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We study anomalous mesoscopic transport effects at the onset of the superconducting transition focusing on
the observed large Nernst-Ettinghausen signal in disordered thin films. In the vicinity of the transition, as the
Ginzburg-Landau coherence length of preformed Cooper pairs diverges, short-range mesoscopic fluctuations are
equivalent to local fluctuations of the critical temperature. As a result, the dynamical susceptibility function of
pair propagation acquires a singular mesoscopic component, and consequently, superconducting correlations
give rise to enhanced mesoscopic fluctuations of thermodynamic and transport characteristics. In contrast
to disordered normal metals, the rms value of mesoscopic conductivity fluctuations ceases to be universal
and displays strong dependence on dimensionality and temperature and under certain conditions can exceed
its quantum normal-state value by a large factor. Interestingly, we find different universality as magnetic
susceptibility, conductivity, and transverse magnetic thermopower coefficients all display the same temperature
dependence. Finally, we discuss an enhancement of mesoscopic effects in the Seebeck thermoelectricity and Hall
conductivity fluctuations as mediated by emergent superconductivity.
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I. INTRODUCTION

Quantum-mechanical interference between different paths
of electrons experiencing impurity scattering in conductors
gives rise to important transport phenomena. The most notable
examples are weak localization and mesoscopic conductance
fluctuations (see Ref. [1] and references therein for a review).
Despite the fact that these effects are typically weak, δσ/σ ∼
1/g � 1, where δσ stands for either the weak-localization
correction or rms value of conductance fluctuations, which are
normalized to the Drude conductivity σ , and g � 1 is the di-
mensionless conductance, they are fundamentally important.
In particular, conductance fluctuations are universal at low
temperatures and occur with the amplitude of conductance
quantum δσ � e2/(2π h̄), where the exact numerical prefactor
depends only on whether time-reversal and/or spin-rotational
symmetries are preserved. This universality persists as long
as the characteristic sample size L is smaller than dephasing
length L < Lφ . Furthermore, interaction effects in normal
conductors barely change the magnitude and universality of
conductance fluctuations (UCF), although they are crucially
important in determining the temperature dependence of de-
phasing effects and, in particular, Lφ [2].

When superconductivity is induced at the boundary of the
mesoscopic sample via the proximity effect, the universality
of fluctuations remains almost intact [3,4]. The only differ-
ence from the normal case is that the magnitude of oscillations
changes by a number of the order of unity that can be
traced to details of Andreev reflections at the superconductor-
normal interface [5–7]. Physics become quantitatively dif-
ferent if superconducting correlations are present in the
bulk of the sample. Experimentally, this is achieved by tun-
ing superconducting systems to the vicinity of the critical

temperature Tc or, alternatively, in the proximity (or across) of
the superconductor-insulator transition. Compelling evidence,
ranging from measurements in two-dimensional granular ar-
rays [8,9] to submicron-scale superconducting cylinders [10]
and quantum wires [11,12], exists that mesoscopic oscilla-
tions could become giant, sometimes reaching the level of
∼104 × e2/(2π h̄). These observations seemingly imply that
the role of mesoscopic effects proliferates in the presence of
superconducting correlations.

It should be noted, however, that even without supercon-
ductivity there are circumstances when mesoscopic fluctua-
tions become anomalously large. One example is given by the
Seebeck thermopower [13], and connected to it by the On-
sager relation Peltier coefficient [14], another is Coulomb drag
transresistance [15,16]. Indeed, in contrast to conductance,
Seebeck coefficient fluctuations δα acquire an additional large
factor, δα/α � (EF /ETh)(δσ/σ ), in the ratio between Fermi
and Thouless energies EF /ETh � 1. This happens because
thermopower relies on particle-hole asymmetry, so its sample
average value scales inversely proportionally to Fermi energy,
which is in accordance with the Mott formula, α ∝ ∂σ/∂EF .
On the other hand, at the mesoscopic level particle-hole sym-
metry is broken much more strongly on the scale of Thouless
energy ETh, thus giving a substantial enhancement. For drag
σD, particle-hole symmetry should be broken for both layers,
so that enhancement of mesoscopic fluctuations in transcon-
ductance is even bigger in that parameter, namely, δσD/σD �
(EF /ETh)2 � 1. Another crucial difference between these two
examples is that drag and its variations occur solely due to
interactions, whereas conductance and thermopower fluctua-
tions are understood at the single-particle level.

Returning to the discussion of the superconducting sys-
tems, we should mention that theoretical studies devoted to
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various aspects of mesoscopic fluctuations cover a diverse
range of topics. These works include mesoscopic effects
on thermodynamic properties such as the Josephson current
[17–22], upper critical field [23,24], critical temperature [25],
condensation energy and glassy phase transitions [26,27],
density of states, gap fluctuations, and level statistics [28–34],
as well as some transport characteristics such as persistent and
thermoelectric currents and fluctuation conductivity [35–40].
Our main motivation is to investigate mesoscopic effects
in thermomagnetic properties of disordered superconduct-
ing thin films. This research is primarily inspired by the
measurements of the Nernst-Ettinghausen effect and diamag-
netic response in superconductors [41,42], which revealed
anomalously large signals, including high Tc [43–51], and
heavy-fermion systems [52–54]. The problem of finding a
possible microscopic mechanism of the large Nernst effect
attracted tremendous attention and triggered a number of
theoretical proposals [55–70]. Most of these results, including
experimental findings from multiple groups and theoretical
approaches to address the data, were summarized in a recent
review [71].

