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We revisit the problem of the surface superconductivity nucleation focusing on the detailed study of the critical
field Hc3 as a function of temperature and disorder. Using the semiclassical Eilenberger formalism, we find that
away from the Ginzburg-Landau region the ratio between the nucleation critical field Hc3 and the upper critical
field Hc2 deviates strongly from the Saint-James–de Gennes limit. In particular, the Hc3/Hc2 is found to be a
nonmonotonic function of temperature, which reaches the maximum for a set of parameters corresponding to a
crossover region from ballistic to diffusive scattering, when the mean-free path in a bulk of a superconductor is
of the same order as zero-temperature superconducting coherence length. We also analyze the robustness of the
nucleated phases with respect to diffusive scattering off the sample boundary by solving exactly corresponding
eigenvalue problem of an integral equation for the critical field. The implications of these results for the transport
in superconductors of various geometries near Hc3 are briefly discussed. In particular, we present results for the
mechanism of magnetoconductivity oscillations due to surface superconductivity effects.
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I. INTRODUCTION

The magnetic phase diagram of a type-II superconductor
is marked by three distinct critical lines. The Meissner phase
occurs at the lowest fields and extends up to the first critical
field Hc1 that marks vortex entry into a superconductor to
be energetically favorable. Next, the Abrikosov-vortex-lattice
phase emerges and persists up to the second critical field Hc2.
As vortex lattice becomes so dense that vortex cores overlap,
superconductivity becomes extinguished from the bulk, yet
it can nucleate at the surfaces and Saint-James–de Gennes
(SJdG) phase of surface dominated superconductivity survives
to even higher fields marked by Hc3. An exact solution of the
linearized Ginzburg-Landau (GL) equations in the presence
of the surface led Saint-James–de Gennes to a famous result
Hc3 = 1.695Hc2 [1]. Even though the validity of this formula
is limited to vicinity of the critical temperature Tc, still SJdG
theory provided a rationale for explaining a great amount of
experimental data on the persistence of superconductivity at
high fields which had initially been ignored and attributed to
inhomogeneities of samples under study [2].

The early evidence for surface superconductivity was found
in niobium, lead, tin, and indium via various experiments
including dc transport, susceptibility and magnetization mea-
surements, torque magnetometry, surface impedance, and tun-
neling spectroscopy probes [3–10]. Subsequent more detailed
experiments [11–13] carried out on Pb-In and Nb-Ta alloys
or oxidized Nb addressed dependence of Hc3 on temperature
T and sample purity in a broad range of parameters away
from the validity region of the GL theory. It was revealed
that the Hc3/Hc2 ratio is not a universal number but rather
a complicated function that exhibits pronounced dependence
on both T and the mean-free time τ mediated by disorder
scattering. Niobium became essentially a paradigmatic ma-
terial to study various phenomena associated with surface
superconductivity and multiple experiments continue to fol-
low [14–20]. Naturally over time experimental efforts on
surface superconductivity branched into different directions.
One line of interest shifted towards investigation of the

effects of sample geometry and topology on nucleation of
superconductivity and corresponding values of the critical
field [21–23]. Other interests moved towards studying dif-
ferent superconducting compounds including yttrium hexa-
boride YB6 [24], multiband superconducting materials such
as NbSe2 [25] and MgB2 [26,27], unconventional super-
conductors such as heavy-fermion systems UPt3 [28] and
iron-pnictides KxFe2−xSe2 [29], and most recently layered
dichalcogenide CuxTiSe2 [30].

The original study of SJdG triggered not only a flurry of
experimental investigations, but obviously also attracted sub-
stantial theoretical attention that led to multiple developments
and generalizations. Abrikosov was perhaps the first who
looked at the problem of surface superconductivity beyond
the framework of Ginzburg-Landau phenomenology [31].
He adopted Gor’kov’s method of computing Hc2 at zero
temperature [32] and generalized it to the case of Hc3.
Technically, this amounts to solving an eigenvalue problem
for the linearized gap equation, which is an integral equation.
Abrikosov commented in the paper that it is unusually difficult
to evaluate the critical field of nucleation in the general case
and, based on the experimental evidence available at that time,
conjectured that SJdG relation between Hc3 and Hc2 will be
satisfied over the entire range of temperatures below Tc. Hu and
Korenman [33] revisited this problem focusing on the simplest
case of a clean superconductor with specular reflection from
the boundary. They applied variational ansatz to tackle the
integral eigenvalue problem for Hc3 at T = 0 and obtained
lower- and upper-bound estimates for the ratio between critical
fields to be in the range 1.925 � Hc3/Hc2 � 5.22. The impact
of the sample geometry was analyzed by van Gelder [34] who
predicted that for superconducting wedges subtending an angle
γ the surface critical field Hc3(γ ) can be greatly enhanced,
thus easily overcoming the SJdG threshold corresponding
to γ = π . These early theories were extended to investigate
signatures of surface superconductivity fluctuations on trans-
port coefficients [35,36] and thermodynamic properties [37]
at the onset of nucleation, and further to analyze critical
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field in the superconducting films focusing specifically on the
boundary and finite thickness effects [38,39]. The effect of
anisotropy on Hc3 was considered within GL theory [40]. The
critical field was also analyzed for the case of unconventional
pairing [41,42], and for the case of multiband superconductor
in the context of MgB2 assuming disordered dominated
regimes that were treated with the help of semiclassical Usadel
equations [43].

In light of all the existing studies, it is perhaps surprising
to realize that we still do not have comprehensive solution
of the surface superconductivity problem in terms of the
corresponding critical field dependence on the broad range
of essential parameters such as temperature T and sample
purity characterized by a mean-free time τ . This situation
should be contrasted to the case of Hc2(T ,τ ) studies for which
Helfand and Werthamer provided a complete solution [44].
While Hc2 is certainly a fundamentally important metric
characterizing superconducting state in the bulk, the field
of nucleation Hc3 serves as a benchmark for the mesoscale
surface superconductivity. It is our primary motivation to
generalize Helfand-Werthamer (HW) treatment to the case of
Hc3(T ,τ ). This task is accomplished in Sec. II. Additionally, in
Sec. III we also address the fate of surface superconductivity
for rough surfaces that induce diffusive scattering off the
boundary. In contrast to a naive expectation that poor quality
of the surface should weaken Hc3 and strongly suppress
surface superconductivity, we find that the magnitude of Hc3

in this case remains above the threshold of the SJdG limit.
In Sec. IV we study Hc3 for systems of cylindrical geometry
that are highly relevant to numerous experiments conducted
on superconducting nanoislands, rings, and quantum wires.
In particular, we address scanning tunneling spectroscopy
measurements of vortex trapping. Finally, in Sec. V we
comment on manifestations of surface conductivity in trans-
port and discuss several devices that could reveal novel
interesting aspects of this general phenomenon. Specifically,
we discuss a mechanism for Aharonov-Bohm oscillations in
magnetoconductivity as promoted by surface superconductiv-
ity effects. We summarize our findings in Sec. VI and outline
possible interesting questions for further exploration of surface
superconductivity.

