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Recent measurements of the doping dependence of the London penetration depth �ðxÞ at low T in clean

samples of isovalent BaFe2ðAs1�xPxÞ2 at T � Tc [Hashimoto et al., Science 336, 1554 (2012)] revealed a

peak in �ðxÞ near optimal doping x ¼ 0:3. The observation of the peak at T � Tc, points to the existence

of a quantum critical point beneath the superconducting dome. We associate such a quantum critical point

with the onset of a spin-density-wave order and show that the renormalization of �ðxÞ by critical magnetic

fluctuations gives rise to the observed feature. We argue that the case of pnictides is conceptually different

from a one-component Galilean invariant Fermi liquid, for which correlation effects do not cause the

renormalization of the London penetration depth at T ¼ 0.
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Introduction.—The properties of iron-based supercon-
ductors (FeSCs) have been at the forefront of research
activities in the correlated electron community over the
last few years [1–4]. These materials have multiple Fermi
pockets with electronlike and holelike dispersion of car-
riers. It is well established that superconductivity in FeSCs
emerges in close proximity to a spin-density-wave (SDW)
order, and the superconducting (SC) critical temperature Tc

has dome-shaped dependence on doping, withTc maximum
near the onset of SDWorder [5–8].

Several groups [9] put forward the scenario that super-
conductivity in FeSCs has sþ� symmetry and emerges
because SDW fluctuations increase interpocket interaction,
which is attractive for sþ� gap symmetry, to a level when it
overcomes intrapocket repulsion. Likewise, SC fluctua-
tions tend to increase the tendency towards SDW.

Once the system develops long-range order, the situ-
ation changes because SDW and SC orders compete, and
the order which sets first tends to block the development
of the other. According to theory, such competition may
give rise to a homogeneous coexistence of SDW and SC
orders in some range of dopings [10–12]. A homogeneous
coexistence of SDW and SC orders has been detected
in 122 materials—electron-doped BaðFe1�xCoxÞ2As2
[7,8,13–18] and hole-doped Ba1�xKxFe2As2 [19–21].
On the other hand, for EuFe2�xCoxAs2 Mössbauer spec-
troscopy measurements [22] were interpreted in favor of
phase separation, when SC has a filamentary character
and is concentrated in nonmagnetic regions. In the third
class of 122 materials—an isovalent BaFe2ðAs1�xPxÞ2,
the coexistence between SDW and SC order has not
yet been probed experimentally, but the odds are that
the two orders do coexist because the phase diagram
of BaFe2ðAs1�xPxÞ2 is quite similar to that for
BaðFe1�xCoxÞ2As2 [23].

The coexistence implies that the SDW transition line
extends into the superconducting phase. If this line reaches
T ¼ 0, the system develops a magnetic quantum-critical
point (QCP) beneath the superconducting dome [24], see
Fig. 1. AmagneticQCPwithout superconductivity has been
analyzed in great detail [25,26], and it is known that quan-
tumfluctuations near this point give rise to non-Fermi liquid
behavior and to singularities invarious electronic character-
istics. An SDW instability inside the d-wave SC state has
been analyzed in Ref. [27] and was shown to give rise to
non-Fermi liquid behavior of nodal fermions.
The observation of coexistence brings about the new issue

of whether there are electronic singularities at a magnetic
QCP which develops in the presence of an sþ� SC order. Of
particular interest are the singularities in quantities such as
the penetration depth �ðxÞ, which measures electronic
response averaged over the whole Fermi surface (FS).
Early experiments [28] on BaðFe1�xCoxÞ2As2 found no spe-
cial features in �ðxÞ at the onset of SDW order, but recent
measurements in BaFe2ðAs1�xPxÞ2 (Ref. [29]) found a peak
in�ðxÞ at the smallestT � Tc at around optimal doping (see
inset of Fig. 1). The authors of Ref. [29] speculated that
the peak likely indicates that there is a QCP beneath a SC
dome and argued that the peak in �ðxÞ is a generic feature of
122 Fe pnictides, but it is more difficult to detect it in
BaðFe1�xCoxÞAs2 because of the greater degree of electronic
disorder caused by Co doping. Another potential reason why
the peak has been observed only in BaFe2ðAs1�xPxÞ2 is that
this material possesses gap nodes [30], which generally lead
to stronger effects due to quantum fluctuations.
In this Letter, we analyze the behavior of �ðxÞ under the