In this work we show that the interplay of interactions
in the Cooper channel and local mesoscopic fluctuations
has a profound effect on kinetics of superconductors near
Tc. In particular, we find that in the temperature range of
the Ginzburg region, Gi � (T − Tc)/Tc � 1, with Gi � 1/g
being the Ginzburg number, where superconducting correla-
tions manifest in the fluctuation-induced transport [72], the
temperature dependence of the variance in the transverse
thermomagnetic response is strongly enhanced.

The rest of the paper is organized as follows. In Sec. II we
provide qualitative arguments and estimates for the physical
picture of strong mesoscopic fluctuations in superconductors.
In Sec. III we place these ideas on the firm footing of
microscopic diagrammatic analysis. Specifically, we compute
diagonal and Hall conductivities, longitudinal thermoelectric
and transverse thermomagnetic coefficients, and magnetic
susceptibility fluctuations. We close this paper in Sec. IV with
a brief discussion of the experimental situation and present
ideas for further developments in the regime of quantum
fluctuations.

II. QUALITATIVE CONSIDERATIONS

It was emphasized early on [23,26] that quantum inter-
ference mesoscopic effects may lead to the formation of su-
perconducting droplets that nucleate prior to transition of the
whole system. Above Tc there are also thermally induced su-
perconducting fluctuations [72] that are known to be crucially
important in describing transport properties. One thus expects
that the combined effect of two fluctuation mechanisms may
have interesting implications for the kinetic properties of
superconductors. Indeed, the probability amplitude of the
fluctuations in the pairing gap is controlled by the competition
of Cooper pair condensation energy and entropy and can be
estimated from the Ginzburg-Landau (GL) functional. The
condensation energy exhibits mesoscopic fluctuations with
an amplitude ∝1/g and a correlation radius of the order of
the thermal length ∼LT = √

D/T . Near Tc the latter coin-
cides with the superconducting coherence length ξ = √

D/Tc,

where D is the diffusion coefficient of the metal in the normal
state. On the other hand, thermal superconducting fluctua-
tions are susceptible to Ginzburg-Landau correlation length
ξGL = ξ

√
Tc/(T − Tc) � LT , so mesoscopic fluctuations are

almost local with respect to superconducting fluctuations and
thus should be summed randomly from different blocks of
size ξ . For the d-dimensional sample the number of such
segments is ∼(L/ξ )d . Let us denote by δ	ξ the random
local fluctuation of the gap occurring on the scale of ξ ,
while we denote by δ	L its sample average value. The
two are related as δ	L ∼ (L/ξ )d/2δ	ξ . Knowing δ	L, one
can estimate critical temperature fluctuations δTc as follows:
δTc ∼ 〈δ	2

L〉/Tc. This argument essentially comes from ap-
proximating the quartic term in the GL functional δ	4

L ≈
δ	2

L〈δ	2
L〉 and reabsorbing that term into the redefinition of

Tc. Our goal is to estimate δ	ξ → δ	L → δTc. The proba-
bility of fluctuation, P[δ	ξ ] ∝ exp[−g(L/ξ )2(δ	2

ξ /T 2
c )], can

be deduced from the optimization of the GL functional. In-
deed, the exponential factor comes from the gradient term
in the GL action that governs spatial fluctuations of super-
conducting droplets: ν

∫
dd rD(∂rδ	ξ )2 ∼ νD(Ld/ξ 2)δ	2

ξ =
νDLd−2(L/ξ )2δ	2

ξ , where g = νDLd−2 is the dimensionless
conductance of the d-dimensional cube. With this proba-
bility density one estimates the typical local fluctuation of
the gap and, consequently, critical temperature δTc/Tc ∼
Gi (ξ/L)(4−d )/2. These estimates and line of reasoning closely
follow earlier ideas by Ioffe and Larkin, who considered
superconductors with local fluctuations of Tc within the
phenomenological approach [73]. Ultimately, the dynamic
pair susceptibility propagator, P(ω, q) ∝ (Dq2 + T − Tc +
|ω|)−1, defined for a given mode at finite frequency ω and
wave vector q, acquires an anomalous mesoscopic component
δP ∝ P2δTc. Even though the whole effect is small, δTc/Tc �
1, as it scales inversely proportionally to conductance, g � 1,
the singular nature of P(ω, q) at T − Tc � Tc as {q, ω} →
0 translates into the substantial temperature dependence of
kinetic coefficients. This is the microscopic reason for the
breakdown of the universality of mesoscopic effects in the
case of fluctuating superconductors. Next, we elaborate these
considerations within the microscopic diagrammatic formal-
ism (throughout the text we use units of h̄ = kB = 1).

