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Magnetic-field induced s + if pairing in Ising superconductors
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We show that an in-plane Zeeman field applied to noncentrosymmetric Ising superconductors converts singlet
s-wave Cooper pairs to equal-spin triplet i f pairs. Singlets are converted to triplets as spins originally polarized
by spin-orbit interaction are reoriented by the Zeeman field. We demonstrate that the pairing in the triplet f
channel(s) decisively affects the critical field. While attraction enhances the critical field, repulsion suppresses
it. The singlet to triplet conversion phenomenon has a geometrical origin, and the discussion applies universally
to Ising superconductors with generic band structure such as, e.g., monolayer transition metal dichalcogenides.
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Introduction. In noncentrosymmetric superconductors, the
presence of momentum odd spin-orbit coupling (SOC) leads
to parity-mixed Cooper pair wave functions [1–3]. The lack of
an inversion center allows for the coexistence of a parity-even
singlet and a parity-odd triplet pairing [4]. A Zeeman field
and SOC affect singlet and triplet Cooper pairs in distinct
ways. The Zeeman field breaks singlets, which is referred
to as paramagnetic limiting. This is different for triplets,
which might align their spin along the magnetic field avoiding
paramagnetic limiting [5–7]. By contrast, SOC suppresses the
equal-spin-triplets (Sz = ±1), which are (anti)aligned with the
effective SOC magnetic field.

The response of a noncentrosymmetric superconductor to
a Zeeman field is sensitive to the degree in which singlets and
triplets mix. At zero Zeeman field, the triplets have zero spin
component Sz = 0 along the effective SOC magnetic field.
The mixing of such triplets is determined by the ratio of the
SOC splitting �so and the Fermi energy EF [5,8]. In many
cases, �so/EF � 1, and the singlets and triplets decouple.

In recent experiments on transition metal dichalcogenides
(TMDs), the SOC dramatically enhances the in-plane critical
Zeeman field exceeding the Pauli limit [9–15]. The strong
“Ising” SOC locks the spins out of plane and counteracts
an in-plane Zeeman field. The magnetic field-temperature
(B, T ) phase diagram in the clean limit was obtained in
Refs. [5,16]. References [16–18] showed that the intervalley
impurity scattering suppresses the critical Zeeman field. Later
in Ref. [19], we showed that the orthogonality of the orbital
wave functions blocks the short-range scattering and stabilizes
the critical Zeeman field against the disorder. The above
works considered the singlet pairing interaction. Indeed, for
�so/EF � 1, the pairing of Sz = 0 triplets does not modify
the critical transition line Bc(T ) as normally the singlet inter-
actions dominate.

In this work, we show that the Zeeman field converts
singlets (S = 0) into equal-spin triplets (Sz = ±1). While
the Zeeman field induces time-reversal breaking equal-spin
triplets, the SOC promotes singlets. The competition between
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Zeeman field and SOC does not depend on the ratio �so/EF

and is controlled by the ratio B/�so. According to the previous
studies, Bc is comparable to �so. Therefore, B/�so � 1 at the
transition line. The Cooper pair wave function, in this case,
acquires a substantial triplet component. As a result, even a
weak interaction of electrons forming equal-spin triplets has
a strong effect on the (B, T ) phase diagram. Weak attraction
or repulsion in the triplet channel leads to enhancement or
suppression of Bc(T ), respectively. This result is crucial for
the interpretation of experimental data.

The coexisting order parameters, S = 0 singlet, Sz = 0
triplet, and Sz = ±1 triplet transform differently under the
crystal symmetry operations. The singlets are scalars of s-
wave symmetry. The orbital component of triplet order param-
eters change sign under the rotation by π/3 and have f -wave
symmetry. The Sz = 0 triplet order parameter is present even
in the absence of Zeeman field and respects the time-reversal
symmetry. The Sz = ±1 triplets are induced by the Zeeman
field and break the time-reversal symmetry of the supercon-
ducting state. For this reason, the order parameter describing
these triplets is purely imaginary. Here, we study the interplay
of Zeeman field and SOC and mainly focus on real singlet
and Sz = ±1 imaginary triplet order parameters. The resulting
superconducting state has, therefore, s + i f symmetry.