assumption that the QCP is associated with the develop-
ment of SDW order beneath a superconducting dome. A
preemptive nematic order may also play a role [31], but we
will not dwell on that.
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London penetration depth near QCP.—In general, the
peak in �ðxÞ at a SDW QCP can emerge for one of three
reasons: (i) a nonmonotonic behavior of � near a QCP
already within the mean-field theory (like the peak in the
specific heat jump at Tc at the onset of coexistence with
SDW [32]), (ii) critical fluctuations at the onset of SDW,
not specific to the form of the gap, and (iii) critical fluctua-
tions specific to the presence of the gap nodes. Besides, �
can either diverge at a QCP, or get enhanced but stay finite.
It was found recently [33] that, at the mean field level, the
variation of � is smooth and cannot explain sharp features
observed in Ref. [29]. Here, we investigate the effects of
critical magnetic fluctuations. We find that fluctuations
associated with SDW QCP beneath a SC dome give rise
to the enhancement of the effective mass m�. The mass
does not diverge because SC order cuts infrared singular-
ities, but, nevertheless, m�=m at the QCP is noticeably
enhanced. We argue that the enhancement of m� gives
rise to a sharp peak in �ðxÞ at the onset of coexistence
with SDW. We also find that the presence of the nodes in
the gap is not sufficient to transform a peak into a diver-
gence because the dominant contribution to m� comes
from the region away from the nodes.

London penetration depth in a type-II superconductor
with cubic symmetry is expressed via the zero-momentum
component of the electromagnetic response tensor

QijðkÞ ¼ ð�ij � kikj=k
2ÞQðkÞ, which relates vector poten-

tial A and the current density j: jiðkÞ ¼ �QijðkÞAjðkÞ.
The temperature and doping dependent penetration depth
is given by ��2ðT; xÞ ¼ ð4�=cÞQðT; xÞ, where c is the
velocity of light. The kernel QðT; xÞ is related to the
current-current correlation function in the limit of zero
frequency and vanishing momentum and is expressed via
the superfluid density nsðT; xÞ as Q ¼ e2ns=mc, where m
and e are the mass and the charge of an electron. Then
�2 ¼ mc2=ð4�e2nsÞ. In the Galilean invariant, a one-
component fermionic system superfluid density at T ¼ 0
is equal to the total density of fermions nðxÞ. In this
situation, �ðT ¼ 0; xÞ does not depend on Fermi liquid
corrections and remains the same as in a Fermi gas
[34,35]. Diagrammatically, superfluid density is given by
the sum of two bubble diagrams made out of normal and
anomalous Green’s functions, and the independence of
nsðT ¼ 0; xÞ on the electron-electron interaction is the
result of the cancelation between self-energy and vertex
corrections to these diagrams. At T > 0 the T -dependent
part of ns does depend on Fermi liquid parameters [35].
We find, however, that in iron pnictides the situation is

different because these systems have multiple Fermi pock-
ets, and sþ� pairing originating from interpocket interac-
tion. The interplay between self-energy and vertex
corrections then depends on the orientation of Fermi veloc-
ities and the values of superconducting order parameters at
different FSs. We find that self-energy and vertex correc-
tions generally do not cancel, and the penetration depth is
roughly proportional to m�=m.
We followed earlier works [9] and assumed that the most

relevant interaction in Fe pnictides is between hole and
electron pockets, separated by Q ¼ ð�;�Þ in the folded
Brillouin zone, and that the gap has sþ� symmetry and
changes sign between electron and hole pockets. We cal-
culated the leading interaction correction to �ðxÞ in the
one-loop approximation. This perturbative analysis is jus-
tified because renormalized �ðxÞ does not diverge even at a
SDW QCP. There are 16 diagrams with one-loop correc-
tions to current-current correlators, half of them are self-
energy and half are vertex corrections. We evaluated the
diagrams and found that self-energy and vertex corrections
are of the same order, and both decrease the superfluid
density and increase the penetration depth [36]. To be brief,
below we analyze how �ðxÞ is affected by inserting fermi-
onic self-energy into the current correlation function. A
straightforward calculation yields, at one-loop order