III. ANOMALOUS MESOSCOPIC FLUCTUATIONS IN
DISORDERED SUPERCONDUCTORS

A. Definitions and assumptions

We begin with the definition of kinetic coefficients, con-
centrating on the linear response analysis. The electric (Je

tr)
and heat (Jh

tr) transport currents are related to the electric field
E and temperature gradient ∇T by the matrix of thermoelec-
tric coefficients,(

Je
tr

Jh
tr

)
=

(
σ̂ α̂

β̂ κ̂

)(
E

−∇T

)
, (1)

where σ̂ is the electric conductivity tensor, α̂ and β̂ are the
thermoelectric tensors (β̂ = T α̂ due to Onsager relations), and
κ̂ is the thermal conductivity tensor. Applying the open-circuit
condition to Eq. (1), the Nernst coefficient is expressed in
terms of the components of conductivity and thermoelectric
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tensors as follows:

N = Ey

(−∇xT )H
= 1

H

αxyσxx − αxxσxy

σ 2
xx + σ 2

xy

. (2)

We assume that magnetic field H is applied in the z direction.
The are two important aspects in the calculation of N that

need to be discussed. The first point concerns the role of
magnetization currents. At the technical level of the Kubo
formula, the microscopic electric (Je) and heat (Jh) cur-
rents contain both transport and magnetization contributions,
namely, Je = Je

tr + Je
mag, Jh = Jh

tr + Jh
mag. In the presence of

an applied electric field, it was shown in Ref. [74] that the
magnetization current is given by Jh

mag = cM × E, where
M is the equilibrium magnetization (in the absence of the
electric field). Since the magnetization currents circulate in
the sample, they do not contribute to the net currents which
are measured in a transport experiment. For that reason, the
computation of αxy comprises two independent derivations. In
the first step, one finds the response of the total current to the
applied electric and magnetic fields, and in the second step
one finds the magnetization currents that should be derived
from the equilibrium magnetization. It then follows that the
transverse thermomagnetic response is given by subtracting
these two contributions,

αxy = − Jh

ExT
+ cMz

T
= βxy + cMz

T
. (3)

Therefore, we need to know the magnetic susceptibility M =
χH , which will be computed diagrammatically along with
βxy. The importance of the magnetization contribution to αxy

in the context of superconducting fluctuations was elaborated
by Ussishkin [57].

The second point concerns the role of particle-hole asym-
metry in response tensors. In the normal state, diagonal ele-
ments of electrical σ̂ and thermal κ̂ conductivities are present
already at the level of perfect particle-hole symmetry, i.e.,
neglecting any contributions which arise due to asymmetry
around the Fermi surface in properties such as the density
of states and transport scattering time, whereas off-diagonal
elements vanish. The conventional result for the thermoelec-
tric tensor α̂ in the normal metal (the so-called quasiparticle
contribution) also vanishes in this limit, as can be seen from
the Mott formula for αxx and Sondheimer formula for αxy.
However, it was emphasized in Ref. [57] that this result is
not required by the symmetry and will not necessarily hold
when additional scattering processes, such as superconducting
or mesoscopic fluctuations, are taken into account without
breaking the particle-hole symmetry. In particular, account-
ing for superconducting fluctuations gives finite αxy but still
vanishing αxx and σxy without particle-hole asymmetry. In
this case, the general expression for the Nernst coefficient
equation (2) reduces to N = αxy/(Hσxx ).

It is known that superconducting fluctuations enhance the
conductivity close to Tc due to the so-called Aslamazov-
Larkin [75] and Maki-Thompson [76] contributions as well
as density of states effects [77]. A similar identification of
the microscopic contributions applies to other transport coeffi-
cients. In the case of the transverse thermomagnetic response,
the leading-order contribution to αxy is due to the Aslamazov-
Larkin (AL) diagrams alone. The contributions of the Maki-

Thompson (MT) and density of states (DOS) diagrams are less
divergent as T → Tc. This is true as long as we are discussing
fluctuations in a weak field H � Hc2 near Tc. This picture is
more complicated in the quantum critical regime H ∼ Hc2 and
T → 0 as all the terms happen to be of the same order. To
further simplify our analysis we will assume s-wave symmetry
of the superconducting order parameter. In the context of the
high-temperature superconductors, it is of interest to consider
also the case of d-wave symmetry in a similar approach.

