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We study transport in the domain state, the so-called zero-resistance state, that emerges in a two-

dimensional electron system in which the combined action of microwave radiation and magnetic field

produces a negative absolute conductivity. We show that the voltage-biased system has a rich phase

diagram in the system size and voltage plane, with second- and first-order transitions between the domain

and homogeneous states for small and large voltages, respectively. We find the residual negative

dissipative resistance in the stable domain state.
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Introduction.—The zero-resistance state (ZRS) [1–4] is
perhaps the most spectacular of the newly discovered
nonequilibrium effects in ultrahigh mobility two-
dimensional (2D) electron systems in high Landau levels
[5]. The ZRS is attributed [6] to the instability of a homo-
geneous state with the negative absolute dissipative con-
ductivity �< 0 and the associated nonequilibrium phase
transition into a static domain state with zero net resistance
[7–12]. The domain picture is supported by a number of
experiments [13–20]. Similar electrical instabilities have
also been known to appear in other contexts [5,21,22],
most prominently, in the Gunn diode [23] (where,
however, most of the effects are due to the emergence
of moving domains) and in illuminated ruby crystals
[24–26] (where the strongly anisotropic nature of charge
transport reduces the problem to one dimension). Whereas
the microscopic mechanisms that lead to �< 0 in non-
equilibrium 2D electron gases in the presence of a mag-
netic field B are by now fairly well established [5], the
physics of the resulting domain state remains poorly
understood.

Most works [6–12] so far have studied the bulk properties
of the domain state, i.e., the limit d=L ! 0 in which the
width d of the domain wall (DW) is vanishingly small
compared to the system sizeL. In fact, however, the physics
related to the DW structure is crucially important near the
phase transition, because the DW width diverges at the
critical point.

In this Letter, we develop an analytical model of the
domain state for arbitrary d=L and study the nonlinear
response of the domain state to external voltage. The
analytical solution enables us to construct the phase dia-
gram of the biased finite-size system, which incorporates
continuous and discontinuous transitions between the

homogeneous and domain states, and to calculate the nega-
tive conductance in the domain state.
Model.—Consider 2D electrons occupying a stripe

(jxj<L=2, z ¼ 0), infinite in the y direction [Fig. 1(a)],
between two plane metallic contacts at x ¼ �L=2 that are
perpendicular to the stripe. Under the illumination by
microwaves at B � 0, the linear response dc dissipative
conductivity �ðE ! 0Þ, where E is the dc driving field,
becomes negative in one or more intervals of B for the
microwave power P above the threshold Pc [5]. The non-
linear absolute conductivity �ðEÞ remains negative in a
finite range of E, crossing zero at the critical field Ec

[Fig. 1(b)] [27]. By contrast, the diffusion coefficient
D> 0 is nearly unaffected by the radiation.
We first explore the part of the phase diagram in which

the system at P � 0 remains homogeneous along the stripe
so that the surface electron density neðxÞ and the x and y
components of the electric current jx;yðxÞ depend on x only.
The domain state is a stable solution of the Poisson and
continuity equations. The former relates neðxÞ to the
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FIG. 1 (color online). (a) Geometry of the model: a 2D stripe
between two metallic contacts along the long sides. The domain
wall (double dashed line) and the electric field E and the Hall
current jH are shown for the voltage-biased domain state. (b) The
nonlinear dissipative conductivity �ðEÞ and the diffusion coef-
ficient D ¼ constðEÞ.
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normal component Ezðx; zÞ of the electric field:
2�e½neðxÞ � n0� ¼ �Ezðx;þ0Þ with e < 0, where n0 is
the density of background positive charges and � is the
dielectric constant of the medium. The continuity equation
reduces to @xjxðxÞ ¼ 0. We assume that the in-plane elec-
tric field EðxÞ ¼ Exðx;þ0Þ varies on a spatial scale that is
larger than the microscopic scales [28] and introduce the
local conductivity �½EðxÞ�. Note that the Einstein relation
does not hold at P � 0 and the current jx ¼ �ðEÞE�
eD@xne is not expressible as the gradient of the electro-
chemical potential [29].