�2ðT ¼ 0; xÞ ¼ �2
BCS½1þ �ðxÞ�; (1)

where

� ¼
�X

j

½1� ZjðkFÞ�
�
�
¼ h lim

!!0
@i!m

�jðkF;!mÞi�: (2)

Here, j labels Fermi pockets, � is a diagonal (normal)
self-energy, which generally depends on the location of
kF on the corresponding Fermi surface, and h. . .i� ¼R
2�
0 . . . d�=2�. In a situation where the dependence of

FIG. 1 (color online). Lower panel: a theoretical phase dia-
gram of 122-type iron-based superconductors in temperature vs
doping. Critical temperatures TN and Tc indicate transitions into
pure SDW and SC phases, respectively. A QCP lies beneath the
SC dome and separates pure SC and coexistence SCþ SDW
phases. Reentrant behavior of TN under the SC dome has been
detected in Co-doped 122 materials [39] but well may be
nonuniversal [10–12,24]. Upper panel: the theoretical behavior
of the penetration depth � at T ¼ 0. In the mean-field approxi-
mation (dashed line), � diverges at the edges of the super-
conducting dome, flat inside pure SC phase and increases
monotonically as the system moves towards the pure SDW
phase. Beyond the mean field, magnetic fluctuations give rise
to a peak in � at the onset of the SDW order (solid line). The
peak in � has been observed in Ref. [29].
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�jðk; !mÞ on k� kF can be neglected, the quasipar-

ticle residue is related to mass renormalization as
ZjðkFÞ ¼ m=m�

j ðkFÞ.
A similar expression for � has been obtained earlier for

heavy-fermion superconductorUBe13 [37], which is a two-
component system of conduction d- electrons and local-
ized f electrons, of which only the first carry the current. It
is tempting to extend the one-loop result (1) to ��2 /P

jm=m�
j , but we caution that noncancellation of one-

loop self-energy and vertex corrections to the current
correlator does not necessarily imply that vertex correc-
tions can be simply neglected. An example of more com-
plex behavior beyond one-loop order has been recently
considered in Ref. [38].

Evaluation of the fermionic self-energy.—We consider
the minimal three-band model of two elliptical electron
Fermi surfaces and one circular hole Fermi surface. The
basic Hamiltonian includes the free fermion part H0 and
pair fermion interactions in superconducting H� and mag-
neticH� channels [36]. These interactions are described by
the local coupling constants gsc and gsdw, respectively. The
phase diagram of the model has been obtained before [12].
We focus on the region where at T ¼ 0 the system has a
long-range SC order and is about to develop an SDWorder.
Renormalization of mass on all Fermi surfaces is of the
same order, and for brevity, we show the calculations of
m�=m for just one pocket.

Potentially, singular self-energy comes from the ex-
change of near-critical SDW fluctuations. In the normal
state, these fluctuations are overdamped and are slow
compared to electrons. In a SC state, the dynamical
exponent changes from z ¼ 2 to z ¼ 1 because fermions
which contribute to bosonic dynamics become massive
particlelike excitations. Such systems have been discussed
earlier in the context of cuprates [25] and we follow the
same approach in deriving the expressions for the self-
energy and spin polarization operator in the SC state in
our case.

The one-loop self-energy due to spin-fluctuation ex-
change is a convolution of spin-fluctuation and fermionic
propagators, both taken in the superconducting state:

�jðk; !nÞ ¼ 3T
X
�m

Z dq

4�2
Lðq;�mÞGjðk� q; !n ��mÞ;

(3)

where !m ¼ 2�Tðnþ 1=2Þ and �m ¼ 2�mT are fermi-
onic and bosonic Matsubara frequencies, respectively. The
normal and anomalous components of the Green’s function
in the SC state are

Gjðk; !nÞ ¼
�i!n � �j

�2
j þ!2

n þ �2
j

;