B. Kubo formulas

Within the linear response analysis, the diagonal
Aslamazov-Larkin conductivity is determined from the
following current-current Kubo kernel Kee

xx [75]:

σxx = lim
�→0

1

�
Im

[
Kee

xx (�)
]R

,

Kee
xx (�m) = 4e2T

∑
qωn

B2
x (q)P(ωn, q)P(ωn + �m, q) , (4)

where [Kee
xx ]R indicates the retarded component of Kee

xx (�m)
as it is analytically continued from the discrete Matsubara
frequencies into the entire complex plane i�m → � + i0. The
pair susceptibility propagator of fluctuating Cooper pairs is of
the form

P(ω, q) = −1

ν

1

ln(T/Tc) + πDq2/8T + π |ω|/8T
, (5)

which is an asymptotic formula valid at small momenta and
frequencies, namely, {Dq2, ω} � T (here ν is the single-
particle density of states in the normal state). With the same
accuracy one can treat ln(T/Tc) ≈ (T − Tc)/Tc. In the defini-
tion of the current response kernel we also made use of the
current vertex

Be
i = 2eBi, Bi(q) = −2νηqi, η = πD/8T, (6)

which diagrammatically corresponds to the triangular block of
electronic Green’s functions of the AL diagram. This expres-
sion for Be(ω, q) is derived under the same approximations
for typical frequencies ω ∼ (T − Tc) � T and momenta q ∼
ξ−1

GL � L−1
T of superconducting fluctuations as in Eq. (5). As

alluded to above, Be
i has a much more complicated structure

in the regime of quantum fluctuations, and its frequency
dependence plays a crucial role [64].

The corresponding Aslamazov-Larkin contribution to the
transverse thermoelectric coefficient can be found from the
mixed electric-current-heat-current Kubo response function
Keh

xy [57]:

βxy = H

cT
lim

�,Q→0

1

�Q
Re

[
Keh

xy (Q,�m)
]R

, (7)

where

Keh
xy (�m, Q) = −4e2T

∑
q,ωn

Bx(q)B2
y (q)(iωn + i�m/2)

× [P(ωn, q − Qx )P(ωn, q)P(ωn + �m, q)

+ P(ωn, q)P(ωn + �m, q)P(ωn + �m, q + Qx )], (8)
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with the heat vertex

Bh
i (ωn, q) = 2iνωnηqi = −iωnBi(q). (9)

We finally define magnetic susceptibility from the equilib-
rium magnetization. Diagrammatically, it can be calculated
to linear order in H by considering the current response to
a magnetic field at a finite wave vector Q [78]:

χμν =−4e2

c2
εαγμεβκνT

∑
ω,q

x̂γ x̂κP2(ω, q)�′
α (ω, q)�′

β (ω, q),

(10)

where εαβγ is the antisymmetric Levi-Civita unity tensor, x̂
is the coordinate operator in the momentum representation,
and �(ω, q) is the electronic polarization operator given the
usual loop diagram composed of the product of two Green’s
functions [we recall that resummation of these loops gives
exactly Eq. (5)]. Below we will consider only the isotropic
case χμν = χδμν .

C. Mesoscopic conductivity fluctuations

With these technical prerequisites, we proceed with the
calculation of superconductivity-induced mesoscopic fluctu-
ations in σxx, βxy, and χ . In particular, we will compute their
rms values, e.g., rms{σ, α, χ}. The first step in the derivation
of the defined kinetic coefficients requires the consideration of
discrete sums over Matsubara frequencies ωn = 2πnT . Such
summations over bosonic frequencies can be conveniently
done with the help of closed contour integration in the com-
plex plane by using the following formula:

T
∑
ωm

f (ωm) = 1

4π i

∮
dω f (−iω) coth

( ω

2T

)
. (11)

In application of Eq. (11) to Eq. (4) one notices that the
product of two propagators under the integral has breaks
in analyticity in the complex plane of ω at Imω = 0 and
Imω = −�m, so that the integration contour has two branch
cuts along these lines. Following the standard steps of analytic
continuation [72], one arrives in the intermediate step at

σxx = e2

πT

∑
q

B2
x (q)

∫
[ImPR(ω, q)]2dω

sinh2(ω/2T )
. (12)

Integrating over q and ω with the help of Eqs. (5) and (6),
one finds the celebrated Aslamazov-Larkin formula σxx =
(e2/16) ln−1(T/Tc). Being interested in its mesoscopic fluctu-
ations, we square this diagram and average it over the disorder
potential, which gives

〈
δσ 2

xx

〉 = 4e4

π2T 2

∑
q1q2

B2
x (q1)B2

x (q2)

×
∫

M12(ω, q)ImPR(ω1, q1)ImPR(ω2, q2)dω1dω2

sinh2(ω1/2T ) sinh2(ω2/2T )
.