II. EILENBERGER FORMALISM FOR Hc3

The main idea of the semiclassical formalism, that was
developed by Eilenberger in applications to the problems of
superconductivity [45], is to take advantage of the fact that
length scales (e.g., coherence length or magnetic penetration
depth) at which characteristic properties of a superconductor
change, are large compared to electron Fermi wavelength λF .
This allows one to integrate exact Green’s functions G and F

in the theory of superconductivity over the energy variable.
This step simplifies Gor’kov’s equations to technically easier
equations for the reduced semiclassical normal g(r,ω,v) and
anomalous f (r,ω,v) Green’s functions. In particular, the
equation for the latter reads as (hereafter h̄ = kB = c = 1)

(2ω + v�)f = 2�g + 1

τ
(g〈f 〉 − f 〈g〉). (1)

Here, ω = πT (2n + 1) is the fermionic Matsubara frequency
with n = 0,1,2, . . ., the momentum operator contains vector
potential � = ∇ + 2πi A/φ0, φ0 = π/|e| is the flux quantum,
and τ is the elastic scattering time due to nonmagnetic
impurities, whereas angular brackets 〈. . .〉 denote the average
over the Fermi surface (or over the all directions of velocity
v). The corresponding equation for the g function is similar.
As is clear, Eilenberger equation (1) is intrinsically nonlinear,
furthermore, Green’s functions are subject to the normalization
constraint g2 + ff † = 1, where f †(r,ω,v) = f ∗(r,ω, − v).
The superconducting pair potential �(r) should be found from
the self-consistency equation, that reads as

� ln
Tc

T
= 2πT

∑
ω>0

[
�

ω
− 〈f 〉

]
, (2)

where Tc is the transition temperature at zero field. There are
a number of physically interesting situations when the general
Eilenberger equation can be further simplified. In particular,
at the onset of the second-order superconductor-normal phase
transition the pair potential is small so that Eilenberger equa-
tion can be linearized: τv�f = 2�τ + 〈f 〉 − (1 + 2ωτ )f . It
has been shown [46,47] that solving such linearized equation
with the self-consistency condition (2) is equivalent to solving
an eigenvalue problem for the linear differential equation

	2�(r) = k2�(r), (3)

where eigenvalue k2, that defines superconducting coherence
length ξ 2 = −1/k2 at any temperature T , magnetic field H ,
and scattering rate τ , should be found from

ln
Tc

T
= 2πT

∑
ω>0

(
1

ω
− 2τS

β − S

)
, β = 1 + 2ωτ. (4)

Here, the new function S admits the following integral
representation:

S =
√

π

α

∫ 1

0
dy

(1 + y2)σ

(1 − y2)σ+1

[
�

(y

α

)
− cos(πσ )�

(
1

yα

)]
(5)

with the parameter σ defined as

σ = 1

2

(
k2

q2
− 1

)
, q2 = 2πH

φ0
, (6)

and �(x) = 2√
π

∫ ∞
x

e−z2
dz being the complementary error

function. The dimensionless parameter α that enters the
definition of S has the form

α =
√

h

λ + t(2n + 1)
, (7)

where we have introduced dimensionless temperature t =
T/Tc, dimensionless magnetic field h = 2eH (vF /2πTc)2, and
scattering parameter λ = 1/(2πTcτ ).

A. Benchmark for Helfand-Werthamer solution of Hc2(T,τ )

For the consistency of presentation we are going to
demonstrate within this section that the above scheme of
equations reduces to the Helfand-Werthamer solution for the
Hc2(T ,τ ) = φ0/(2πξ 2), which corresponds to k2/q2 = −1, so
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FIG. 1. (a), (c) Represent results for the critical fields hc2 and hc3 as a function of temperature computed from Eqs. (12) and (14)
for several different values of the scattering parameter λ = 0.25, 0.5, 1, 5, 10, 25 (from the lowest to the top curve, respectively). (b), (d)
Represent the same data but plotted now as a function of scattering parameter for several different values of dimensionless temperature
t = 0.02, 0.2, 0.4, 0.6, 0.8, 0.98 (from the lowest to upper curve, respectively).

that σ = −1. In this case, Hc2 marks the lowest eigenvalue of
Eq. (2). For that purpose we define Jσ (α) = αS so that

J (α) ≡ J−1(α) =
∫ 1

0

√
πdy

1 + y2

[
�

(y

α

)
+ �

(
1

yα

)]
. (8)

We integrate by parts and get

J (α) = √
π

[
π

2
�

(
1

α

)
+

∫ 1

0

2dy√
πα

arctan(y)e−y2/α2

−
∫ 1

0

2dy√
παy2

arctan(y)e−1/(α2y2)

]
. (9)

In the first integral we rescale x = y/α, while in the
second integral we first change y → 1/y, use arctan(y) +
arctan(1/y) = π/2, and also rescale to x so that we obtain

J (α) = 2
∫ ∞

0
exp(−x2) arctan(αx)dx. (10)

This function appears in the Helfand-Werthamer paper [44]
[see their Eq. (25)] with exactly the same convention for α.
We bring this result now into the self-consistency condition to
find

ln
1

t
= 2

∑
n>0

[
1

2n + 1
− tJ (α)√

hc2 − λJ (α)

]
, (11)

which implicitly defines Hc2 (hc2 in the dimensionless no-
tations), as a function of t = T/Tc for any value of λ. For
the numerical computation it is advantageous to rewrite this
equation in the form that does not contain spurious logarithmic
divergence. To this end, we introduce J̃ (α) = [α − J (α)]/α3

so that limn→∞ J̃ (α) = 1
3 and J̃ (α) > 0. In these notations

ln
1

t
=

∑
n�0

2h
3/2
c2 J̃ (α)

(2n + 1)[λ + t(2n + 1)]2[
√

hc2 − λJ (α)]
. (12)

This equation was solved numerically and the results for
hc2(t,λ) are presented in Figs. 1(a) and 1(b). For fixed values
of the disorder parameter λ, the critical field is monotonically

104516-3



XIE, KOGAN, KHODAS, AND LEVCHENKO PHYSICAL REVIEW B 96, 104516 (2017)

e

0.0 0.2 0.4 0.6 0.8 1.0

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

t

h c
3

t
h c

2
t

f

0 5 10 15 20 25
1.4

1.6

1.8

2.0

2.2

2.4

h c
3

h c
2

(a) (b)

FIG. 2. (a) Shows the ratio between third and second critical fields as a function of temperature for the same choice of the scattering
parameters as in Figs. 1(a) and 1(c), while (b) shows the same ratio but plotted as a function of the scattering parameter for different values of
temperature in conjunction with Figs. 1(b) and 1(d).

growing function with lowered temperature t . In the strongly
ballistic case Tcτ 	 1, the temperature dependence of hc2

is insignificant. However, hc2 is a very sensitive function of
the disorder parameter and scales linearly with λ with the
temperature-dependent slope. This dependence can be simply
understood. In the ballistic case, the coherence length scales as
ξb ∼ vF /Tc, whereas in the diffusive case it is ξd ∼ √

D/Tc,
where D = v2

F τ/3 is the diffusion coefficient. Since the critical
field is inversely proportional to the square of the coherence
length, then consequently the ratio of critical fields in the two
limiting cases is hd

c2/hb
c2 ∼ (ξb/ξd )2 ∼ 1/(Tcτ ) ∝ λ. These

results are consistent with HW [44].

B. Temperature and purity dependence of Hc3(T,τ )

Equation (3) formally coincides with the linearized GL
equation. In terms of the SJdG solution for Hc3 near Tc with the
conventional boundary condition F ′ = 0 at the plane surface
of a half-space one finds (qξ )2 = 1.695. Hence, for the field
and temperature dependence of ξ , we therefore have the same
result where ξ (T ,H ) should be evaluated now with the help
of self-consistency equation (4) of the theory. Within our
formalism one has to set σ = − 1

2 (1 + 1/(qξ )2) = −0.795 in
the expression (5) for S and solve (4). In doing so, we introduce

Jσ (α) = √
πα

∫ ∞

0
dx

(1 + α2x2)σ

(1 − α2x2)σ+1

× [θ (1 − αx) − θ (αx − 1) cos(πσ )]�(x), (13)

and also J̃σ = [α − Jσ (α)]/α3. In terms of these functions
we find from (5) the desired equation for the critical field of
superconductivity nucleation in the form

ln
1

t
=

∑
n�0

2h
3/2
c3 J̃σ (α)

(2n + 1)[λ + t(2n + 1)]2[
√

hc3 − λJσ (α)]
,

(14)

which is structurally analogous to Eq. (12). This equation
also admits straightforward numerical solution that we present

in Figs. 1(c) and 1(d). The behavior of hc3 as a function
of either t or λ is very similar to that of hc2. The most
significant differences are revealed when we plot the ratio of
two fields. Interestingly, the Hc3/Hc2 is in fact a nonmonotonic
function of temperature for a parameter range of the scattering
coefficient λ ∼ 1 that corresponds to a crossover region from
ballistic-to-diffusive scattering in a bulk of a superconductor
[see Fig. 2(a)]. As the temperature approaches Tc, the ratio
Hc3/Hc2 tends to SJdG limit in accordance with the GL theory.
In general, for a large range of temperatures this is not the case.
The maximum occurs at about max{Hc3/Hc2} ≈ 2.25. For
strongly disordered case, the temperature dependence of the
ratio is insignificant and the magnitude is close to SJdG limit
for all temperatures. The same nonmonotonicity is revealed for
the Hc3/Hc2 ratio when plotted versus scattering parameter λ

for different temperatures [see Fig. 2(b)]. Again, in the limit
when λ 	 1 all lines tend to converge to SJdG result for any
temperature.