At z � 0, the functions Exðx; zÞ and Ezðx; zÞ are harmonic
conjugates. This, together with the continuity of Exðx; zÞ at
z ¼ 0, allows us to represent the Poisson equation as
�EðxÞ ¼ 2�eH fneðxÞg, where the Hilbert transform
H ffðxÞg���1p:v:

R
dx0ðx�x0Þ�1fðx0Þ obeys H 2 ¼ �1

(where “p:v:” ¼ principal value). Applying the Hilbert
transform to the Poisson equation in this form and substitut-
ing the result in the diffusion term in jx, we find that EðxÞ
satisfies EðxÞ�½EðxÞ� þ ð�D=2�Þ@xH fEðxÞg ¼ jx. Below,
we solve this equationwith the boundary conditions neðx ¼
�L=2Þ ¼ n0 for the case of

�ðEÞ ¼ �ð0ÞðEc=�EÞ sinð�E=EcÞ (1)

with �ð0Þ< 0 [Fig. 1(b)] [30]. By introducing the dimen-
sionless field �ðxÞ ¼ �EðxÞ=2Ec, density �ðxÞ ¼
�2e½neðxÞ � n0�=�Ec, and current ~j ¼ �jx=�ð0ÞEc, we
thus have

sin2�þ 2�@x� ¼ ~j; (2)

where �ðxÞ and �ðxÞ satisfy �ðxÞ ¼ �H f�ðxÞg and
� ¼ �D=2�j�ð0Þj: (3)

Being the only spatial scale in Eq. (2) at ~j ¼ 0, � is iden-
tified as the nonequilibrium screening length.

Domain solution.—With the boundary conditions
�ð�L=2Þ ¼ 0, the domain solution to Eq. (2) in terms of
the complex function �dom ¼ �dom þ i�dom reads

�dom ¼ i ln
coshð�� iwÞ

sinh�
� arcsin~j

2
; (4)

where 2� ¼ i�x=Lþ iwþ �, w ¼ arctanð~jlÞ, � ¼
arcoth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � ~j2l2

q
, and l ¼ L=��. The system spontane-

ously chooses between two degenerate states related by
�domðxÞ $ ��

domð�xÞ; for definiteness, we analyze the

solution with �domðL=2Þ> 0.
Homogeneous state: linear stability.—In the homogene-

ous case of � ¼ 0, Eq. (2) gives �<hom ¼ ð1=2Þ arcsin~j and
�>hom ¼ �=2� �<hom, where the signs + correspond to

the negative (<) and positive (>) differential conduc-
tivity �dðEÞ ¼ @E½E�ðEÞ� ¼ �ð0Þ cos2�. Linear stability
analysis [31] around this solution shows that it is stable
against small charge fluctuations proportional to
expðiqxxþ iqyyÞ if

�dðEÞq2x þ �ðEÞq2y >�ð�D=2�Þðq2x þ q2yÞ3=2 (5)

for all possible qx and qy. In an infinite 2D system, Eq. (5)

reduces to the usual stability conditions �d > 0 for longi-
tudinal and �> 0 for transverse fluctuations. In the stripe
geometry, qx takes discrete values and the diffusion term in
Eq. (5) becomes relevant, with

�dðEÞ>��D=2L (6)

as the condition of the longitudinal stability (qy ¼ 0,

jqxj ¼ �=L). For E ! 0, Eq. (6) gives the threshold value
of l ¼ 1 [32] for the breakup of the homogeneous state into
domains in the unbiased case, as discussed below.
Unbiased domain state.—For ~j ¼ 0, Eq. (4) reduces to

�dom ¼ arctan½ðl2 � 1Þ1=2 sinð�x=LÞ�; (7)

�dom ¼ artanh½ð1� l�2Þ1=2 cosð�x=LÞ� (8)

[Figs. 2(a) and 2(b)]. In the limit l � 1, Eq. (7) simplifies
to �dom ¼ arctanðx=�Þ, which means two domains with
Eð�L=2Þ ’ �Ec separated by the DW of width �. The
DW is charged with �ðxÞ ’ lnðL=jxjÞ for � � jxj � L.
This gives the oppositely directed Hall currents jyðxÞ ¼
�eneðxÞcEðxÞ=B on the sides of the DW [Fig. 1(a)]. With
the lowering of l, both j�ðxÞj and �ðxÞ decrease and vanish
at l ¼ 1. The homogeneous state with �ð0Þ< 0 is stable
for l < 1 [Eq. (6)]; i.e., there is a continuous transition
between the homogeneous and domain states. For 0< l�
1 � 1, �dom ’ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl� 1Þp

expð�i�x=LÞ vanishes with
the critical exponent 1=2.
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FIG. 2 (color online). Spatial distribution of (a) the electric
field EðxÞ (in units of Ec) and (b) the charge density (in units of
�2e=�Ec) �ðxÞ in the domain state of the unbiased stripe (current
jx ¼ 0) for L=�� ¼ 30, 10, 2, 1.1, 1.01 (L decreases in the
direction of arrow). As the current is increased, the domain wall
is shifted and broadened. The field EðxÞ is shown for
(c) L=�� ¼ 3 and the current [in units of �ð0ÞEc=�] ~j ¼ 0,
0.25, 0.5, 0.75, 0. 9, ð8=9Þ1=2 and for (d) L=�� ¼ 30 and ~j ¼ 0,
0.03, 0.1, 0.5, 0.9, ð899=900Þ1=2 (~j grows in the direction of
arrow).
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Biased domain state.—For ~j � 0, Eq. (4) tells us that the
DW shifts by Lw=� from x ¼ 0 while the characteristic
width of the DW d ¼ L�=� grows with increasing j~jj
[Figs. 2(c) and 2(d)] and diverges as ð~jc2 � j~jjÞ�1=2 at the

critical point j~jj ¼ ~jc2 � ð1� l�2Þ1=2. According to
Eq. (6), for j~jj> ~jc2 the homogeneous state �hom is longi-
tudinally stable. The line ~jc2ðlÞ of the second-order tran-
sitions includes, at its end point l ¼ 1, the transition in the
unbiased stripe discussed above.