(13)

In order to calculate the mesoscopic (disorder-irreducible)
correlation function

M12(ω, q) = 〈ImδPR(ω1, q1)ImδPR(ω2, q2)〉 (14)

of the pairing susceptibility propagators, one has to draw
two copies of diagrams for P, each representing a given
realization of the disorder potential, and then connect their
diffusive parts by additional impurity lines. Such construction
involves four colliding diffuson-cooperon ladders and, on a
technical level, requires computation of four- and six-order
Hikami boxes [79]. Some of these diagrams have been studied
before [23–27,40,80–82], and we invoke that knowledge for
our purposes. In particular, the most singular contribution has
the form

〈δPR(A)(ω1, q1)δPR(A)(ω2, q2)〉

= Aν2

g2

(
LT

L

)2

[PR(A)(ω1, q1)]2[PR(A)(ω2, q2)]2. (15)

As anticipated [see discussion in Sec. II], the induced meso-
scopic effect is weak, 〈δP2〉 ∝ Gi2; however, it exhibits an
extremely singular behavior in the long-wavelength limit
{ω, q} → 0, where 〈δP2〉 ∝ (T − Tc)−4. The precise value of
the numerical factor A ∼ 1 is not of principal importance in
view of the strong dependence of the whole expression on
temperature and system size. It is then straightforward to show
that

M12 = 4Aν2

g2

(
LT

L

)2

ImPR(ω1, q1)

× RePR(ω1, q1)ImPR(ω2, q2)RePR(ω2, q2). (16)

For convenience in further integration, we define the fol-
lowing dimensionless units: x = ηq2, y = πω/8T , and ε =
ln(T/Tc) ≈ (T − Tc)/Tc. In these variables, the interaction
propagator and vertex function become

ImPR(x, y) = −1

ν

y

(ε + x)2 + y2
, B2

x (x) = 4ν2ηx cos2 φ ,

(17)
and for a two-dimensional geometry of a thin superconducting
film, integrations transform as

∑
q

→
∫ 2π

0

∫ ∞

0

dφdx

8π2η
,

∫
dω

sinh2(ω/2T )
→ πT

2

∫ +∞

−∞

dy

y2
,

(18)
where we expanded sinh y ≈ y since the major contribution
comes from the range of parameters {x, y} ∼ ε � 1. With
these notations Eq. (13) becomes

〈
δσ 2

xx

〉 = Ae4L2
T

π4g2L2

∫ 2π

0
dφ1dφ2 cos2 φ1 cos2 φ2

∫ ∞

0

∫ +∞

−∞

x1x2(x1 + ε)(x2 + ε)dx1dx2dy1dy2

[(x1 + ε)2 + y2
1]3[(x2 + ε)2 + y2

2]3
. (19)

The integrations are elementary and can be made separable in
all variables by rescaling first yi → (xi + ε)yi and then xi →
εxi. As a result, the rms value of conductivity fluctuations
takes the form (suppressing the numerical factor of the order
of unity)

rms σxx � σQGi
LT

L

(
Tc

T − Tc

)2

, (20)

where we introduced the quantum of conductance σQ =
e2/(2π h̄). This estimate is valid at length scales L > ξGL,
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whereas fluctuations saturate to rms σxx ∼ σQGi(T/ETh)3/2

when min{LT , ξ} < L < ξGL. This happens because the con-
tinuous spectrum of soft superconducting excitations becomes
quenched by the finite-size quantization and Thouless energy
provides a natural cutoff, Dq2 → ETh, in a pair propagator.

For completeness, we have also analyzed the mesoscopic
Maki-Thompson part in fluctuation-induced diagonal conduc-
tivity, in particular its anomalous piece, which is the most
singular near Tc. Technically, it follows from the same current-
current kernel Kee

xx but is given by a different diagram [76].
The corresponding analytically continued expression is well
known:

σ an
xx = e2νD

2πT

∑
q

∫
coth(ω/2T )dεdω

cosh2(ε/2T )

× Im PR(ω, q)CR(2ε + ω, q)CA(2ε + ω, q), (21)

where

CR(ε, q) = 1

Dq2 + τ−1
φ − iε

(22)

is the cooperon (the summed impurity ladder in the particle-
particle channel) and τφ is its dephasing time. It should be
noted that the same dephasing time should appear in the
pair propagator as well, but its net effect is to shift the crit-
ical temperature Tc → Tc − π/(8τφ ). An additional integral
over ε represents the fermion loop in the MT diagram. It
is worth noticing that the typical scale of ε ∼ T , whereas
{Dq2, ω} ∼ T − Tc. For this reason, the above expression can
be simplified by setting the hyperbolic cosine in the denom-
inator to unity and integrating the product of two cooper-
ons,

∫
dεCR(2ε + ω, q)CA(2ε + ω, q) = (π/2)C(q), where

we define the static cooperon C(q) = [Dq2 + τ−1
φ ]−1. The

resulting variance of the anomalous MT diagram then reads

〈
(δσ an

xx )2
〉 =

(
e2νD

4T

)2 ∑
q1q2

C(q1)C(q2)

×
∫

dω1dω2 coth(ω1/2T )

× coth(ω2/2T )M12(ω, q). (23)

In the most interesting regime of weak dephasing, τφ � τGL,
where τGL = π/8(T − Tc) is the Ginzburg-Landau time, one
finds after integrations

rms σ an
xx � σQGi

LT

L

(
Tc

T − Tc

)2

ln(τφ/τGL), (24)

so it is similar to Eq. (20) with an extra logarithmic factor. In
the opposite regime of strong dephasing, τφ � τGL, the MT
term is further suppressed:

rms σ an
xx � σQGi

LT

L
(Tcτφ )

(
Tc

T − Tc

)
. (25)