III. BOUNDARY EFFECT ON SURFACE
SUPERCONDUCTIVITY

Surface superconductivity is a robust and quite pronounced
phenomenon as observed in polished clean material structures
and films. One may naturally expect that superconductivity of
the surface layer will be extremely sensitive to the quality
of the surface and in general will be fragile for rough
surfaces mediating substantial surface scattering. However,
this question has not received sufficient theoretical attention.
We address this problem in the simplest situation assuming
that bulk of the superconductor is ballistic and scattering
takes place only at the boundary. For that purpose we
also concentrate in this section only on the case of zero
temperature. The convenient starting point is the formalism of
Abrikosov [31] and Hu-Korenman [33] who studied the case
of specular reflection. They showed that linearized Gor’kov’s
equation for the self-consistent order parameter in the one-
dimensional geometry reduces to the following linear integral
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problem [31,33]:

L�(x) = K0(x)�(x) +
∫ ∞

0
K1(x,x ′)[�(x) − �(x ′)]dx ′

−
∫ ∞

0
K2(x,x ′)�(x ′)dx ′, (15)

where L = ln(CTclH /vF ) and C = πe−γE/2 with γE ≈ 0.577
being the Euler-Mascheroni constant. It is assumed that the
boundary is located at x = 0 and the superconductor occupies
the volume x > 0. All lengths were scaled by magnetic length
lH = √

1/eH . The integral kernels are given by the following
expressions:

K0 =
∫ |x−x0|

0
e−(x−x0)2+x ′2

x ′ ln

[ |x − x0| + x ′

|x − x0| − x ′

]
dx ′

+ 1

2

∫ ∞

0

e−|x(x−2x0)−x ′(x ′+2x0)|

x + x ′ dx ′, (16)

K1 = 1

2|x − x ′|e
−|x(x−2x0)−x ′(x ′−2x0)|, (17)

K2 = 1

2(x + x ′)
e−|x(x−2x0)+x ′(x ′−2x0)|, (18)

where the parameter x0 in these kernels marks the center
of the nucleation. Equation (15) can be considered as the
eigenvalue problem for the linear integral operator acting
on �, where the eigenvalue itself is a function of x0. The
lowest value of the eigenvalue achieved for the optimal x0

defines the highest possible field for which finite solution
exists. While the problem at hand of finding that eigenvalue is
conceptually simple, it is technically difficult as the eigenvalue
equation has no scale and as such all parameters are of the
order of unity. Also owing to the complex structure of the
kernels there is no obvious way to solve Eq. (15). For that
reason, Hu-Korenman [33] relied on the variational ansatz.
This computational approach is reasonable since as shown by
Helfand and Werthamer [44], a similar variational calculation
for the problem of Hc2 as carried by Gor’kov [32] yields an
exact result. We will briefly recap these results in the following
section. Next, we will provide generalization of Eq. (15) to
the case of diffusive scattering. We solve the corresponding
eigenvalue exactly by numerical diagonalization and also
suggest a modified variational wave function that captures the
main results with the better accuracy.

A. Benchmark for Gor’kov’s solution of Hc2

To gain the technical grasp of the problem, it is useful to
recapture Gor’kov’s integral equation for Hc2 from Eq. (15).
In the Hc2 problem vortex nucleation occurs in the bulk of a
superconductor, in other words, its center is at infinity with
respect to the boundary. To access this limit, one has to shift
variables by introducing x → x − x0 and x ′ → x ′ − x0, and
then take limit of x0 → ∞. In this case, the kernel K2 vanishes
as is clear from Eq. (18), as well as the second term in the kernel
K0 because of its exponential dependence on x0. As a result,

Eq. (15) simplifies to [32]

L�(x) = K0(x)�(x) +
∫ +∞

−∞

e−|x2−x ′2|

2|x − x ′| [�(x) − �(x ′)]dx ′

(19)

with K0 → e−x2 ∫ |x|
0 x ′ex ′2

ln |x|+x ′
|x|−x ′ dx ′. As the next step, we

adopt a simple Gaussian trial wave function with a single
parameter a:

�(x) = exp(−ax2). (20)

Multiplying now Eq. (19) by �(x) from Eq. (20) and
integrating over x we obtain L as a function of a. All
integrals are carried out in Appendix A and can be completed
analytically by passing to hyperbolic coordinates. We thus find
from Eq. (19)

ln

(
CTc

vF

√
1

eH

)
= 1

2
ln

[
(1 + a)2

2a

]
. (21)

The right-hand side of this equation has an extremum at a = 1
that defines the upper critical field at zero temperature of a
clean superconductor Hc2 = C2T 2

c /2ev2
F .

This method of finding Hc2 was generalized by Shapoval
to compute critical fields in the case of superconducting films
with rough surfaces [48]. Next, we employ this approach to
the problem of Hc3.

B. Robustness of Hc3 for diffusively reflecting boundary

In order to address the effect of surface scattering on
critical fields of superconductors, one may benefit from the
early work by Fuchs on the electronic conductivity in thin
metallic layers [49]. In the Fuchs model, the roughness of
the edge is modeled by treating the reflection angle of each
semiclassical trajectory that collides with the side edges of
the sample as an independent random variable. This was a
basis for Shapoval’s solution of the linearized gap equation
in superconducting films. Repeating the same calculations as
in Refs. [31,33,48] but for the case of a single boundary in
the context of surface superconductivity and averaging gap
equation over the angle of scattering off the boundary, we
arrive at an eigenvalue problem for Hc3 which is structurally
identical to Eq. (15). The only difference is that in the third
term the kernel K2(x,x ′) → K3(x,x ′) has to be replaced by a
different expression

K3(x,x ′) =
∫∫ ∞

0

k(u,x)k(u′,x ′)du du′

x
√

1 + u2 + x ′√1 + u′2 , (22)

k(u,x) = u

(1 + u2)3/2
J0[ux(x − 2x0)], (23)

where J0 is the Bessel function and otherwise the notations are
identical to that in Eq. (15). If not for a u-dependent factor in the
denominator of Eq. (22), that comes from angular averaging
of random reflections, the u integrals would separate and by
virtue of an integral identity

∫ ∞
0

uJ0(au)du

(1+u2)3/2 = e−a , one would
recover Eq. (18) from (22) valid for the specular boundary
condition.

To solve Eq. (15) for the diffusive scattering case, it
is advantageous to separate the kernel K3 from Eq. (22)

104516-5



XIE, KOGAN, KHODAS, AND LEVCHENKO PHYSICAL REVIEW B 96, 104516 (2017)

(a) a 1.1 x0 0.60 xc 0.72

Hc3

Hc2
2.038

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

x

(x
)

0.55 0.60 0.65 0.70 0.75 0.80 0.85

1.85

1.90

1.95

2.00

2.05

xc

H
c3

/H
c2

(b) x0 0.601

Hc3

Hc2
2.043

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

x

(x
)

0.82 0.84 0.86 0.88

2.0395

2.0400

2.0405

2.0410

2.0415

2.0420

2.0425

2.0430

x0

H
c3

/H
c2

FIG. 3. Results for the Hc3/Hc2 ratio at zero temperature for the case of diffusive scattering from the boundary and assumed ballistic limit
in the bulk of a superconductor. (a) Displays results of the variational computation which is based on the trial wave function from Eq. (27).
Optimal fitting parameters a,x0,xc are listed on the plot whereas inset shows the profile on the nucleated superconducting order parameter near
the surface. (b) Shows results for the same quantities but obtained via unbiased exact solution of the integral eigenvalue equation (15).

