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We report the results of the parquet renormalization group (RG) analysis of the phase diagram of the
most general 5-pocket model for Fe-based superconductors. We use as an input the orbital structure of
excitations near the five pockets made out of dxz, dyz, and dxy orbitals and argue that there are 40 different
interactions between low-energy fermions in the orbital basis. All interactions flow under the RG, as one
progressively integrates out fermions with higher energies. We find that the low-energy behavior is
amazingly simple, despite the large number of interactions. Namely, at low energies the full 5-pocket model
effectively reduces either to a 3-pocket model made of one dxy hole pocket and two electron pockets or a
4-pocket model made of two dxz=dyz hole pockets and two electron pockets. The leading instability in the
effective 4-pocket model is a spontaneous orbital (nematic) order, followed by sþ− superconductivity.
In the effective 3-pocket model, orbital fluctuations are weaker, and the system develops either sþ−

superconductivity or a stripe spin-density wave. In the latter case, nematicity is induced by composite spin
fluctuations.
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Introduction.—The interplay between superconductivity,
magnetism, and nematicity is the key physics of Fe-based
superconductors (FeSCs) [1–6]. In some FeSCs, e.g., 1111
and 122 systems, undoped materials display a stripe
magnetic order below a certain TN and a nematic order
at slightly higher temperatures, while superconductivity
emerges upon doping, when magnetic order gets weaker. In
other systems, like 111 LiFeAs and 11 FeSe, supercon-
ductivity emerges without long-ranged magnetism already
in undoped systems. Besides, FeSe displays an orbital order
above the superconducting (SC) Tc [7]. The issue for the
theory is to understand whether these seemingly different
behaviors can be understood within the same framework.
In this Letter, we report the results of our analysis, which

connects different classes of FeSCs. We study the com-
petition between superconductivity, magnetism, and nem-
aticity in the most generic five-pocket (5p) model for
FeSCs with full orbital content of low-energy excitations.
To do this, we use the machinery of the analytical parquet
renormalization group (pRG) [8]. This approach, along
with the complementary numerical functional RG [9–12],
has been argued [4,9–16] to be the most unbiased way to
analyze competing orders in an itinerant electron system.
The 5p model consists of three hole pockets, of which

two are centered at Γ ¼ ð0; 0Þ in the 1Fe Brillouin zone and
one is centered at M ¼ ðπ; πÞ, and two electron pockets
centered at Y ¼ ð0; πÞ and X ¼ ðπ; 0Þ (see the right panel in
Fig. 1). The two Γ-centered hole pockets are made out of
dxz and dyz orbitals, and the hole pocket atM is made out of

dxy orbitals. The electron pockets are made out of dxzðdyzÞ
and dxy orbitals [17,18].
For such an electronic configuration, there are 40 differ-

ent four-fermion interaction terms, allowed by C4 sym-
metry [19,20] (without the hole pocket atM, this number is
30 [21]). If one departs from the model with only local
interactions, the bare values of all 40 interactions are linear
combinations of Hubbard and Hund terms. However, the 40
interactions flow to different values under the pRG, which
implies that the system self-generates nonlocal interactions.
The flow of the interactions is obtained by solving differ-
ential equations that encode a series of coupled vertex
renormalizations. The running interactions are then used as
input to determine susceptibilities in different channels.
This way one can monitor a simultaneous buildup of
different correlations taking into account their mutual
feedback, which turns out to be crucial in our study.
The main result of pRG analysis is the emergent

universality. It means that 40 microscopic interactions flow
towards a limited number of fixed trajectories (FTs), where
the ratios of different interactions become universal num-
bers. Each fixed trajectory has a basin of attraction in the
space of bare interaction parameters. This allows us to
explain the rich behaviors of the different FeSCs within a
unifying description. In practical terms, a simultaneous
buildup of different correlations holds in the window of
energies between a fraction of W and a scale comparable
to the Fermi energy EF. At smaller energies, interactions
in different channels evolve independently of each other.
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The range between W and EF should be wide enough;
otherwise, the pRG flow ends before the system reaches
one of the FTs [22].
Summary of our results.—We found four stable FTs. For

the first two stable FTs, the interactions within the subset of
the two Γ-centered hole pockets and the two electron
pockets become dominant; i.e., the 5p model effectively
reduces to the four-pocket model (4p). For the other two
stable FTs, the 5p model reduces to an effective 3-pocket
model (3p) consisting of two electron pockets and the
M-hole pocket. On each of two stable 4p FTs or 3p FTs,
the system behavior is described by an even simpler
effective model, because interactions involving fermions
from either dxz=dyz or dxy orbitals become dominant. We
label these models as 4p1, 3p1 and 4p2, 3p2, respectively.
We illustrate the four cases and present the phase diagram
in Fig. 1. We then computed susceptibilities in different
channels [23]. We found that the interplay between spin-
density-wave (SDW) magnetism and superconductivity is
the same in all four effective models. Namely, the SDW
susceptibility is the largest at intermediate energies and
pushes SC and orbital susceptibilities up. However, in the