Averaging the field �dom [Eq. (4)] over the stripe cross

section, ��dom ¼ ð1=LÞRL=2
�L=2 dx�domðxÞ, one finds the bias

voltage V ¼ 2EcL ��dom=�, i.e., the current-voltage char-
acteristic (CVC) of the domain state

�� dom ¼ arctanð~jlÞ � ð1=2Þ arcsin~j: (9)

Note that the current jx flows against the applied field
jxV < 0. For V ! 0, Eq. (9) gives ��dom ¼ ðl� 1=2Þ~j or,
restoring units, the linear dissipative conductance of the
stripe jx=V ¼ h�i=L in the domain state, where

h�i ¼ �ð0Þð2L=��� 1Þ�1; L > �� (10)

(see inset in Fig. 3). It is worth noting that, as L increases,
h�i in Eq. (10) behaves as L�1 in sharp contrast to the
exponential behavior of h�i / � expð�L=�3DÞ [8,26] for a
three-dimensional (3D) medium with the negative conduc-
tivity (�3D is the analogue of �), where the relation

between the electric field and charge density is local.
Transport across the DW is thus strongly enhanced by
the nonlocal character of 2D electrostatics. The CVC (9)
for several values of l is shown by the dashed lines in

Fig. 4. For l >
ffiffiffi
2

p
, the current is seen to become, as the

voltage is increased, a double-valued function of V. That
is, in fact, the continuous transition line in the V-l plane

terminates at l ¼ ffiffiffi
2

p
and becomes first order for larger l

(Fig. 3), as we discuss next.
Lyapunov functional.—The linear stability analysis

[Eq. (6)] does not capture the emergence of the discontinu-

ous transitions for l >
ffiffiffi
2

p
, i.e., for large voltages V >

EcL=4. The stability analysis of the domain solution (4)
that we perform below to describe the large-voltage regime
is based on the Lyapunov functional (LF) approach to the
ZRS problem [11]. The advantage of the LF method is that
it is capable of discriminating the stable (global minimum
of the LF) and metastable (local minimum) states that
can be distant in phase space. The LF �fEðxÞg ¼ �Gþ
K is given by the difference of the gain G ¼
�R

dx
REðxÞ
0 dE0E0�ðE0Þ and the DW contribution K ¼

ðD=2ÞR dxEðxÞĈEðxÞ, where the capacitance operator

Ĉ ¼ ð�=2�Þ@xH . For the model (1), we have

� ¼ �
Z dx

L
sin2�ðxÞ þ �

Z dxdx0

2�L

�
�ðxÞ � �ðx0Þ

x� x0

�
2
; (11)
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FIG. 3 (color online). Phase diagram of the voltage-biased
stripe in the V-L plane (V and L measured in units of EcL
and ��, respectively). The phase boundary (solid line), induced
by the longitudinal instability, separates the homogeneous
(above) and domain (below) states. In the unbiased stripe, there
is a second-order phase transition at L=�� ¼ 1. The continuous
transition line terminates with increasing V and L at the tricrit-
ical point (filled circle) V ¼ EcL=4, L=�� ¼ ffiffiffi

2
p

. At larger V
and L, the transition is first order. The shaded area is the region
of hysteresis. The thin line, with the end point marked by the
triangle, denotes the linear stability threshold for the homoge-
neous state against transverse fluctuations. Inset: the effective
linear-response conductivity h�i as a function of L. The dashed
line shows h�i for a 3D medium [8,26].
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FIG. 4 (color online). Current-voltage characteristic (thick
lines) of the stripe for different L=�� values. For L=�� < 1
(homogeneous state), the dependence of the dissipative current
jxðVÞ is given by the lowest curve ~j ¼ sinð�V=EcLÞ. For
1<L=�� <

ffiffiffi
2

p
, the homogeneous state breaks up into domains

for V < Vc2, in a continuous fashion, and the jx-V curve has a
kink, as shown for L=�� ¼ 1:2. For L=�� >

ffiffiffi
2

p
, the jx-V

curves for the domain state (dashed lines) are double valued
and the transition becomes discontinuous, as demonstrated by
the jumps of jxðVÞ at V ¼ Vc1 (the critical voltage is marked for
L=�� ¼ 10) in the curves for L=�� ¼ 2:5, 10, 100, 1000. The
discontinuous transition line (dash-dotted line) terminates at the
tricritical point (filled circle) at V ¼ Vc3. The arrows on the thin
vertical lines denote hysteresis (shown for L=�� ¼ 10) in the
interval Vmin < V < Vmax.
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which gives �hom ¼ �sin2�hom in the uniform state and