D. Mesoscopic Nernst effect and susceptibility fluctuations

We can build on this result to consider emergent meso-
scopic fluctuations in the transverse thermoelectric coeffi-
cient. We start from Eq. (8), where we need only contributions

linear in Q, which can be easily extracted by expanding the
pair propagator and noticing that

∂P(ω, q)

∂qx
= −Bx(q)P2(ω, q). (26)

As a next step, we have to sum the resulting expression for
Keh

xy (�m, Q) in Eq. (8) over the Matsubara frequency, as in the
case of the conductivity calculation, by contour integration in
the complex plane with the help of Eq. (11). Completing these
steps, we arrive at

βxy = 4e2H

cπT

∑
q

B2
x (q)B2

y (q)
∫

dω coth(ω/2T )

× {[RePR(ω, q)]3ImPR(ω, q)

+ RePR(ω, q)[ImPR(ω, q)]3}. (27)

Now using Eq. (17) and performing frequency and momentum
integrations, we find βxy = (e/2π )(ξGL/lH )2 ∝ (T − Tc)−1,
where lH = √

c/eH is the magnetic length. One should notice
that βxy has the same scaling with temperature as the con-
ductivity σxx. As shown by Ussishkin [57], the magnetization
contribution has the same structural form but comes with the
coefficient −1/3 instead of 1/2, so that αxy = βxy + cMz/T
has an overall coefficient of 1/6. To address the mesoscopic
part of βxy we take its variation, square the result, and average
over the disorder realization with the help of the correlation
function (16). In doing so we encounter quite a cumbersome
expression with several contributions to 〈δβ2

xy〉, but we make
an observation that all the emergent terms have exactly the
same scaling with temperature and dependence on the system
size and differ from each other only by a numerical coefficient
of the order of unity. For brevity we present here one particular
such term,

〈
δβ2

xy

〉 = A

(
e2νHLT

cgT L

)2 ∑
q1q2

B2
x (q1)B2

x (q2)B2
y (q1)B2

y (q2)

×
∫

dω1dω2 coth(ω1/2T ) coth(ω2/2T )

× [RePR(ω1, q1)]4[RePR(ω2, q2)]4

× ImPR(ω1, q1)ImPR(ω2, q2), (28)

and carry out the remaining calculation up to a factor modulo
1 (we will absorb all the numerical factors into the redefinition
of coefficient A). Since most relevant frequencies ω ∼ T −
Tc are small compared to temperature, we can approximate
coth(ω/2T ) ≈ 2T/ω. Transforming the above expression into
dimensionless variables

〈
δβ2

xy

〉 = e2A

g2

(
ξ 2LT

�2
H L

)2 ∫ 2π

0
dφ1dφ2 sin2 2φ1 sin2 2φ2

×
∫ ∞

0

∫ +∞

−∞

x2
1x2

2 (x1 + ε)4(x2 + ε)4dx1dx2dy1dy2[
(x1 + ε)2 + y2

1

]5[
(x2 + ε)2 + y2

2

]5 , (29)
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followed by rescaling and integration, one finds

rms βxy = βQGi

(
ξGL

lH

)2(LT

L

)(
Tc

T − Tc

)
, (30)

where we introduced a quantum unit of thermopower βQ =
e/(2π h̄). Fluctuation-induced corrections to magnetic suscep-
tibility and its mesoscopic fluctuations remain to be consid-
ered. From Eq. (10) we get for the Aslamazov-Larkin term

χ = −16e2

3c2
T

∑
ωm,q

�′
xP3(ωm, q)

[
�′

x�
′′
yy − �′

y�
′′
xy

]
, (31)

where derivatives of the polarization operator can be eas-
ily computed: �′

x,y = −(πνD/4T )qx,y, �′′
yy = −(πνD/4T ),

and �′′
xy = 0. Already at this level, by simple power counting

of integration variables, one can deduce that χ ∝ Tc/(T − Tc).
Consequently, one expects that 〈δχ2〉 will also scale with T −
Tc in the same way as the conductivity and thermomagnetic
coefficients. Indeed,

〈δχ2〉 = A

(
e2ν2ηLT

c2gL

)2 ∑
q1q2

B2
x (q1)B2

x (q2)

×
∫

dω1dω2 coth(ω1/2T ) coth(ω2/2T )

× Im[PR(ω1, q1)]4Im[PR(ω2, q2)]4, (32)

which, as in the previous examples, reduces with standard
steps to

rms χ = χPGi

(
LT

L

)(
Tc

T − Tc

)2

, (33)

where χP is the Pauli susceptibility in the diffusive metal.

E. Mesoscopic fluctuations of thermopower

We briefly discuss next the longitudinal thermopower αxx

(Seebeck coefficient) and transverse conductivity σxy (Hall
coefficient). The Aslamazov-Larkin contribution to αxx is
found from the mixed electric-heat current Kubo response
function

αxx = − 1

T
lim
�→0

1

�
Im

[
Keh

xx (�)
]R

,

Keh
xx (�ν ) = 2ieT

∑
qω

ωnB2
x (q)P(ωn, q)P(ωn + �ν, q). (34)

Summation over the Matsubara frequency ωn and analytical
continuation follows the same way as in the case of the
conductivity calculation, and we obtain

αxx = e

2πT 2

∑
q

B2
x (q)

∫
ωdω

sinh2(ω/2T )
[ImPR(ω, q)]2.