into singular-Ks
3 and regular-Kr

3 parts. First, observe that
as {x,x ′} → 0 the asymptotic form of Eq. (22) is as fol-
lows: K3(x,x ′) → f (x ′/x)/x + f (x/x ′)/x ′ = F (x ′/x)/(x +
x ′) where f (z) = 1

3 [1 − z ln(1 + z−1)] that is analytical and
0 � f (z) � 1

3 for all z � 0, and F (z) = (1 + z)f (z) + (1 +
z−1)f (z−1) that is also analytical for all z � 0 where 4

3 (1 −
ln 2) � F (z) � 1

2 . These observations suggest the following
decomposition:

K3(x,x ′) = Ks
3(x,x ′) + Kr

3 (x,x ′), (24)

Ks
3(x,x ′) = F (x ′/x)

(x + x ′)
e−|x(x−2x0)+x ′(x ′−2x0)|, (25)

Kr
3 (x,x ′) =

∫∫ ∞

0

du du′

x
√

1 + u2 + x ′√1 + u′2

× [k(u,x)k(u′,x ′) − e−|x(x−2x0)+x ′(x ′−2x0)|

× k(u,0)k(u′,0)] (26)

that enables to reformulate Eq. (15) that is more computation-
ally stable for the numerical analysis. The algorithm that we
used to numerically solve Eq. (15) by an exact diagonalizaton
of an eigenvalue problem for K2 → K3 diffusive case is
described in Appendix B. We have also used an improved
variational approach with the trial wave function of the form

�(x) = 1
2 [e−a(x−xc)2 + e−a(x+xc)2

] (27)

for the comparison of two computations. In contrast to Eq. (20)
that provides a solution localized at the boundary, the form of
Eq. (27) incorporates an additional parameter xc that may tune
the location of the localization center.

The results of computation are shown in Fig. 3. The trial
solution from Eq. (27) gives the optimal estimation Hc3/Hc2 ≈
2.038 for a ≈ 1.1, xc ≈ 0.72, and x0 ≈ 0.60 [see Fig. 3(a)].
The order parameter near the surface is peaked at x∗ ≈ 0.537.
An exact numerical solution free from extra fitting parameters
is depicted in Fig. 3(b) and gives Hc3/Hc2 ≈ 2.043 for x0 ≈
0.601 with the peak of nucleated order parameter at x∗ ≈

0.415. The main conclusion we draw from this analysis is
that surface imperfections and disorder that lead to diffusive
boundary scattering does not suppress the magnitude of the
critical field for surface superconductivity nucleation. Perhaps
surprisingly, we find that this field is above the SJdG limit.

IV. GINZBURG-LANDAU FORMALISM FOR Hc3

In this section, we turn our attention to the problem of
surface superconductivity in the systems having cylindrical
geometry. In contrast to the previous sections, our motivation
here is not so much to reveal the dependence of Hc3 on various
parameters relevant to this geometry and type of scattering,
but rather to explore interesting possible consequences of
surface effects for the vortex nucleation in superconducting
mesoscopic disks [50,51] and magnetoresistance measure-
ments in quantum wires as motivated by numerous experi-
ments [52–55]. For that purpose, we choose to work with GL
formalism whose simplicity often compensates for the lack of
microscopic rigor when it comes to the behavior of various
observables away from the GL region.

We begin with the GL equation for the order parameter
wave function �:

1

2m
(−i∇ − 2eA)2� + α� + β�|�|2 = 0, (28)

and corresponding complementary expression for the current

J = ie

2m
[�∇�∗ − �∗∇�] − 2e2

m
A|�|2. (29)

Focusing on magnetic fields above Hc3 in the normal state, it
is sufficient to linearize the GL equation, thus, we will drop
the ∼β�|�|2 term from Eq. (28). In this section we follow
the notations of Ref. [2]. We consider the solid cylindrical
superconductor symmetric with respect to the z axis. For a
uniform and constant magnetic field H parallel to the z axis
it is convenient to choose vector potential in the Coulomb
gauge A = 1

2 H × r . In cylindrical coordinates we have for
the Laplacian ∇2� = ρ−1∂ρ(ρ∂ρ�) + ρ−2∂2

ϕ� + ∂2
z � and
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for the gradient operator ∇ = ρ̂∂ρ + ϕ̂ρ−1∂ϕ + ẑ∂z. We look
for the solution of linearized Eq. (28) in the form

�(φ,ρ,z) = eikzzeimLϕf (ρ) (30)

with the angular momentum mL. The lowest eigenvalue results
from the solution with kz = 0 so that we have

−
[

1

x
∂x(x∂xf ) − m2

L

x2
f

]
− hmLf + h2

4
x2f = f. (31)

We arrived at Eq. (31) by dividing the GL equation (28) by the
characteristic energy |α|. In Eq. (31) we introduced the dimen-
sionless coordinate x = ρ/ξGL normalized by temperature-
dependent GL coherence length ξ 2

GL = 1/(2m|α|), and dimen-
sionless field h = H/Hc2 normalized by the upper critical field
in GL theory Hc2 = m|α|/e. We are after the maximal field
h = hc3 such that Eq. (31) has a solution with the boundary
condition

∂xf (x)|x=xR
= 0, xR = R/ξGL, (32)

where R is the radius of the cylinder. Note that GL theory
requires only that the radius R is larger than the size of the
Cooper pair which is of the order of ∼vF /Tc or coherence
length at zero temperature, while the radius R can be both
smaller and larger than the GL coherence length ξGL, so that
xR can in principle take any value.

We are focusing on the fields h > 1. In the limit of finite but
large radius of the cylinder R 	 ξGL we expect to recover the
result for hc3 = 1.695 for a half-space. However, we expect
to find hc3 in excess of this value the radius of the cylinder
becomes comparable with the the GL coherence length.

To understand the crossover to the problem of a semi-
infinite superconductor that occurs at large R 	 ξGL, we
write (31) in the form

− 1

x
∂x(x∂xf ) + V (x,mL,h)f = f, (33)

where the effective potential

V (x,mL,h) = m2
L

x2
− hmL + h2

4
x2 =

(
mL

x
− h

2
x

)2

(34)

has a minimum at

xmin =
√

2mL/h, (35)

which is also a scale of variation of the potential (34).
Assuming for now that mL 	 1 and h � 1, we have

xmin 	 1. Subject to further confirmations, the lowest-energy
solutions of (33) are localized near the minimum of the
potential (34) on a scale �x � xmin, as given by (35). Then, we
may keep only the first nonvanishing term in the expansion of
the potential (34) near xmin which replaces Eqs. (33) and (34)
with the effective one-dimensional problem

−∂2
xf + h2(x − xmin)2f = f. (36)

The parameter xmin in Eq. (36) plays the role of the guiding
center in the semi-infinite superconductor. The characteristic
spatial extent of its solutions �x ∼ 1/

√
h is of order one

since h � 1. Therefore, Eq. (36) is a valid approximation of
Eq. (33) provided only that xmin 	 1 which is realizable in
large cylinders, R 	 ξGL. In the range of angular momenta mL

such as 1 � xmin � R/ξGL − 1 the boundary condition (32)
is inessential. Hence, for large cylinders the dense set of
circularly symmetric degenerate states with the eigenvalue
h closely resembles the solutions of the semi-infinite space
problem. Clearly, the vortices of the bulk are their linear
superpositions up to a gauge transformation in case different
gauges have been used for the two problems. The vortices
then according to Eq. (33) form at the bulk upper critical
field h = 1, consistent with our present notation for h as the
ratio of the field H to Hc2 . Apart from an obvious lower
bound hc3 � hc2, the above argument links the large cylinder
problem to the problem of the semi-infinite superconductor.
This correspondence holds for mL that are not necessarily
large. In fact, for mL = 0, the original Eq. (31) takes the
form −x−1∂x(x∂xf ) + (h/2)2x2f = f . The solutions of this
equation are isotropic wave functions of the two-dimensional
harmonic oscillator with the same lowest eigenvalue h and
Gaussian wave function localized at the origin.

The exact solutions of Eq. (31) for mL = 0,1,2, . . . that are
regular at the origin are expressed through the hypergeometric
function

f (x,mL,h) = xmLe−hx2/4
1F1

(
h − 1

2h
,mL + 1,

hx2

2

)
, (37)

and for mL = −1,−2, . . .

f (x,mL,h) = x−mLe−hx2/4
1F1

(
h − 1

2h
− mL,1 − mL,

hx2

2

)
.

