical results that were obtained as the leading
terms in an expansion in powers of 1�

p
K were tested nu-

merically for finite K and s � 0. For this purpose the
correlation function Cfg�n� � � fjÛnjg� was calculated
numerically. For distributions g and f from the Fourier
basis (2), projected on the chaotic component, the relaxa-
tion rates are expected to take the values gk or g̃p . For the
diffusive modes, one expects gk � �k2�s2�D�K�, where
D�K� is the diffusion coefficient (8) with s � 0. The val-
ues of D�K� were extracted from this relation for various
values of k and s and are presented in Fig. 1. For large
values of K , excellent agreement with the theory is found:
the value of D is found to be independent of k and s and
it agrees with (8). For relatively smaller values of K , the
value of the diffusion coefficient for some values of K
is larger than the one that is theoretically predicted. The
theoretical errors were estimated from the next term of the
formula of Rechester and White for the diffusion coeffi-
cient [19]. In order to observe the rapidly relaxing modes
the correlation function Cfg was calculated for g � fkm0

so that q � k�s is an integer and f � f0m. In Fig. 2 the
numerical estimate for g̃p is compared with the theoretical
prediction obtained from (10). The error in the theoretical
prediction is estimated as the value of the next order con-
tribution to an. The main reason for disagreement between
the theory and the numerical simulations is the sticking to
the islands of stability and accelerator modes [20].

Finite noise leads to the effective truncation of the evo-
lution operator (4) . In the basis (2) it means that it results
in limited resolution. Moreover, for s . 0 the operator Û
is nonunitary. The approximate eigenvalues of Û given by
(4) that were found in this work are 1, zk , and z̃p . Because
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FIG. 1. The diffusion coefficient D for (a) 10 #K # 100 and
(b) 2 # K # 20, as extracted from the relaxation rates: the first
mode (squares), the second mode (stars), the fifth mode (circles),
and off-diagonal correlation functions (triangles) compared to
the theoretical value (solid line). The dashed line represents the
approximate error. The values of D obtained by direct simula-
tion of propagation of trajectories are marked by diamonds.

of the effective truncation, cg (the eigenfunction of Û) can
be expanded in terms of the basis states (2). The relaxation
rates of these eigenstates are 2 ln�zk� and 2 ln�jz̃pj�. In the
limit s ! 0 the evolution operator is unitary, and the func-
tions cg approach some generalized functions while zk and
z̃p approach the values (9) and (10). These are the Ruelle
resonances similar to the ones found for hyperbolic sys-
tems such as the baker map [6]. Here, noise was used in
order to make the analytical calculations possible, and to
develop a physically transparent description of the evolu-
tion. In real experiments some level of noise is present,
therefore the results in the presence of noise are of experi-
mental relevance.

In summary, the Ruelle resonances that were found rig-
orously for hyperbolic systems can be used for an approxi-
mate description of relaxation and transport in the chaotic
component of mixed systems. The relaxation of distribu-
tions in phase space to the invariant density takes place
2839
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FIG. 2. The fast relaxation rates g̃p for f � f01, g � f02
(triangles) compared to the theoretical value (solid line). The
dashed lines denote the theoretically estimated error. Here we
used s � 1 and N � 108.

in stages. The inhomogeneity in u decays with the rapid
relaxation rates g̃p and then relaxation of the inhomo-
geneities in the J direction takes place with the relaxation
rates of the diffusion equation. In the limit s ! ` the
inhomogeneity in u relaxes and then diffusion in the mo-
mentum direction takes place.
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