(35)

Without particle-hole asymmetry, αxx is zero. Indeed, [ImPR]2

is even in frequency, while the rest of the integrand is odd. We
have to use a generalized form of the pair propagator. Gauge

invariance dictates that [83]

P(ωm, q) = −1

ν

1

πDq2/8T + ε + π |ωm|/8T + ϒω

, (36)

which generalizes Eq. (5) to include explicitly the particle-
hole asymmetry factor ϒω = (iωm/2Tc)(∂Tc/∂EF ) that ac-
counts for the gradient of Tc at the Fermi surface. Expanding
PR to the leading linear in ϒω order produces

αxx = − eν

πT 2

∑
q

B2
x (q)

×
∫

ωϒωImPR(q, ω)Im[PR(ω, q)]2dω

sinh2(ω/2T )
, (37)

where now both propagators are taken at ϒω → 0. The
resulting expression for αxx is logarithmically divergent in
momentum x integration that has to be regularized by in-
troducing an upper cutoff xmax � 1/ε [in the original no-
tations this corresponds to (ξGLqmax)2 � 1]. This choice
is natural since PR, in the form we use here, was ob-
tained from the expansion in small momenta, which is
justified only as long as max{Dq2, ω} < T . As a conse-
quence, αxx � βQ(T/EF )γpha ln[Tc/(T − Tc)], where γpha =
(d ln Tc/d ln EF ). Extending this analysis to account for meso-
scopic fluctuations gives, as a final result,

rms αxx � βQ(T/EF )γphaGi

(
LT

L

)(
Tc

T − Tc

)
. (38)

Generally speaking, in a disordered sample, mesoscopic fluc-
tuations of thermopower are present and strong even in the
absence of superconducting fluctuations since per our earlier
discussion in the Introduction, particle-hole asymmetry is
broken from the scale of Fermi energy down to Thouless
energy.

F. Mesoscopic Hall effect fluctuations

In order to calculate the Hall coefficient, we need to know
the transverse component of the current-current correlation
function Kee

xy . In the presence of Landau quantization the
vertex in real space becomes an operator B̂i = −2νη(−i∇i +
2eAi ), where we choose the vector potential in the Landau
gauge A = (0, Hx, 0). Different components of the vertex, B̂x

and B̂y, do not commute, and the matrix elements are

B̂nn′
i = −2

√
2νη

lH

{
i〈n|â − â†|n′〉 i = x,
〈n|â + â†|n′〉 i = y,

(39)

where â, â† are the harmonic oscillator operators. Recalling
that 〈n|â|n′〉 = 〈n′|â†|n〉 = √

nδn,n′+1, we see that only transi-
tions between nearest Landau levels n → n ± 1 are allowed.
With these ingredients one finds for the Matsubara response
kernel

Kee
xy (�) = (4eνη)2

8π l4
H

T
∑

ω

∞∑
n=0

(n − 1)

× [Pn+1(ω, q)Pn(ω − �, q)

− Pn(ω, q)Pn+1(ω − �, q)] . (40)
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After an analytic continuation one gets

σxy = − (4eνη)2

4π2l4
H

∞∑
n=0

(n + 1)
∫

dω coth(ω/2T )

× [
ImPR

n (ω, q)∂ωRePR
n+1(ω, q)

− ImPR
n+1(ω, q)∂ωRePR

n (ω, q)
]
. (41)

In the weak-field limit, H → 0, one needs only the first term
in the expansion in powers of 1/n, and then one can replace
the summation over n by an integration: (1/lH )2 ∑

n → ∑
q.

Taking into account ∂nPn = 2ν(η/l2
H )P2

n and after some alge-
bra, the previous expression can be reduced to

σxy = − (4eη)2ν3η

3πT l2
H

∑
q

q2
∫

[ImPR(ω, q)]3dω

sinh2(ω/2T )
, (42)

where we also used integration by parts with respect to the
energy variable. Since [ImPR(ω, q)]3 is odd in energy, with-
out particle-hole asymmetry σxy vanishes. As in the case of
thermopower we expand PR to the lowest nonvanishing order
in ϒω and integrate to find σxy = (e2/48)(ωcτtr )γpha[Tc/(T −
Tc)]2, where ωc = eH/mc is the cyclotron frequency and τtr

is the transport scattering time. The mesoscopic part of σxy is
then given by

rms σxy � σQ(ωcτtr )γphaGi

(
LT

L

)(
Tc

T − Tc

)3

. (43)

It should be recalled that the transverse conductance σxy of
small normal samples at low temperatures displays universal
fluctuations similar to those in σxx; however, unlike σxx, these
are asymmetric in the magnetic field [84,85]. Furthermore,
those contributions are small in the limit when normal-metal
coherence length LT is much smaller than the sample size
L due to thermal smearing effects. As a consequence, in
the vicinity of Tc of superconducting samples the effect is
dominated by Eq. (43).