F jðk; !nÞ ¼
��j

�2
j þ!2

n þ �2
j

;
(4)

where �j ¼ �jðkÞ ¼ vj;Fðk� kFÞ, and the energy gap �j

is equal to �h on the hole Fermi surfaces and �eð�Þ ¼
��eð1� � cos2�Þ on the two electron Fermi surfaces (we
choose �h, �e > 0). The gaps on electron pockets have
nodes when �> 1. We emphasize that the SC gap can
be treated as doping independent only in the paramag-
netic state. Once SDW order sets in, the value of the gap
changes [10–12].
The spin-fluctuation propagator is given by

Lðq;�mÞ ¼ 1

g�1
sdw þ�ðq;�mÞ

; (5)

where the polarization operator �ðq;�mÞ is (see Ref. [36]
for details)

� ¼ NfT
X
!n

Z
d�

� ½i!þ � �þ�½i!� þ ��� þ �h�e

½�2þ þ!2þ þ �2
h�½�2� þ!2� þ�2

e�
�
�
:

(6)

Here, !� ¼ !n ��m=2, �� ¼ �� �=2, and we
replaced the integration over momentum k byR
. . . d2k=4�2 ¼ Nf

R
. . . d�d�=ð2�Þ, where Nf is the

density of states. Parameter � ¼ �� þ �q accounts for

the doping-induced modification of the Fermi surfaces.
The term �� ¼ �0 þ �2 cos2� describes changes in the

Fermi surfaces radii and overall shape (ellipticity), while
the term �q ¼ vFq cosð�� c Þ describes the relative shift
in the centers of Fermi surfaces, where � and c are the
directions of kF and q. The magnetic SDW critical point is
determined in terms of doping parameters �0 and �2 from
the condition � ¼ 0, where � ¼ ½g�1

sdw þ�ð0; 0Þ�N�1
f .

We first consider the case of equal gaps on both Fermi
surfaces (� ¼ 0, �h ¼ �e ¼ �) and then discuss how the
results are modified in the case where the gaps on electron
pockets have nodes. Earlier calculations show [11] that
there is a broad parameter range 0:8 & �2=�0 & 4:7 for
which SDW order emerges gradually, and its appearance
does not destroy SC order; i.e., SDWand SC orders coexist
over some range of dopings. Since we are interested in the
T ¼ 0 limit, it is sufficient to evaluate the propagator of
magnetic fluctuations in Eq. (5) only at small frequencies
and momenta. A straightforward expansion leads to [36]

Lðq;�mÞ ¼ 1

Nf

1

	v2
Fq

2 þ 
�2
m þ �

; (7)

where

�¼ln

�
Tc;0

TN;0

�
�
*j��jarccosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

�=�
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
�þ�2

q
+
�

; (8a)


ð�;�Þ¼1

8

*
1

�2þ�2
�

þ
�2arccosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

�=�
2

q �
j��jð�2þ�2

�Þ3=2
+
�

; (8b)

and
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	ð�;�;c Þ¼1

8

*
cos2ð��c Þ

2
4 2�2��2

�

ð�2þ�2
�Þ2

�3�2j��j
arccosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

�=�
2

q �
ð�2þ�2

�Þ5=2

3
5+

�

: (8c)

In Eq. (8a), we absorbed coupling constants gsdw (gsc) into
the corresponding critical temperatures TN;0 (Tc;0) for the

transitions into a pure SDW (SC) state.
Without superconductivity, 	< 0, and a magnetic tran-

sition at T ¼ 0 occurs into an incommensurate phase
[12,31]. In the presence of SC order, the commensurate
(�, �) magnetic order is stabilized (	> 0), provided that
relevant �2

� � �2, which we assume to hold. By order of

magnitude, 
� 	� 1=�2.
Substituting Eqs. (4) and (7) into Eq. (3) and integrating

explicitly over the momentum transfer q (see Supplemental
Material for details [36]), we obtain the fermionic residue
for a direction � along the Fermi surface in the form
Zð�Þ ¼ 1� Ið�ÞF. Here Ið�Þ accounts for the (nonsingu-
lar) angular dependence and is normalized such that
Ið�hÞ ¼ 1, where �h is the direction of a hot spot defined
as a kF point on a FS for which kF þQ is on another
Fermi surface, see Fig. 2(a), and F accounts for the depen-
dence on the distance to the hot spot, measured by �, and
on the system parameters �0 and �2. In explicit form,
F ¼ hFð�ðc Þ; �ðc ÞÞic , where �ðc Þ ¼ 
=	ðc Þ, � ¼
�=	ðc Þ�2, and