The findings presented here are relevant for noncentrosym-
metric superconductors, where the applied magnetic field has
an orthogonal component to the effective SOC field. This
applies to a large class of materials [20], which besides
monolayer TMDs include interface superconductivity [21]
and artificial heterostructures [22].

The Hamiltonian and free energy. The standard model of
a superconductor with antisymmetric SOC γk = −γ−k and a
Zeeman field B is [2]

H =
∑
k,s

ξkc†
kscks +

∑
k,ss′

(γk − B) · σss′c†
kscks′

+ 1

2

∑
k,k′

∑
{si}

Vs1s2,s′
1s′

2
(k, k′)c†

ks1
c†
−ks2

c−k′s′
2
ck′s′

1
. (1)

The normal state dispersion ξk = ξ−k includes the
chemical potential. We define the average over the Fermi

2469-9950/2019/99(18)/180505(5) 180505-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.180505&domain=pdf&date_stamp=2019-05-30
https://doi.org/10.1103/PhysRevB.99.180505


DAVID MÖCKLI AND MAXIM KHODAS PHYSICAL REVIEW B 99, 180505(R) (2019)

surface 〈|γk|2〉FS = �2
so. We use units where B absorbs

usually the prefactor with the g factor and the Bohr magneton
gμB/2. The interaction in the Cooper channel can be separated
into singlet and triplet parts as

Vs1s2,s′
1s′

2
(k, k′) =

∑
�, j

(−vs,� )[τ̂k,� j ]s1s2 [τ̂k′,� j ]
∗
s′

1s′
2

+
∑
�, j

(−vt,� )[τ̂k,� j ]s1s2 [τ̂k′,� j ]
∗
s′

1s′
2
, (2)

where τ̂k,� j = ψ̂k,� j iσy and τ̂k,� j = d̂k,� j · σiσy. j labels the
basis functions of an irreducible representation �, and vs(t ),�

are interactions in each channel and can be attractive (positive)
or repulsive (negative). In a noncentrosymmetric material,
singlet and triplet channels may belong to the same � and
therefore are allowed to couple [8]. We do not include such
terms in Eq. (2), since as we demonstrate, parity mixing is
induced primarily by the Zeeman field and does not depend
on interaction channel mixing.

We introduce the superconducting mean fields �s1s2 (k) =∑
k′,s′

1s′
2
Vs1s2,s′

1s′
2
(k, k′)〈c−k′s′

2
ck′s′

1
〉 that are matrix elements of

the gap matrix in spin space �k = (ψkσ0 + dk · σ )iσy. The
even order parameter ψk = ψ−k parametrizes singlets, and the
odd d-vector dk = −d−k parametrizes triplets. We use a path
integral approach to obtain free energy [23]

F = −1

2

∑
k,k′,si

�∗
s′

1,s
′
2
(k′)V −1

s′
1s′

2,s1s2
(k′, k)�s1,s2 (k)

+ T
∑
k,ωn

∞∑
l=1

(−2)l

2l
tr[G(k, ωn)�kGT(−k,−ωn)�†

k]l ,

(3)

where ωn = (2n + 1)πT (kB = 1) are Matsubara frequencies,
and the normal state Green’s function G(k, ωn) can be ex-
pressed in terms of its band projections

G(k, ωn) = G+(k, ωn)σ0 + G−(k, ωn) gk · σ; (4)

G±(k, ωn) = 1

2

[
1

iωn − εk,+
± 1

iωn − εk,−

]
, (5)

where εk,± = ξk ± |γk − B| and gk = (γk − B)/|γk − B|.
Parity mixing by Zeeman field. The truncation to quadratic

order (l = 1) in the order parameters of Eq. (3) determines
the transition line Bc(T ). We introduce the short notation for
the products GaGb ≡ Ga(k, ωn)Gb(−k,−ωn) with a, b = ±.
Choosing real ψk, we calculate the trace in Eq. (3) for l = 1

1
2 tr[G(k, ωn)�kGT(−k,−ωn)�†

k]

= G+G+(|ψk|2 + |dk|2) − G−G−[|ψk|2gk · g−k

+ (gk · dk )(g−k · d∗
k )

− (gk × dk ) · (g−k × d∗
k ) + 2ψk(gk × g−k ) · Im dk]

− G+G−(2ψk g−k · Re dk − g−k · qk )

+ G−G+(2ψk gk · Re dk + gk · qk ), (6)

where qk = idk × d∗
k. If the superconducting states respect

time-reversal symmetry (Im dk = 0), the singlet-triplet mix-
ing occurs in a 
= b terms only. Such terms, however, are

TABLE I. Cooper channels of D3h with its even-singlet
and odd-triplet basis functions. Here we use γ̂k ∝ − sin kx +
2 sin (kx/2) cos (ky

√
3/2). Although the A′

1 triplet channel is “unlim-
ited,” it does not contribute to the triple product B × γk · Im dk.