�dom¼�
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~j2

q �
=2þ l�1� l�1 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~j2þ l�2

q
(12)

in the domain state (4).
First-order transitions.—Comparison of�hom and�dom

leads to the phase boundary (thick line) in Fig. 3 and the
CVCs (thick lines) for different l in Fig. 4. For l < 1, the
homogeneous state is stable (�hom <�dom) for arbitrary

V. For a given l in the interval 1< l <
ffiffiffi
2

p
, there is a

continuous voltage-driven transition (�hom ¼ �dom)
between the homogeneous and domain states at V ¼
Vc2 � ðEcL=�Þ arccosl�1. For l >

ffiffiffi
2

p
, there emerges the

interval Vmin <V < Vmax (whose end points are shown in
Fig. 4 for l ¼ 10) in which the function ~jðVÞ for the domain
state is double valued (dashed lines in Fig. 4). Note that the
expression for Vmin coincides with that for Vc2 so that Vmin

saturates as l is increased at EcL=2. On the lower branch
(with dV=djx > 0), �dom is greater than its value on the
upper branch (and the lower branch is unstable against
linear fluctuations [31], see also Ref. [33]). For the upper
branch, the phase boundary equation�hom ¼ �dom (whose
solution is shown in Fig. 4 as a dash-dotted line) yields, for

l >
ffiffiffi
2

p
, the first-order transition at V ¼ Vc1, where Vc1

tends to EcL in the ‘‘bulk’’ limit l ! 1 as Vc1=EcL ’ 1�
ð1=�Þð2 lnl=lÞ1=2 [34]. The discontinuity in ~j [which van-

ishes as ð2 lnl=lÞ1=2 for l � 1], between the upper-branch
domain state and the homogeneous state, is illustrated by
the vertical thick lines in Fig. 4. The ‘‘tricritical’’ point,

separating the first- and second-order transitions, at l ¼ ffiffiffi
2

p
and V ¼ Vc3 � EcL=4 is marked by the filled circles in
Figs. 3 and 4 [35].

In the above, we assumed that the system resides in the
stable state. The domain state for Vc1 < V < Vmax and the
homogeneous state for Vmin < V < Vc1 are metastable; i.e.,
they can be probed if the voltage sweep rate is larger than
their characteristic decay rates. In this (nonadiabatic) limit,
the system exhibits hysteresis [36], as marked in Fig. 4
by the arrows on the thin vertical lines for the case of
l ¼ 10. The hysteresis range Vmin < V < Vmax for arbitrary

l >
ffiffiffi
2

p
is shown as a shaded area in Fig. 3.

Transverse instability.—Before concluding, we briefly
comment on the stability of the above picture against
transverse fluctuations. Starting from Eq. (5), these can
be shown [31] to be irrelevant on the stability boundary
(6) in Fig. 3 for a sufficiently narrow stripe with l < lc? ’
1:76 (or equivalently, V < Vc? ’ 0:31EcL). The threshold
is marked in Fig. 3 by the triangle. The range of l < lc?
includes the zero-bias critical point at l ¼ 1 and the tricrit-

ical point at l ¼ ffiffiffi
2

p
. For l > lc?, the linear transverse

stability is maintained above the thin line in Fig. 3, which
runs well above the longitudinal stability threshold Vmin for
the homogeneous state (6) and very close to the discon-
tinuous transition line Vc1 obtained for frozen transverse
fluctuations. At l ¼ lcþ ’ 7, the two lines intersect so that

for l > lcþ the homogeneous state is unstable above Vc1. In
the narrow region between the lines for l > lcþ, the global
minimum of the LF should thus be given by a 2D domain
state with broken translational invariance along the stripe.
The nature of this state as well as the position of the
boundary V�

c1 for the global stability of the domain state
(4) [37] requires additional study.
Summary.—We have studied transport in the voltage-

biased stripe with a negative absolute conductivity and
obtained the phase diagram that shows phase transitions
between the domain and homogeneous states. The transi-
tions are second order for small and first order for large
voltages (Fig. 3). We have calculated the CVC of the
domain state (Fig. 4) and found the negative dissipative
conductance. Our predictions can be verified by measuring
the CVC in sufficiently small samples in the vicinity of the
ZRS transition.
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