process of the pRG flow, the SC susceptibility overtakes the
SDW one, and the feedback from SC fluctuations halts the
increase of the SDW susceptibility [see Fig. 3(b)]. As a
consequence, already the undoped system develops super-
conductivity rather than SDW magnetism, if indeed the
pRG flow runs over a wide enough range of energies. This
result could not be obtained within the RPA and is entirely
due to the feedback from increasing SC fluctuations on the
SDW channel. In all cases, superconductivity is of the sþ−

type, with a sign change between the gaps on hole and
electron pockets. In 4p models, the susceptibility towards
C4-breaking orbital order also grows, and its exponent is
larger than that for superconductivity [4]; i.e., the system
first develops a spontaneous orbital order. In 3p models,
orbital fluctuations are much weaker, and orbital order does
not have enough “space” to develop.
We found that SDW magnetism does develop before

superconductivity and/or orbital order if the FT is not
reached within the range of pRG flow. The type of SDW
order is different for the 3p and the 4p models. In 3p
models SDW order is a C4-breaking stripe order [24,25],
while in 4p models it is C4-preserving double-Q order
[26,27] [a symmetric combination of ðπ; 0Þ and ð0; πÞ
magnetic orders]. This last result, in combination with the
pRG, implies a clear separation between the magnetic and
orbital scenario for nematicity in FeSCs. Namely, in 4p
models, the SDW scenario for Ising-nematic order does not
work, because double-Q SDW preserves the symmetry
between the X and Y directions, and, simultaneously,
orbital fluctuations are strong. In 3p models, orbital
fluctuations are weak, and, simultaneously, SDW stripe
fluctuations favor vestigial Ising-nematic spin order [28].
In the remainder of this Letter, we present the details of

our study. The full analysis of the set of 40 pRG equations
is quite involved, so, to demonstrate the separation into 4p
or 3p behavior at low energies, we first analyze a toy
model, in which we approximate the orbital composition of
the two electron pockets as pure dxy. We then extend the
analysis to the full 5-pocket model.
Toy model with dxy electron pockets.—As we said, the

kinetic term describes fermionic excitations around the five
Fermi surfaces, i.e., H ¼ HΓ þHX þHY þHM. The sym-
metry-allowed interaction terms contain 14 interactions Ui
within the subset of the two electron and the two Γ-centered
hole pockets and seven interactions Uin involving fermions
near the M-hole pocket, so the total number of the
interactions is 21. We present the Hamiltonian and the
full set of pRG equations for a generic dispersion near hole
and electron FSs in Supplemental Material [20]. The pRG
analysis shows that six interactions flow to zero and five
increase with smaller exponents than the other ten. The
pRG flow of the remaining ten interactions determines the
FTs. We show these ten interactions in the inset in
Fig. 3(a). The pRG equations for these interactions are
(ui ¼ UiNF)
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FIG. 1. (Upper panel) Right: main orbital content of excitations
near Fermi surfaces (presented by different colors); left: regions
of different system behavior of the full 5-pocket model, indicated
by the type of the effective model. In the ranges marked 4p1;2, the
dominant interactions are between fermions near the Γ-centered
hole pockets and electron pockets. In the regions 3p1;2, the
dominant interactions at low energies are within the subset of the
two electron pockets and the M ¼ ðπ; πÞ-hole pocket. The index
1,2 distinguishes if interactions involving dxz=dyz or dxy orbital
components on the electron pockets are dominant. For illustration
purposes, we used the bare model with local Hubbard and Hund
interactions—intraorbital U, interorbital U0, J, and J0. We set
J ¼ 0.025=NF and J0 ¼ 0.03=NF, where NF is the density of
states on the FSs (assumed to be equal on all FSs for simplicity),
and varied U and U0 as two independent parameters. For this
particular choice, 3p2 region does not exist. (Lower panel)
Graphic representations of 3p1;2 and 4p1;2 models. Fermionic
states, for which interactions become the largest in the process of
pRG flow, are shown by solid lines.
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_u1 ¼ u21 þ u23; _u1n ¼ u21n þ u23n;