Irrep Singlet ψ̂k Triplet d̂k Order par. Limited by

A′
1 (s) 1 ψ0 Zeeman field

A′
1 ( f ) γ̂k ẑ ηz

E ′′ (i f ) γ̂kx̂; γ̂k ŷ ηx, ηy Ising SOC

proportional to the difference of density of states of the
two Fermi sheets at the Fermi level EF, �N = N+ − N−,
which gives a contribution of the order �so/EF [5]. Then, if
�so/EF � 1, the singlet and triplet channels decouple at the
quadratic level and can be studied separately. As the Zeeman
field breaks time reversal, singlet-triplet coupling arises via
the term of Eq. (6) proportional to 2ψk(gk × g−k ) · Im dk,
which is non-negligible even when �so/EF � 1.

Ising superconductors. To work out a concrete example,
we consider monolayer TMDs with point group symmetry
D3h. We assume �so/EF � 1, which allows us to neglect the
a 
= b terms in Eq. (6), and write

∑
k → N0

∫ 2π

0
dϕ

2π

∫ εc

−εc
dξ ,

where N0 is the density of states at the Fermi level of the
two Fermi sheets and εc is a characteristic cutoff energy of
the pairing interaction. We specialize in the case where B ⊥
γk ‖ ẑ, relevant for Ising superconductors in general [19]. For
this special case, the band splittings at opposite momenta k
remain the same |γ±k − B| = √|γk|2 + B2, ensuring perfect
Fermi surface nesting for Cooper pairing; see Fig. 2. Then,
singlets and triplets only mix in the triple product

2ψk(gk × g−k ) · Im dk ∝ B × γk · Im dk. (7)

Only imaginary in-plane components of the d-vector breaking
time reversal contribute to the triple product.

We expand the singlet and triplet order parameters of a
specific l�-dimensional irreducible representation � of D3h

in terms of hatted basis functions as ψk,� = ∑l�
i=1 ψ�i ψ̂k,�i

and dk,� = ∑l�
i=1 η�i d̂k,�i , where ψ�i and η�i serve as com-

plex Ginzburg-Landau (GL) order parameters of the singlet
and triplet component, respectively. We consider the singlet
channel ψk,A′

1
= ψ01 and two channels for the triplets: dk,A′

1
=

ηzγ̂k, where γ̂k = γk/|γk| with γk = γk ẑ, and dk,E ′′ =
ηxγ̂kx̂ + ηyγ̂kŷ; see Table I. With this decomposition into
channels, we can write ψk = ψ0 and dk = γ̂k(ηx, ηy, ηz ),
keeping in mind that {ψ0, ηz} belong to A′

1 and {ηx, ηy} to E ′′.
The triple product in Eq. (7) mixes the A′

1 singlet (s-wave)
and the E ′′ triplet (i f -wave) channels. The resultant parity-
mixed superconducting state is referred to as s + i f . There-
fore, because of the interaction in the E ′′ channel, the Zeeman
field induces equal-spin triplets. Without loss of generality,
we can fix the direction of B = Bx̂, such that we rewrite
dk = γ̂k(0, iηy, ηz ), where ηy and ηz are now real. In the limit
�so/EF � 1, ηz decouples from the {ψ0, ηy} subsystem at the
quadratic level. The decoupled triplet dk,A′

1
‖ γk is protected

from both the Zeeman field and SOC, and for this reason, we
focus on the {ψ0, ηy} subsystem. The main point is: Although
the basis functions of A′