(38)

This can be verified by the direct substitution of Eqs. (37)
and (38) into Eq. (31). To determine the hc3 one has to
find the h solving the equation fx(R/ξGL,mL,h) = 0, where
fx(x,mL,h) ≡ ∂xf (x,mL,h) for different values of mL. The
actual hc3 is the maximal among all these solutions. We have
verified that the solutions with negative mL [Eq. (38)] produce
fields lower than the solutions with non-negative mL [Eq. (37)]
and therefore solutions (38) are discarded for the present
discussion.

We have checked that in the limit of large cylinder R 	 ξGL,
the SJdG result hc3 = 1.695 is recovered. In the SJdG solution,
the guiding center is located a distance δR = μ2ξGL from
the boundary which translates into the dimensionless distance
x0 = δR/ξ 2

GL = μ2 = 0.59. This according to Eq. (35) implies
that the relationship between the optimal angular momentum
and the cylinder’s radius√

2mL/hc3 = xR − x0 (39)

has to be satisfied with hc3 = 1.695 at xR 	 1. Alternatively,
for the optimal angular momentum,

mL ≈ 0.85(xR − 0.59)2. (40)

We have found numerically the pairs of (mL,h) such that
[∂xf ](xR,mL,h) = 0. Then, among all possible such pairs we
could locate the mL that gives the highest h, and checked
that at sufficiently large xR the relation (40) is satisfied [see
Fig. 4(a)]. The spatial profile of the GL wave function (30)
corresponding to an exact solution (37) is shown in Fig. 4(b)
for xR = 9 which reveals clear superconductivity localization
at the edge of the disk. For cylinders with radii less than

104516-7



XIE, KOGAN, KHODAS, AND LEVCHENKO PHYSICAL REVIEW B 96, 104516 (2017)

(a)

0 5 10 15
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

xR

h/
h c

3

0 5 10 15
0

50

100

150

200

xR

m
L

(b)

FIG. 4. On (a) the points are obtained by numerically solving [∂xf ](xR,mL,h) = 0 with f taken from Eq. (37) for few values of the radius
of the disk. The agreement between the points and the red line just confirms that we reproduce the limit of the semi-infinite superconductor
when xR 	 1 [this limit is reached starting from xR = 5, i.e., for R = 5ξGL(T )]. The blue dashed line is the relation mL = x2

R/2 obtained for
the points giving the hc2 of the semi-infinite case. The inset shows the ratio between hc3 in the disk and hc3 of the semi-infinite planar geometry
for several values of xR . The ratio converges to unity once xR 	 1. (b) Shows the spatial profile of the localized surface superconductivity as
described by the GL wave function �.

5ξGL the highest hc3 exceeds significantly the SJdG value
for the semi-infinite superconductor [see inset in Fig. 4(a)].
Within the present approach at small xR the critical field can
be arbitrarily large. We reiterate, however, that the current
approach applies to cylinders of the sufficiently large radius
R � vF /Tc. For smaller radii, the electromagnetic response
of the superconductor is essentially nonlocal, which is beyond
the local GL formulation.

The formation of the states with mL = 1 was reported
in the Pb nanoislands of diameter about 3ξGL. The mL = 1
forms at sufficiently high perpendicular magnetic field and

1 2 3 4

H
Hc2

− 1

1

2

3

4

5

f
x

FIG. 5. Here, we consider the disk with the radius R = (3/2)ξGL

as in Ref. [51], and plot the derivative [∂xf ](3/2,mL,h) where the
function f is given by Eq. (37) for mL = 0 (black, dashed line),
mL = 1 (red, solid line), mL = 2 (blue, dotted line). We see that the
mL = 1 curve gives the highest field yielding the zero of the derivative
[∂xf ](3/2,mL,h). This agrees with the observations of Ref. [51]. We
further notice that for this disk, Hc3(xR = 1.5) ≈ 2.35Hc2 which is
about 1.4 times higher than the bulk Hc3, which is in agreement with
the general dependence of the Hc3 on the radius of the disk [see also
inset in Fig. 4(a)].

retains its character up to a complete suppression of the
superconductivity. We argue that the formation of mL = 1
state as reported in Ref. [51] based on the scanning tunneling
spectroscopy (STS) is in agreement with the present general
formulation. In our terms, the superconducting to normal
phase transition occurs at the field Hc3 and in fact the
superconductivity is reported to be suppressed at the center
of the island and gets enhanced at its edges, in agreement
with the general picture of the surface superconductivity. To
confirm the above correspondence with the STS data, we have
plotted in Fig. 5 the derivative [∂xf ](xR,mL,h) for xR = 1.5 as
in Ref. [51] for mL = 0, 1, and 2 to show that only for mL = 0
and 1 this derivative vanishes at a finite field. The highest field
at which [∂xf ](xR,mL,h) = 0 is obtained for mL = 1 and is
equal to hc3 ≈ 2.35 which is 1.4 times larger than the SJdG
value. This results agrees with the experiment reporting the
onset of the superconductivity in the single-vortex state with
mL = 1 [51]. The increase of the Hc3 with decreasing radius
of the cylinder is a general trend. As indicated in the inset
of Fig. 4(a) at even smaller cylinder of a radius R = ξGL, hc3

is still larger than the SJdG value. In this case, the optimal
configuration is obtained at mL = 0, i.e., not a single vortex
penetrates the cylinder. Note also that in Fig. 5 the mL = 0 state
also gives a field we associate with hc3 but a lower one than
for mL = 1 which agrees with the vortex expulsion from the
nanoisland at lower fields. It should be borne in mind that this
agreement is only qualitative as we have solved the linearized
GL equation that is in principle not justified below Hc3 where
robust superconductivity develops.

V. TRANSPORT EFFECTS NEAR Hc3

The onset of superconducting transition, either near
the critical temperature (Tc) or critical field (Hc2), gives
rise to strong corrections to normal-state properties, e.g.,
conductivity, due to Aslamazov-Larkin, Maki-Thompson, and
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density of states fluctuation effects [56]. In the context of
surface superconductivity, corresponding effects were con-
sidered for transport coefficients [35,36] and thermodynamic
quantities [37] near Hc3. In particular, it was shown in Ref. [37]
that surface states lead to peculiar magneto-oscillations even in
a singly connected conductor. This interference mechanism of
magneto-oscillations can be understood semiclassically from
the bouncing orbits confined to the surface. Because super-
conducting fluctuation corrections are singular they exceed
usual mesoscopic interference effects near Tc, making them
accessible in experiments. The most widely studied geometry
involves superconducting rings and cylinders [57–60]. The
theory of nonlocal response near Tc in a superconducting ring
was put forward a long time ago [61]. It is natural to expect that
given the localization property of surface superconductivity
to the edge of the sample, the results of Ref. [61] will be
applicable to cylinders in fields near Hc3. This motivates
us to investigate the manifestation of surface effects on
magnetoconductance. We indeed find that an analogy exists
to a ring geometry, and surface superconductivity gives rise
to oscillatory magnetoconductance, however, there are subtle
differences that deserve detailed explanation.

A. Qualitative discussion of periodicity

Let us first determine the periodicity in the field. This can
be seen from the condition (39) with hc3 replaced by some
field above it, h > hc3,√

2mL/h = xR − x0. (41)

This time, we look at this equation as the condition for optimal
combination of mL and h. Now, imagine that we are at local
maximum (of some quantity, e.g., conductivity) so that for
some value of mL = mL,0 there is a field h0 such that the
relation (41) is satisfied,

√
2mL,0/h0 = xR − x0. Now, let

us change mL,0 → mL,0 + 1 and see what is the change δh

of h such that the above condition still holds, namely, that√
2(mL,0 + 1)/(h0 + δh) = xR − x0. These two last condi-

tions can be equivalently written as mL,0 = 1
2h0(xR − x0)2 and

mL,0 + 1 = 1
2 (h0 + δh)(xR − x0)2, which means that δh =

2
(xR−x0)2 or in original units δH = 2Hc2ξ

2
GL

(R−δR)2 , so that

δHπ (R − δR)2 = 2πHc2ξ
2
GL = �0. (42)

Thus, the periodicity is determined by the total flux enclosed
by the surface states being a multiple of flux quantum �0.
When the ratio of the flux enclosed by the surface state �′

R to
�0,�

′
R/�0 = 1

2h(xR − x0)2 is integer the (integer) optimal
angular momentum giving the fluctuation with the lowest
energy is mL = �′

R/�0. For generic magnetic field the optimal
angular momentum is

m̄L = I[�′
R/�0], (43)

where I[y] is the best integer approximation to y. Equation (43)
is another expression of flux periodicity. We show in the next
subsections that the periodicity of the fluctuation spectrum
gives rise to Aharonov-Bohm oscillations of conductance
promoted by surface superconductivity fluctuations.