Fð�;�Þ¼ 3

8�2	Nfv
2
F�

Z þ1

�1
�z2dz

ð1��Þz2þ1��

�
2
64 1

�z2þ�
�

arccosh
� ffiffiffiffiffiffiffiffiffiffiffi

z2þ1
�z2þ�

q �
ffiffiffiffiffiffiffiffiffiffiffiffi
z2þ1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1��Þz2þ1��
p

3
75: (9)

Using Eqs. (1) and (2) we find

� ¼ �2=�2
BCS � 1 ¼ FhIð�Þi: (10)

Because angular integrals over � in Ið�Þ and over c in
F are nonsingular, the dependence of � on the distance to
the critical point and on system parameters can be approxi-
mated by �� Fð�; �Þ. It is apparent from the integral in
Eq. (9) that Fð�; �Þ is finite even in the limit � ! 0, which
implies that the penetration depth remains finite at the
SDW QCP. Still, Fð�; �Þ is peaked at the SDW QCP
(when � ¼ 0), and decreases as Fð�; �Þ / ln�=

ffiffiffiffi
�

p
at

� 	 1. We illustrate this behavior in Fig. 2. Because ���
Fð�; �Þ, the penetration depth is also peaked at the QCP.
This behavior is in agreement with the data for isovalent
BaFe2ðAs1�xPxÞ2 [29].

By order ofmagnitudeFð�; 0Þ ¼ Oð1Þ, hence� ¼ Oð1Þ.
The enhancement of �2 ¼ �2

BCSð1þ �Þ at the SDWQCP is

larger if magnetic order remains commensurate (�,�) even
in the absence of superconductivity. In this situation,�0 and
�2 are not restricted to be smaller than �, and, if they are
larger,� is enhanced by ð�=�Þ2. We caution, however, that

once � becomes large, the one-loop approximation is no
longer applicable. In this case, vertex corrections require
more detailed analysis [38].
We next computed Fð�; �Þ for the case when the SC gap

has nodes on electron pockets. We found that, roughly, the
angular dependence of the gap renormalizes � downward.
This, however, does not change � qualitatively—at a mag-
netic QCP Fð�; 0Þ increases when � decreases, but still
remains finite. We illustrate this in Fig. 2(b). The reasoning
is simple: the nodes of the sþ� gap are located at accidental
kF points which generally differ from hot spots. In the
special case where the gap nodes coincide with hot spots, Z
at a hot spot diverges logarithmically at a SDW QCP, but
the momentum integral of Zð�Þ is still finite; hence, �
remains finite even in this case.
Conclusions.—In this Letter, we considered the behavior

of the penetration depth �ðxÞ in a clean Fe-based sþ� super-
conductor at the onset of a commensurate SDWorder inside
the SC phase at T ¼ 0. We found that the penetration depth
remains finite but has a peak at the onset of SDW order.
The magnitude of the peak is larger when the sþ� gap has
accidental nodes, but still remains finite at the onset of SDW
order. Our results agree with the measurements [29] of the
penetration depth in the isovalent BaFe2ðAs1�xPxÞ2 inside
the superconductingphase. Experiment [29] shows that� has
a peak at roughly the same doping where the Néel tempera-
ture TN intersects with Tc. Our results support the scenario
that SDW order in BaFe2ðAs1�xPxÞ2 persists into the SC
phase, as happens in other Fe-based superconductors, and
that the peak in the penetration depth occurs at a magnetic
quantum-critical point inside the SC dome. Whether SDW
and SC orders coexist microscopically or phase separate,
remains to be seen.
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FIG. 2 (color online). Scaling function Fð�; �Þ which accounts
for the interaction correction to the London penetration depth
�2=�2

BCS � 1 / Fð�; �Þ is plotted vs � which measures the

distance to the quantum critical point for three different combi-
nations of the system parameters encoded by � ¼ 0:1, 0.25, 0.5.
(see text). Insets: (a) hole (circular) and electron (elliptical) Fermi
surfaces, �h marks the location of a hot spot; (b) the dependence
of Fð�; 0Þ, normalized to the prefactor in Eq. (9), on �.
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