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We report the results of a parquet renormalization group (RG) study of competing instabilities in the full 2D
four-pocket, three-orbital low-energy model for iron-based superconductors. We derive and analyze the RG flow
of the couplings, which describes all symmetry-allowed interactions between low-energy fermions. Despite that
the number of the couplings is large, we argue that there are only two stable fixed trajectories of the RG flow and
one weakly unstable fixed trajectory with a single unstable direction. Each fixed trajectory has a finite basin of
attraction in the space of initial system parameters. On the stable trajectories, either interactions involving only
dxz and dyz or only dxy orbital components on electron pockets dominate, while on the weakly unstable trajectory
interactions involving dxz (dyz) and dxy orbital states on electron pockets remain comparable. The behavior along
the two stable fixed trajectories has been analyzed earlier [Chubukov, Khodas, and Fernandes, Phys. Rev. X 6,
041045 (2016)]. Here we focus on the system behavior along the weakly unstable trajectory and apply the results
to FeSe. We find, based on the analysis of susceptibilities along this trajectory, that the leading instability upon
lowering the temperature is towards a three-component d-wave orbital nematic order. Two components are the
differences between fermionic densities on dxz and dyz orbitals on hole pockets and on electron pockets, and the
third one is the difference between the densities of dxy orbitals on the two electron pockets. We argue that this
order is consistent with the splitting of band degeneracies, observed in recent photoemission data on FeSe by
Fedorov et al. [Sci. Rep. 6, 36834 (2016)].
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I. INTRODUCTION

The interplay and competition between different types
of electronic order is at the focus of the research on iron
based superconductors (FeSCs) [1–5]. In most FeSCs, super-
conductivity (SC) emerges out of a stripe spin-density-wave
(SDW) state upon either hole or electron doping, application
of pressure, or by isovalent substitution of one pnictogen atom
by the other (e.g., As by P). The SDW phase is often preceded
by the nematic phase, in which the system breaks C4 rotational
symmetry down to C2 but keeps spin-rotational symmetry
intact.

The nematic phase has been extensively studied both
experimentally and theoretically [6–22]. The manifestations
of spontaneous C4 symmetry breaking include the anisotropy
of resistivity [23–25], spin susceptibility [26–28], and optical
conductivity [29,30], orthorhombic lattice distortion [31,32],
and unequal occupation of Fe dxz and dyz orbitals [33,34]. The
majority of researchers believe that nematicity is driven by
electronic degrees of freedom rather than by the lattice. There
is no agreement, however, on the mechanism of the nematic
order. It can be a composite Ising nematic magnetic order
[35], preceding stripe SDW order, or a quantum-disordered
spin state, which breaks C4 symmetry [36] or a spontaneous
orbital order [6–8,10,11,14,19]. The Ising nematic scenario
likely applies to Fe pnictides, in which the nematic phase is
located in a close proximity to a stripe SDW phase. However,
the application of this scenario to Fe-chalcogenide FeSe is
questionable because in FeSe at ambient pressure the nematic
transition occurs at Ts = 85 K, but there is no SDW transition
down to T = 0. The Ising nematic scenario, particularly when

combined with the idea of a weak dispersion of spin excitations
along one direction in momentum space [37], can still be the
explanation because Ts and TSDW do not have to be close to
each other. However, NMR [38,39] and neutron scattering [40]
experiments have found that the magnetic correlation length
does not show any notable enhancement around Ts , which
would be generally expected in the Ising nematic scenario.
Substantial SDW fluctuations have been detected only at lower
temperatures [41], or upon applying pressure [42], when the
system eventually develops an SDW order.

The fact that in FeSe at ambient pressure nematic order
emerges without magnetism fuelled speculations that in this
system nematicity may be due to a spontaneous orbital
ordering. The most natural C4 symmetry-breaking orbital
order is associated with unequal occupation of dxz and dyz

orbitals. In FeSe, these two orbitals are the building blocks
for the low-energy states near both hole and electron pockets.
The electronic structure of FeSe consists of two �-centered
hole pockets and two electron pockets centered at X = (π,0)
and Y = (0,π ) in the 1Fe Brillouin zone (BZ) (see Fig. 1).
The �-centered hole pockets are made out of dxz and dyz

orbitals. The electron pockets are made out of these two
orbitals and the dxy orbital. More precisely, the pocket near
X is made out of dyz and dxy orbitals, and the one near
Y is made out of dxz and dxy orbitals. Accordingly, one
can introduce three C4 breaking orbital order parameters.
Two involve dxz and dyz orbitals: �1,h = ∑

k d
†
xz(k)dxz(k) −

d
†
yz(k)dyz(k) and �1,e = ∑

k d
†
xz(k + Y )dxz(k + Y ) − d

†
yz(k +

X)dyz(k + X), and the third one, �2,e = ∑
k d

†
xy(k +

Y )dxy(k + Y ) − d
†
xy(k + X)dxy(k + X), describes unequal
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FIG. 1. The Fermi surfaces in 1Fe BZ with the orbital content of
the interactions. The six ψ fields are introduced in the text.

occupation of the dxy orbital near X and Y electron pockets
and induces an X/Y anisotropy of the hopping integral for
the dxy orbital [43]. Here and below the summation over k is
restricted to small k.