B. Time-dependent GL theory

To describe time-dependent fluctuations of superconduc-
tivity at the onset of transition we employ time-dependent
Ginzburg-Landau (TDGL) equation. In the dimensionless
notations of Eq. (31) it takes the form

− 1

x
∂x(x∂xf ) + m2

L

x2
f − hmLf + h2

4
x2f − f = −τGL∂tf,

(44)

where τGL = γ /|α| is the GL relaxation time. This equation
has to be solved with the same boundary condition as
before. Generically one solves for the spectrum of excitations
φn,mL

(x)eimLφ , satisfying[
− 1

x
∂xx∂x + m2

L

x2
− hmL + h2

4
x2 − 1

]
φn,mL

= λn,mL
φn,mL

,

(45)

so that the relaxation dynamics of fluctuations is given in terms
of the expansion

�(x,t) =
∑
n,mL

cn,mL
(t)φn,mL

(x) (46)

with the wave functions φn,mL
(x) normalized to one, and

expansion coefficients decaying exponentially

cn,mL
(t) = cn,mL

(0) exp(−tλn,mL
/τGL). (47)

In contrast to the problem of fluctuation in a ring near
Tc considered in Ref. [61], in our problem τGL is regular
upon approaching the hc3 from above but the eigenvalues
approach zero making the modes long lived instead. Our main
conclusion here would be that at sufficiently low temperatures
relatively large cylinders xR 	 1 behave essentially similar to
the ring. As in the cylinder, the condensate wave function is
not confined in the radial direction; this requires a separate
analysis. To see how the above analogy comes about, we will
need more detailed information on the excitation spectrum
λn,mL

. It is comprised of bands labeled by n and index mL in
quasicontinuum.

For large cylinders and large angular momenta, the same
reasoning that allowed us to replace Eq. (31) with Eq. (36)
also leads us to the approximate Eq. (45):[−∂2

x + h2(x − xmin)2 − 1
]
φn,mL

= λn,mL
φn,mL

, (48)

where the potential minimum is defined by Eq. (35).
Again, Eq. (48) is solved with the boundary conditions
[∂xφn,mL

(x)]x=xR
= 0. In this approximation,

λn,mL
= λ0,mL

+ 2hn, (49)

and we focus for now on the lowest subband n = 0 in the limit
of xR 	 1. We will aim at approximate expression for λ0,mL

that would suffice for our purposes. The approximate spectrum
of excitations has to satisfy the following properties: (1)
λ0,mL

= h − 1 for xmin = xR; (2) λ0,mL
= h − hc3 for xmin =

xR − x0, where x0 ≈ 0.59 as in the semi-infinite geometry;
(3) λ0,mL

≈ h − 1 for xmin � xR − 2x0, since far from the
boundary the boundary condition plays no role; (4) λ0,mL

	
h − 1 for xmin � xR + x0. To satisfy these conditions at the
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minimal level we adopt the following approximation:

λ0,mL
(xmin) ≈ h − hc3 + hc3 − 1

x2
0

[xmin − (xR − x0)]2, (50)

which adequately describes the excitations localized within a
few ξGL distance from the cylinder’s edge. The main feature
of the approximate equation (50) is that λ0,mL

(xmin) has a
minimum at xmin = xR − x0 and Eq. (50) can be viewed as the
expansion of λmL,0(xmin) around the minimum. The surface
superconductivity exists because of this minimum and the
importance of the latter is not unexpected.

The approximation (50) is only meaningful if the excita-
tions contributing to the observable in question reside close to
the ring of radius xR − x0. We will check this in each case. The
energies are functions of the mL quantum number rather than
on auxiliary parameter xmin. Substituting Eq. (35) into (50),
we get explicitly

λ0,mL
(xmin) ≈ h − hc3 + hc3 − 1

x2
0

[
√

2mL/h − (xR − x0)]2.

(51)

We give a sufficient condition on temperature and field for this
to be justified. It follows from the constraint on the thermal
occupation of different excitations.

The occupation number of an excitation of energy εn,mL
is

determined by the Bose function N (ε) = [exp (ε/T ) − 1]−1.
As Eq. (31) is Eq. (28) divided by |α| the energies of excitations
in the original units are εn,mL

= |α|λn,mL
. Therefore, introduc-

ing the thermal de Broglie wavelength lT = √
1/(2mT ), we

obtain N (λ0,mL
) = [exp (l2

T λ0,mL
/ξ 2

GL) − 1]
−1

. In order to have
many fluctuations around the ring xR − x0 without exciting too
many fluctuations outside of it we impose a condition

l2
T

ξ 2
GL

(h − hc3) � 1,
l2
T

ξ 2
GL

(h − 1) 	 1. (52)

These conditions require (returning to the original units)

Hc3 − Hc2 	 Hc2
ξ 2

GL

l2
T

, (53)

which in turn means that the temperature should be reasonably
low such that ξ 2

GL/l2
T � 1.

We now bring our model of the fluctuation spectrum
[Eq. (51)] to the form that is most suitable for the computation
of the current and conductivity. To this end, we make an
expansion of the model energy [Eq. (50)] around the optimal
angular momentum m̄L defined by Eq. (43) relying on the
smallness of 1/m̄L in the limit of large cylinder

√
2mL/h − (xR − x0) =

√
2m̄L/h +

√
2/h

2
√

m̄L

�m

− (xR − x0), (54)

where �m = mL − m̄L � m̄L may still be large. As the frac-
tional part of the flux ratio F[�′

R/�0] = �′
R/�0 − I[�′

R/�0]

is much smaller than its integer part I[�′
R/�0], we write√

2m̄L/h − (xR − x0)

=
√

(2/h)(�′
R/�0 − F[�′

R/�0]) − (xR − x0)

≈ −
√

(2/h)
F[�R/�0]

2
√

�′
R/�0

, (55)

so that the expression (54) becomes√
2mL/h − (xR − x0) ≈ −

√
(2/h)

F[�R/�0]

2
√

�′
R/�0

+
√

2/h

2
√

m̄L

�m. (56)

As the magnetic flux contains the large number of flux
quanta, we can set in (56) based on the definition (43)
m̄L = I[�′

R/�0] ≈ �′
R/�0, and obtain for the energies

λ0,mL
≈ h − hc3 + hc3 − 1

2hx2
0

�0

�′
R

[F[�R/�0] − �m]2. (57)

The term [F[�′
R/�0] − �m]2 reflects the periodicity of the

spectra of excitations with flux. As the flux increases, the
optimal angular momentum m̄L also increases in steplike
fashion. This expression vanishes in the middle of each such
step. This periodic behavior is similar to that in the ring. The
periodicity of the spectrum overall is not perfectly periodic
as the amplitude of these oscillations hc3−1

2hx2
0

is itself a slow

function of the field. More importantly, the spectrum (57)
softens towards the transition at h = hc3 . Neglecting the field
dependence of the amplitude, and setting �′

R ≈ �R in the limit
of large cylinder, we have for the reduced energy

λ̄mL
= λ0,mL

h − hc3
,

(58)

λ̄mL
= 1 + C(ξGL/R)2

(h − hc3 )
[F[�R/�0] − �m]2,

where C is a numerical constant of the order one. The analogy
to the one-dimensional (1D) geometry of the ring considered
in Ref. [61] becomes complete if we define

ξ 2
H = C

ξ 2
GL

h − hc3
(59)

so that the reduced energies become

λ̄mL
= 1 + ξ 2

H

R2
[F[�R/�0] − �m]2. (60)

Following the analysis of the ring carried in Ref. [61] we
conclude that the diamagnetic response of the cylinder is
dominated by the superconducting fluctuations at its circular
edge boundary for the range of fields H − Hc3 � Hc3 − Hc2 ,
and not for too low temperatures. The main conclusion we draw
from this analysis is that the fluctuation part of the response is
divergent and oscillates with the Aharonov-Bohm periodicity
determined by the cross-sectional area of the cylinder. As
long as the radius of the cylinder is larger than the zero-field
coherence length, the oscillations are predicted along with
the critical enhancement of the diamagnetic response. This is
explicitly demonstrated in the next section where we compute
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correction to the conductivity from the superconducting
fluctuations at the edge.