1 and E ′′ are orthogonal, they mix due
to the Zeeman field in Eq. (7).
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FIG. 1. (a) Bc(T ) obtained from the pair breaking equation αs(T, B)αt (T, B) = α2
st (B). The brown and the gray dotted curves show

repulsion in the E ′′ channel, with the dimensionless couplings λA′
1

= N0vs,A′
1

and λE ′′ = N0vt,E ′′ . (b) GL solution for ψ0 with Tct/Tcs = 0.1.
The nodal transition line is determined by the condition B = ψ0. The black, red, and blue curves are the same as in (a). The blue and purple
transitions deviate far from Tcs, where the GL solution fails, but still provides a qualitative description. (c),(d) Plots of ψ0(B), ηy(B), and ηz(B)
at two different temperatures. ηz is favorable at high magnetic fields below its own critical temperature, in this case Tctz = Tcs/2 for illustrative
purposes.

The Bc(T ) transition. We now obtain the continuous super-
conducting to normal state transition lines Bc(T ) using Eq. (3)
with l = 1. The energy integrals followed by the Matsubara
summation can be performed to obtain [23]

T
∑
ωn

∫
dξG+G+ = log[2eγ εc/(πT )] − C(ρk )/2; (8)

T
∑
ωn

∫
dξ G−G− = C(ρk )/2; (9)

C(ρk ) = Re ψ

(
1

2
+ i

ρk

2

)
− ψ

(
1

2

)
� 0, (10)

where ψ (z) is the digamma function, ρk =√|γk|2 + B2/(πT ), and γ is Euler’s constant.
From Eqs. (8), (9), and (10) and the trace (6), we obtain the

quadratic free energy

1

2N0
F (l=1)

T,B [ψ0, ηy] = αs(T, B)ψ2
0 + αt (T, B)η2

y

+ 2αst (B)ψ0ηy, (11)

with the coefficients defined as

αs(T, B) = ln

(
T

Tcs

)
+ C(ρ)

B2

�2
so + B2

; (12a)

αt (T, B) = ln

(
T

Tct

)
+ C(ρ)

�2
so

�2
so + B2

; (12b)

αst (B) = −C(ρ)
B�so

�2
so + B2

. (12c)

Tcs(Tct ) is the singlet (triplet) critical transition temper-
ature determined by (N0vs,A′

1
)−1 = ln [2eγ εc/(πTcs)] and

(N0vt,E ′′ )−1 = ln [2eγ εc/(πTct )], and ρ = √
�2

so + B2/(πT ).

Equation (11) clearly shows the limiting mechanisms
acting on the singlet and triplet components. Positive terms
in Eq. (11) suppress the superconducting state and negative
terms stabilize it. αs shows that the Zeeman field limits the
s-wave singlets ψ0. By contrast, αt shows that SOC limits
the i f -wave triplets ηy. With different limiting mechanisms
(Zeeman field and SOC) affecting different order parameters
(ψ0 and ηy), their mixing via αst can be interpreted as a conver-
sion of s-wave singlets to equal-spin i f -wave triplet Cooper
pairs by the Zeeman field. Interestingly, αst (T, B) vanishes
in purely triplet superconductors, where antisymmetric SOC
vanishes.

Minimization of the free energy Eq. (11) yields the pair-
breaking equation αs(T, B)αt (T, B) = α2

st (B) that determines
Bc(T ). If the attraction exists only in the s-wave singlet chan-
nel, the above condition reduces to the pair-breaking equation
αs(T, B) = 0, which is found in Refs. [5,18,21]. We plot
Bc(T ) in Fig. 1(a), which is very sensitive to i f components.

The Ginzburg-Landau (GL) regime. To obtain the order
parameters {ψ0, ηy} in the superconducting phase, we keep the
quartic terms (l = 2) in the GL expansion (3) near T = Tcs,

1

2N0
FT,B[ψ0, ηy]

= αs(Tcs, B)ψ2
0 + αt (Tcs, B)η2

y + 2αst (B)ψ0ηy

+β1(B)(Bψ0 − �soηy)2(�soψ0 + Bηy)2

+β2(B)(Bψ0 − �soηy)4 + β3(B)(�soψ0 + Bηy)4,

(13)

where the coefficients of the quadratic terms are defined
in Eq. (12) and the coefficients of the quartic terms
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FIG. 2. (a) Illustration of the Brillouin zone, showing the sign
modulation of SOC and parallelepipeds B × γk · idk. (b) Schematic
of the Cooper pairs nested on the spin-split Fermi surface. Cooper
pairs are related by the symmetry σhT ↗= σh ↙=↘ and are shown
as same color arrows.