_u2 ¼ 2u2ðu1 − u2Þ; _u2n ¼ 2u2nðu1n − u2nÞ;
_u3 ¼ 2u3ð2u1 − u2 − u5Þ − 2u3u4 − u3nu5n;

_u3n ¼ 2u3nð2u1n − u2n − u5Þ − u3nu4n − 2u3u5n;

_u4 ¼ −2u24 − 2u23 − 2u25n; _u4n ¼ −u24n − 2u23n − 2u25n;

_u5 ¼ −2u25 − 2u23 − u23n;

_u5n ¼ −2u4u5n − u4nu5n − 2u3u3n: ð1Þ

The derivatives are with respect to L ¼ logW=E, where E
is the running scale.
We searched for FTs of Eq. (1) by selecting one

divergent interaction (specifically, u1 or u1n), writing other
interactions as ui ¼ γiu1, uin ¼ γinu1 (or ui ¼ γiu1n,
uin ¼ γinu1n), and solving the set of equations for
L-independent γi, γin. We found two stable FTs: one with

u1 ¼
1

1þ γ23

1

L0 − L
; ð2Þ

γin ¼ γ2 ¼ 0, γ3 ¼ � ffiffiffiffiffi

15
p

, and γ4 ¼ γ5 ¼ 3, and the other
with

u1n ¼
1

1þ γ23n

1

L0 − L
; ð3Þ

γ1 ¼ γ2 ¼ γ3 ¼ γ4 ¼ γ2n ¼ γ5n ¼ 0, γ3n ¼ �ð3þ 2
ffiffiffi

6
p Þ,

and γ4n ¼ 2γ5 ¼ −
ffiffiffi

6
p

. In Eqs. (2) and (3), L0 is the scale
at which interactions diverge and the system develops a
long-range order, as we show below. For the first stable FT,
all γin involving the M pocket vanish, so the 5-pocket
model effectively reduces to the 4p model. For the second
stable FT, the situation is the opposite—interactions
involving the two Γ-centered hole pockets vanish compared
to other interactions; i.e., the 5p model effectively reduces
to the 3p model. We checked the stability of the 4p FT and
the 3p FT by expanding around them and verified that all
eigenvalues are negative. Whether the system flows to one
FT or the other is determined by the bare values of the
interactions (see Fig. 2).
We next use the running interactions as inputs and

compute the susceptibilities in different channels, χj. We
describe the computational procedure in Ref. [20] and here
list the results. The potentially divergent parts of the
susceptibilities in SC and SDW channels are χi ∝ ðL0 −
LÞ2βi−1 (i ¼ SDW, SC). Along 4p FT and 3p FT, the

exponents are βð4pÞSDW ¼ 0.30, βð4pÞSC ¼ 0.86, βð3pÞSDW ¼ 0.43,

and βð3pÞSC ¼ 0.72. We see that in both cases βSC > 1=2
while βSDW < 1=2; i.e., χSC diverges at L ¼ L0, while
χSDW remains finite, despite that it was the largest at the
beginning of the pRG flow. This implies that the system
develops SC order but not SDWorder. We show the flow of

the susceptibilities in Fig. 3(b). For both 4p and 3pmodels,
we found that the largest βSC > 0 corresponds to the sþ−

gap structure, with the opposite sign of the gap on the hole
and electron pockets [29]
We also analyzed the susceptibility χP in the d-wave

Pomeranchuk channel. An instability in this channel leads
to spontaneous orbital order [4,6], i.e., nonequal densities
of fermions on dxz and dyz orbitals. For the 4p model, we

found that βð4pÞP ¼ 1 is larger than βð4pÞSC ; i.e., orbital order
can precede the SC transition [4]. We found no dxz=dyz
orbital order for the 3p model, because the electron and the
M pockets have dxy character [30].
Full 5-pocket model.—The analysis of the full 5-pocket

model with dxz=dxy and dyz=dxy orbital content of the
electron pockets is more involved, as one has to analyze the
set of 40 coupled differential equations for the interactions
(see [20]). We searched for FTs with the same procedure as
in the toy model. Amazingly enough, we found much the
same behavior. Namely, the 5p model effectively becomes
either a 4p or a 3p model. The new feature, not present in
the toy model, is that in each case there are now two stable
FTs, on which the system behavior is described by even
more restricted 3p1;2 and 4p1;2 models. For 3p1 and 4p1

models, interactions involving fermions from dxz (dyz)
orbitals on the electron pockets become dominant; for
3p2 and 4p2 models, interactions of dxy orbitals on the
electron pockets become dominant. We verified that these
four FTs are stable with respect to small deviations. We
show the phase diagram in Fig. 1.
The interplay between SDW and SC is the same in all