C. Magnetoconductivity oscillations

We calculate the fluctuation correction to the conductivity
with the help of the Kubo formula

δσαβ = 2

T
lim
ω→0

∫ ∞

−∞
dt cos(ωt)〈Jα(r,t)Jβ(r ′,0)〉 (61)

which relates the elements of the conductivity tensor to the
correlation function of the components of the operator for
the supercurrent from Eq. (29). We will be interested in the
fluctuation conductivity along the edge, and will focus on
the azimuthal components of the current operator J (r) =
ϕ̂ · J(r). Next, we rewrite the azimuthal component of the
supercurrent [Eq. (29)] in terms of mode expansion (46). In
the dimensionless coordinates it takes the form

J (x,ϕ,t) = e

mξGL

∑
n,mL

∑
n′,m′

L

c∗
n,mL

(t)cn′,m′
L
(t)

×
[
φ∗

n′,m′
L
(x,ϕ)

(
mL + m′

L

x
− hx

)
φn,mL

(x,ϕ)

]
.

(62)

To simplify the discussion, we will focus on the contribution
under the conditions specified in the previous section, when
only the lowest band is appreciably occupied. We therefore
include only the lowest mode n = n′ = 0 contribution in
Eq. (62). Also, to simplify notations, we will suppress index
zero corresponding to n = 0 from all the quantities and use a
shorthand notation for the angular momentum mL → L so that
in these notations, c0,mL

→ cL, φ0,mL
→ φL, etc. The current

correlation function reads as

〈J (t)J (0)〉

=
(

e

mξGL

)2 ∑
L,L′,M,M ′

〈c∗
L(t)cL+M (t)c∗

L′(0)cL′+M ′ (0)〉

×
{
φ∗

L(x,ϕ)

[
2L + M

x
− hx

]
φL+M (x,ϕ)

}
×

{
φ∗

L′(x ′,ϕ′)
[

2L′ + M ′

x ′ − hx ′
]
φL′+M ′ (x ′,ϕ′)

}
. (63)

We now introduce the total current flowing across the radial
cross section I = ∫ R

0 dρ J (ρ). As the wave functions are

normalized to
∫ R

0 dρ ρ|ψ(ρ)|2 = 1 which then gives the
normalization condition

∫ xR

0 dx x|φL,n(x)|2 = ξ−2
GL .

Since only the states localized at the edge of the cylinder
make an appreciable contribution to the conductivity the matrix
elements in Eq. (63) only weekly depend on the quantum
number M , we can write∫ R

0
dr φ∗

L(x,ϕ)

[
2L + M

x
− hx

]
φL+M (x,ϕ)

≈ eiMϕξGL

∫ xR

0
dx|φL|2

[
2L + M

x ′
R

− hx ′
R

]
, (64)

where x ′
R differs from xR by a number of order of unity. To

fix x ′
R we notice that the magnetic flux is thermodynamically

conjugated to the current, and at the local minima of the energy
as a function of flux, the current vanishes. The consistency
with the model dispersion hence is achieved if we identify x ′

R

with xR − x0 introduced earlier to parametrize the spectrum of
excitations [Eq. (51)]. Indeed, in this case the diagonal matrix
element of the current (64) vanishes in the states with the
angular momentum L producing the minimum in energy. More
precisely, if for some state characterized by an integer L the
energy given by Eq. (51) vanishes, and the current expectation
value in such state vanishes as well. Arguing as before, we
obtain the following estimate:

∫ R

0
dr φ∗

L(x,ϕ)

[
2L + M

x
− hx

]
φL+M (x,ϕ)

≈ ξGL

R2
(2�L + M − 2F[�R/�0]). (65)

Substituting these estimates of the current matrix elements
back into Eq. (63), and using the definition of I we obtain, for
a measure of the fluctuation superconductivity,

〈I (t)I (0)〉 =
( e

mR2

)2 ∑
�L,M

eiM(ϕ−ϕ′)〈c∗
L(t)cL+M (t)c∗

L+M (0)

× cM (0)〉(2�L + M − 2F[�R/�0])2, (66)

where again �L = L − L̄ is the deviation of the angular mo-
mentum from its optimal value L̄ = I[�′

R/�0] ≈ I[�R/�0].
It is henceforth possible to rewrite the combination 2�L +
M − 2F[�R/�0] simply as 2L + M − 2�R/�0.

Next, we discuss the thermal averages appearing in Eq. (66).
Assuming, as usual in the TDGL approach the different
fluctuation modes are Gaussian and statistically independent,
we obtain

〈c∗
L(t)cL′(0)〉 = δL,L′

T

|α|λL

exp(−tλL/τGL). (67)

It is important to stress that we do not specify the time τGL,
and in contrast to the standard case of zero-field fluctuation
corrections, this time scale is not divergent as H approaches
Hc3 . The lifetime of fluctuations does become infinite upon the
transition thanks to the softening of the excitation spectrum. It
follows that, for M �= 0,

〈c∗
L(t)cL+M (t)c∗

L′(0)cL′+M ′ (0)〉
= δL,L′+M ′δM ′,−M〈c∗

L(t)cL(0)〉〈cL+M (t)c∗
L+M (0)〉

= δL,L′+M ′δM ′,−M

T

|α|λL

T

|α|λL+M

× exp

[
− t

τGL
(λL + λL+M )

]
. (68)

The extra contribution to the correlation function (68) obtained
for M = 0 is time independent, and therefore excluded from
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the final result due to the limiting procedure implied by
Eq. (61).

Repeating the line of arguments in Ref. [61], we introduce
the Fourier components of the conductivity

δσ = 1

2πR

∑
m

eim(ϕ−ϕ′)σ ′
m (69)

to characterize the nonlocal transport. Substituting Eqs. (66)
and (68) into Eq. (61), we obtain

σ ′
M = 4πRT

( e

mR2

)2 τGL

|α|2
∑
L

(2L + M − 2�R/�0)2

λLλL+M (λL + λL+M )
.

(70)

We further note that

2L + M − 2�R/�0 = 1

M2
[(L + M − �R/�0)2

− (L − �R/�0)2], (71)

which according to the definitions (58) and (59) allows us to
write

(2L + M − 2�R/�0)2 = 1

M2

(
R

ξH

)4

(λ̄L+M − λ̄L)2. (72)

Noticing the relation (58), λ̄L = λL/(h − hc3) and applying
the algebraic identity

(λ̄L+M − λ̄L)2

(λ̄L+M + λ̄L)λ̄Lλ̄L+M

= 1

λ̄L

+ 1

λ̄L+M

− 4

λ̄L + λ̄L+M

(73)

we obtain from Eq. (70)

σ ′
M = e2

2

T τGL

h − hc3

R

M2

∑
L

[
1

1 + (ξH/R)2(L − �R/�0)2
− 2

2 + (ξH/R)2{(L − �R/�0)2 + (L + M − �R/�0)2}
]
. (74)

The presence of the temperature in the final result reminds us
that we discuss the effect of classical fluctuations. Although the
last expression differs from the one obtained for the ring geom-
etry in Ref. [61] [see their Eq. (18)] as it implicitly assumes the
limitation on the possible angular momentum �L = L − L̄ �
L̄, it leads nevertheless to the same expression for the Fourier
components of the conductivity for the large range of Fourier
components satisfying M � L̄ ≈ �R/�0 as the series in (74)
rapidly converges (Fourier components decay as 1/L2). For
the same reason, the summation in (74) can be extended to all
angular momenta. Summing the series and retaining only the
most divergent term in h − hc3, we find for the conductivity
our main result