IV. DISCUSSION

The main results of this work are expressions Eqs. (20),
(24), (30), and (33) for variances of different kinetic coeffi-
cients in mesoscopic superconductors. Because of the long-
range phase coherence developing close to Tc, sample-specific
mesoscopic fluctuations should be observable at large length
scales. Similar to normal samples, these fluctuations are sen-
sitive to magnetic field strength, impurity configuration, and
gate voltage. However, in sharp contrast to the normal case,
where such fluctuations are universal, interaction effects in the
Cooper channel trigger a great amplification of fluctuations
due to pairing correlations. This interplay of coherent impu-
rity scattering and interactions leads to an interesting example
of quantum mesoscopic phenomena occurring at a macro-
scopic scale. Despite the fact that mesoscopic fluctuations are
no longer universal, we have discovered a different kind of
universality in the sense of temperature dependence, which
was found to have the same power-law scaling for considered
kinetic coefficients in the Ginzburg region of fluctuation-
induced transport.

It is instructive to estimate the order of magnitude for
these effects. First, we notice that all terms contain an extra

smallness in Gi ∼ 1/g � 1, which is natural for a quan-
tum interference correction. However, the resulting variation
of fluctuations has strongly pronounced temperature depen-
dence, rms{σxx, βxy, χ} ∝ Gi [Tc/(T − Tc)]2, which is more
singular than the corresponding dependence of their mean
values {σxx, βxy, χ} ∝ Tc/(T − Tc). We observe that for the
system size L ∼ ξGL and at the threshold of applicability of the
Gaussian theory of superconducting fluctuations, T − Tc ∼
Gi Tc, the scale of conductance fluctuations [per Eq. (20)]
is of the order of rms σxx ∼ σQ

√
g, which is parametrically

bigger than UCF in normal metals. At the same time, these
fluctuations are still smaller than the bare Drude value of
the normal-state conductivity, rms σxx/σ ∼ √

Gi � 1. The
situation is different for the transverse magnetic thermopower
because for a particle-hole-symmetric case the normal-state
quasiparticle contribution is absent and we have to com-
pare the mesoscopic part directly to the fluctuation-induced
term, so that rms βxy/βxy ∼ LT /L, where we assume sufficient
proximity to Tc. Under the same provisions, fluctuations in
magnetic susceptibility are as strong as in the conductivity;
this conclusion carries over to fluctuations in rms αxy, so that
one should expect large reproducible mesoscopic noise of the
overall Nernst signal.

The calculations presented in this work have been carried
out for homogeneously disordered superconductors. There-
fore, our results cannot be directly compared to the existing
experimental findings in which the samples were granular
in their origin [8–11]. Granularity adds another parameter
into the model, intergrain conductance, which leads to strong
competition between Aslamazov-Larkin, Maki-Thompson,
and DOS effects [86]. Nonetheless, the main features pre-
dicted by the theory should be present for inhomogeneously
disordered superconductors as well. Indeed, the predicted
sample-specific conductance fluctuations were observed ex-
perimentally in samples of macroscopic length and only in
a narrow temperature range in the immediate vicinity of Tc,
consistent with the theory. The amplitude of the conductance
fluctuations was found to greatly exceed that of the UCF
in normal samples. It should also be emphasized that some
other features accompanying giant mesoscopic effects, such
as suppression of h/2e oscillations in cylindrical samples,
negative magnetoresistance, and its asymmetry, can be also
addressed within the same theoretical model. Currently, we
are unaware of experimental measurements of mesoscopic
effects in the thermomagnetic transport of superconductors.
The mesoscopic Nernst effect has been studied experimentally
only in the nonsuperconducting systems [87]. Verification of
the temperature scaling and the overall magnitude of the effect
for mesoscopic fluctuations of the Nernst coefficient predicted
here would provide an important test for our understanding of
thermomagnetic transport phenomena in correlated systems.

As an outlook, we briefly mention possible extensions
of this work geared towards future research in the area of
magnetothermotransport phenomena in superconductors. The
regime of quantum fluctuations is of great interest. One could
distinguish regimes where superconductivity is suppressed
by orbital or spin effects. In particular, in the latter case of
Pauli-limited superconductivity, fluctuation effects are dom-
inated by virtual rather than real pair excitations [88]. The
Nernst effect has not been studied for this scenario. It is
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also of special importance to investigate possible mechanisms
for extrinsic skew-scattering and side-jump contributions to
the Nernst effect which generally play a crucial role in the
anomalous and nonlinear Hall effects. Last, there is enough
motivation to attempt computations beyond the perturbation
Gaussian theory of superconducting fluctuations by adopting
a strong-coupling Eliashberg approach. This analysis of the
Nernst effect will certainly be relevant for high-Tc materials.
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