four effective models and is similar to that in the toy
model. Namely, the SDW susceptibility is the largest at
the beginning, but in the process of the flow SC
susceptibility diverges faster, and the feedback from SC
fluctuations halts the growth of SDW susceptibility. As a
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FIG. 2. Two different regions of system behavior indicated by
fixed trajectories of the pRG flow for the toy model with electron
pockets made entirely of dxy, for different values ofU,U0 (treated
as two independent parameters) and J ¼ J0 ¼ 0.03=NF. In the
region labeled as 3p, the interactions within the subset of the two
electron pockets and the M ¼ ðπ; πÞ-hole pocket become dom-
inant at low energies. In the region labeled as 4p, interactions
involving fermions from the two Γ-centered hole pockets and the
two electron pockets become dominant.
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result, even at zero doping the system develops sþ− SC
order but no SDW order. Orbital fluctuations are, how-
ever, different in 4p and 3p models, again in similarity to
the toy model. If the pRG flow is towards 4p1 or 4p2

models, orbital fluctuations also get strong and χP
diverges with the largest exponent; i.e., the system
develops a spontaneous orbital order prior to SC [32].
If the flow is towards the 3p model, orbital fluctuations
are much weaker and do not develop for not too large
W=EF. If EF is larger than E0 ∼We−L0 , the pRG flow
ends before χSC and/or χP wins over χSDW. In this
situation, the system develops SDW order at smaller
doping and SC order at larger dopings [22]. For the
4p model an SDW order is a double-Q order, maintaining
the symmetry between X and Y directions [26,27], while
for the 3p model SDW order is a stripe, breaking this
symmetry [24,25]. Combining this with pRG results, we
find that, if the pRG flow is towards one of the two 4p
models, the nematicity emerges as a spontaneous orbital

order. If the flow is towards one of the 3p models, the
nematicity emerges due to stripe fluctuations as a
composite Ising-nematic spin order.
Conclusions and applications to FeSCs.—In this Letter,

we analyzed the competition between SDW, SC, and orbital
order in the full 5-pocket model for FeSCs. We used pRG
techniques and included into consideration the orbital
composition of hole and electron pockets in terms of
dxz, dyz, and dxy orbitals. We found that the system
behavior is amazingly simple—depending on the initial
values of the interactions and quasiparticle masses, the
system flows to one of four stable FTs. For two of these
FTs, the system behavior at low energies is the same as if
theM-pocket was absent (4p model); for the other two, the
system behavior is the same as if the two Γ-centered hole
pockets were absent (3p model).
Our results have several implications for FeSCs. First,

the pRG analysis shows that SC order may develop
instead of long-ranged magnetism already in undoped
materials, not only when SDW order is destroyed by
doping. This is consistent with the behavior in LiFeAs
and FeSe [33]. In systems with smaller regions of the
pRG flow (larger bare interactions or larger EF), SDW
order develops first, and SC develops only upon doping.
Second, pRG analysis shows that in 4p models orbital
order develops first, SC develops at a lower T, and SDW
order does not develop down to T ¼ 0. This is consistent
with the observed behavior in FeSe at ambient pressure
[7]. Third, in 4p models nematicity is due to orbital
order, while in the 3p model it is of magnetic origin
(composite Ising-nematic order). Whether the system
flows towards a 3p or 4p effective model at low energies
depends on microscopic interactions (see Figs. 1 and 2)
as well as the parameters of fermionic dispersions
(see [20]).
The phase diagram in Fig. 1 describes the behavior found

in all four families of FeSCs—1111, 122, 111, and 11
systems—and in this respect our findings provide a unified
description of the competition between SDW, SC, and
orbital orders in all FeSCs.
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FIG. 3. (a) Representative RG flow towards the 4p FT in the toy
model for the interactions u1 and u1n. The inset shows the ten
relevant interactions of the toy model, where double lines
represent electron pockets, wavy lines the M-centered hole
pocket, and solid single lines the Γ-centered hole pockets. Bare
values are U¼0.08=NF, U0 ¼ 0.12=NF, and J ¼ J0 ¼ 0.03=NF.
The RG parameter L is logW=E, where W is the bandwidth and
E is running energy or temperature. The system undergoes an
instability into an ordered state (SDW, SC, or orbital order) at
L ¼ L0. (b) Corresponding flow of the SDW, SC sþ− and orbital
susceptibilities. Near L ¼ L0, the SC and the orbital susceptibil-
ities keep increasing, while the SDW susceptibility remains finite.
Inset: Orbital and SC susceptibilities near the end of the flow.
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