δσ � e2

(
T τGL

h − hc3

)(
R2

ξH

)
× sinh(2πR/ξH )

cosh(2πR/ξH ) − cos(2π�R/�0)
. (75)

In the immediate vicinity of the critical field R/ξH � 1,
conductivity correction diverges as δσ ∝ 1/(H − Hc3). This
correction is less singular than the standard Aslamazov-Larkin
correction in strictly one-dimensional open systems scaling as
∼1/(T − Tc)3/2 at zero magnetic field (see also Ref. [36]). The
difference originates from the geometry of our problem. As the
radius of the cylinder becomes smaller than the correlation
length ξH , the conductivity σ ′

M corresponds to the local
conductivity in an open system. In other words, to get our
result from the standard one in one-dimensional system one
has to perform the Fourier transformation of the latter that is the
integration over wave vectors. Since the typical wave vectors
are ∼ξ−1

H , our final result scales as ξ 3
Hξ−1

H ∝ (H − Hc3)−1. We
show a representative plot of the fluctuation edge conductivity
correction as given by (75) in Fig. 6.

Oscillations survive even far away from the tran-
sition where R/ξc3 	 1, however, the oscillatory term

is exponentially suppressed in that parameter range as
∼ e−2πR/ξH cos(2π�R/�0).

VI. SUMMARY AND DISCUSSIONS

In this paper, we reported a number of results concerning
the critical field of superconductivity nucleation close to the
edge of the samples and surface superconductivity overall.
In Sec. II we applied semiclassical Eilenberger formalism
to study critical field Hc3 as a function of temperature and
sample purity. This enabled us to extend the seminal analysis
of Saint James and de Gennes applicable near Tc to the whole
range of parameters relevant for numerous experiments. Our
main finding in this part of the paper is that the Hc3/Hc2

ratio is a nonmonotonic function of temperature that has
a maximum ∼2 for a set of parameters corresponding to

1.5 2.0 2.5
H/Hc3

1

2

3

4

'M

FIG. 6. The Fourier component of the conductivity σ ′
M as a

function of the magnetic field (arbitrary units) plotted by using
Eq. (75). As the critical field Hc3 is approached from above, the
conductivity diverges while exhibiting Aharonov-Bohm oscillations.
The radius of the cylinder is taken to be R/ξGL ≈ 4.2.
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crossover between ballistic and diffusive scattering in the bulk
of the superconductor. It is of interest to contrast these findings
to results reported in Ref. [43] where nonmonotonic behavior
of Hc3/Hc2 ratio was found in the case of two-band supercon-
ductor in the diffusive limit based on Usadel equations. In this
case, the ratio is always below the SJdG limit so that multiband
effects seem to suppress the difference between critical fields
in the strongly disordered case at intermediate temperatures.
This calls for more studies of intertwined effects of disorder
and multiple bands in applications to novel unconventional
superconductors.

In Sec. III we analyzed robustness of surface superconduc-
tivity against diffusive scattering off the boundary and found
that an estimate of Hc3 remains above the SJdG limit. In Sec. IV
we applied GL formalism to study Hc3 and surface effects
in the case of devices of circular geometry and applied our
results to STS measurements [51] of single-vortex nucleation
in mesoscopic samples.

Magnetoresistance experiments seem to suggest that sur-
face superconductivity is the primary cause of broadening
of superconducting transition in high magnetic field, as data
R(T ,H ) are often benchmarked by Hc3(T ), which motivated
us to look at transport phenomena in Sec. V. We found that at
the onset of superconducting transition there exists a correction
to conductance that oscillates with Aharonov-Bohm flux.
Oscillatory flux dependence of the conductance in quantum
wires was reported in multiple measurements [52–55]. In
particular, magnetotransport observations in Ref. [55] were

interpreted in terms of the Weber blockade theory due to vortex
formation inside the sample proposed in Ref. [62]. This theory
was also used to interpret the observations of an earlier exper-
iment [54]. In contrast, our results support the point of view
that oscillatory response of magnetoresistance is a much more
general phenomenon which survives even in the limit when
superconductivity is fully extinguished by high magnetic field.
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APPENDIX A: INTEGRALS

Within this appendix, we provide integrals that lead to Eq. (19) in the main text starting from Eq. (21) and trial wave function
of the form (20). After multiplication by �(x), the integral on the left-hand side of Eq. (19) is elementary as it is just a Gaussian:
L

∫ +∞
−∞ �2(x)dx = L

√
π/2a. To calculate the rest integrals, we introduce the hyperbolic coordinates x = r cosh ρ, x ′ = r sinh ρ

with the Jacobian of transformation dx dx ′ = r dr dρ. The off-diagonal term on the right-hand side of Eq. (19) reads as∫∫ +∞

−∞
K1(x,x ′)�(x)[�(x) − �(x ′)]dx dx ′

= 1

2

∫∫ +∞

−∞
K1(x,x ′)[�(x) − �(x ′)]2dx dx ′ = 1

4

∫∫ +∞

−∞

e−|x2−x ′2|

|x − x ′| (e−ax2 − e−ax ′2
)2dx dx ′

= 1

2

∫ ∞

0
dx

∫ x

−x

dx ′
(

1

x + x ′ + 1

x − x ′

)
ex ′2−x2

(e−ax2 − e−ax ′2
)2

=
∫ +∞

−∞
dρ cosh ρ

∫ ∞

0
dr{e−(1+2a cosh2 ρ)r2 + e−(1+2a sinh2 ρ)r2 − 2e−[(1+a)+2a sinh2 ρ]r2}

=
√

π

2

∫ +∞

−∞
dρ cosh ρ

(
1√

1 + 2a cosh2 ρ
+ 1√

1 + 2a sinh2 ρ
− 2√

(1 + a) + 2a sinh2 ρ

)
= 1

2

√
π

2a
ln

(1 + a)2

1 + 2a
. (A1)

In a similar fashion, the diagonal term reads as∫ +∞

−∞
K0(x)�2(x)dx = 2

∫ ∞

0
dx

∫ x

0
dx ′e−(2a+1)x2+x ′2

x ′ ln
x + x ′

x − x ′ dx ′

= 4
∫ ∞

0
dρ ρ sinh ρ

∫ ∞

0
dr r2e−[(2a+1) cosh2 ρ−sinh2 ρ]r2

=
∫ ∞

0

√
πρ sinh ρ

(2a cosh2 ρ + 1)3/2
dρ = 1

2

√
π

2a
ln

1 + 2a

2a
. (A2)

Combining all three integrals together, we arrive at Eq. (21).
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APPENDIX B: NUMERICAL ALGORITHM

For the numerical calculation of the lowest eigenvalue and corresponding eigenstate of the integral equation (15) we change
variable and cast the integral volume to finite interval x = f (ζ ), dx = μ(ζ )dζ , where we choose f (ζ ) = ζ

1−ζ
and μ(ζ ) = 1

(1−ζ )2

with ζ ∈ [0,1]. Then, we discretize the integral according to the Newton-Cotes quadrature rules by choosing the representative
points {ζi}Ni=0, ζi = is + ζ0, s = (1 − ζ0)/N , where ζ0 = 0. When N 	 1, Eq. (15) is approximated by the matrix equation

L(N)D
(N)
i =

N∑
j=0

H
(N)
ij D

(N)
j , (B1)

with D
(N)
i = √

μi�(xi) and the discretized kernel

H
(N)
ij = δij

⎡⎣K0(xi) +
N∑

j �= i

μjK1(xi,xj )

⎤⎦ − (1 − δij )
√

μiμjK1(xi,xj ) − √
μiμjK2(xi,xj ), (B2)

where xi = f (ζi) and μi = wiμ(ζi) with wi = s/2 for i ∈ {0,N} and wi = s for 0 < i < N being the Newton-Cotes weights.
The discretized kernel for the diffusive case was used to produce results reported in Fig. 3(b).
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