are

β1(B) = Im ψ (1)
(

1
2 − i ρcs

2

)
2πTcs

(
�2

so + B2
)5/2 − C(ρcs)(

�2
so + B2

)3 ; (14a)

β2(B) = − Re ψ (2)
(

1
2 + i ρcs

2 ;
)

16π2T 2
cs

(
�2

so + B2
)2 ; (14b)

β3(B) = 7ζ (3)

8π2T 2
cs

(
�2

so + B2
)2 , (14c)

with ρcs = ρ(Tcs), and the polygamma functions are defined
as ψ (m) = dm

dzm ψ (z). In Fig. 1(b)–1(d) we show the order
parameters in the superconducting phase obtained by mini-
mizing the free energy, Eq. (13).

Discussion and conclusion. The singlet to triplet conver-
sion has a transparent geometrical interpretation, see Fig. 2.
At B = 0, SOC polarizes the electron states out of the plane
so that the spin-up and spin-down Fermi lines cross, Figs. 2(a)
and 2(b). The Cooper pair is a singlet formed by the two spin
states at momenta ±k, �s = |k,↑; −k,↓〉 − |k,↓; −k,↑〉,
where |m; n〉 denotes the two-fermion state with m and n being
the quantum numbers for each of the occupied states.

Consider the transformation of �s induced by strong Zee-
man field B � �so, Fig. 2(b). In this limit, all the spins are
polarized in-plane, so that the original singlet �s transforms
to [see Fig. 2(b), inset]

�t = ∣∣k,U ŷ
− π

2
↑; −k,U ŷ

π
2

↓ 〉−∣∣k,U ŷ
− π

2
↓; −k,U ŷ

π
2

↑ 〉
, (15)

where U n
ϕ is the operator of spinor rotation around an axis

along n by an angle ϕ. Performing the spin rotations explicitly
in Eq. (15) gives

�t = |k,↑; −k,↑〉+|k,↓; −k,↓〉 . (16)

As expected, the Zeeman field converts the singlet �s into a
Sz = ±1 triplet state Eq. (16). In contrast to �s the two terms
in (16) enter with the same sign because the total relative

Berry phase U ŷ
2π = −1, associated with the spin rotations. As

a result, the state Eq. (16) is odd under time-reversal T and is
parameterized by Im[dk]y 
= 0. Being triplet, it is also odd in
k. The only combination that satisfies the above requirements
is dk ∝ iγk × B, see Fig. 2(a).

We now discuss the dependence of the singlet-to-triplet
conversion on SOC. The Zeeman field is effective only if
it couples occupied and unoccupied states split by SOC.
Therefore, when SOC is smaller than the superconducting
gap, the spin-triplet conversion is negligible. In the opposite
limit, the phase space available for a converted pairs scales
with the spin splitting

√
�2

so + B2. This is the reason for
the logarithmic enhancement of the spin-triplet mixing terms
in Eq. (12), αs,t,st ∝ C(ρ) ≈ ln(

√
B2 + �2

so/T ) in the strong
SOC limit.

As shown in Fig. 1(a), a weak attraction has a strong
effect on Bc(T ) while the effect of repulsion is less pro-
nounced. Close to Tcs, the enhancement of the critical field
can be obtained from the pair-breaking equation in the limit
�so/Tcs � 1, which gives

B2
c (T )

�2
so

=
(

ln �so
�ct

ln Tcs
Tct

)
1 − T

Tcs

ln �so
�cs

, (17)

where �cs(ct) = (π/2eγ )Tcs(ct). The term in parentheses gives
the enhancement due to the presence of triplets. According to
Eq. (17) for �ct � �sc the critical field is enhanced by a factor
of �√

ln(�so/�ct ), which can be substantial as in TMDs the
SOC may exceed the superconducting gap by more than three
orders of magnitude [12].

In summary, the conversion of s-wave singlets to i f triplets
by the Zeeman field is of importance both theoretically and
for interpreting the experimental data. To draw a connection
with specific materials and experiments one might need to
relax the assumption �so/EF � 1, include disorder, and
take into account the orbital content of the bands. This is a
subject for future investigations for which this paper provides
a starting point.
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