All three order parameters, �1,h, �1,e, and �2,e belong to
the same B1g representation of the point group D4h [44] and
break the same C4 symmetry. The order parameter �1,h gives
rise to elliptical elongation of the two hole pockets and splits
the two hole dispersions at the � point. The order parameters
�1,e and �2,e change the shape of electron pockets and split
the dispersions of dxz/dyz and dxy orbitals between X and Y

pockets.
Recent ARPES experiments [45–48] analyzed relative signs

and magnitudes of the three order parameters �1,h,�1,e, and
�2,e, and the results of these experiments place constraints on
theoretical considerations. The ARPES data is taken in the 2Fe
Brillouin zone (2FeBZ), which is the physical BZ, because Se
atoms in FeSe are located above and below the Fe plane in
a chess-type order. In the 2FeBZ, both electron pockets are
located at the M point (kx = ky = π ). Above Ts , dxz, and
dyz dispersions are degenerate at M , even in the presence
of spin-orbit coupling [44]. A nonzero �1,e splits the two
dispersions by ±�1,e. Similarly, the two dxy dispersions from
X and Y pockets are degenerate at the M point above Ts , but
split in the nematic phase by ±�2,e. The authors of Refs. [45]
reported that they detected the splitting of both, dxz/dyz and
dX

xy/d
Y
xy , bands at the M point. Both splittings are found to

be around 15 meV, what implies that the magnitudes of �1,e

and �2,e are nearly equal (|�1,e| ∼ |�2,e| ∼ 7.5 meV). These
authors also reported that they detected a 20 meV spin-orbit
induced splitting of dxz and dyz bands at the � point above
Ts , and that this splitting increases to 25 meV in the nematic

phase. The full splitting at � is ±
√

�2
so + �2

1,h (Ref. [43]).
Using this formula, one extracts from the data |�so| = 10 meV
and |�1,h| = 7.5 meV. The outcome is that all three order
parameters, �1,h, �1,e, and �2,e have about the same magnitude
of 7.5 meV. Other ARPES groups [46–48] interpreted their
data somewhat differently, and some reported larger �1,e, and

�2,e. In a separate development, the authors of Ref. [49] argued,
based on their ARPES results, that �1,h and �1,e have opposite
signs.

In this paper, we analyze whether the near equivalence of
the magnitudes of �1,h, �1,e, and �2,e and the sign difference
between �1,h and �1,e can be understood theoretically. In our
theory, we obtain the ratios of the order parameters near Ts ,
when the magnitudes of all condensates are small. We do find
the near equivalence of �1,e and �2,e and the sign change
between �1,h, and �1,e. The ratio of �1,h and �1,e comes out
larger in our analysis than in the ARPES data, but we caution
that our calculations do not include spin-orbit coupling, which
by itself splits dxz and dyz orbitals at the � point.

Our analysis is build on recent parquet renormalization
group (RG) studies of orbital order in FeSCs. In Ref. [50],
Chubukov, Khodas, and Fernandes (CKF) analyzed the inter-
play between SDW, SC, and orbital order in two approximate
four-pocket models for FeSe. In both models the hole pockets
were treated without an approximation, but the electron
pockets were assumed to be made entirely out of dxz/dyz

orbitals (model I), or entirely out of dxy orbitals (model II).
This was done to reduce the number of running RG couplings
to 14, down from 30 in the full model (see below). For both
models, CKF found that the leading instability upon lowering
the temperature is towards an orbital order, the subleading one
is towards s+− superconductivity, and SDW order does not
develop, despite that the SDW susceptibility is the largest at
the beginning of the RG flow. This hierarchy of instabilities
holds if the pockets are small enough and RG has a “space” to
run, i.e., there is enough energy scales to integrate out.

CKF did find that the sign of �1,h is opposite to that of �1,e,
in agreement with the ARPES analysis in Ref. [49]. However,
they could not explain the observed near equivalence between
�1,e and �2,e at the M point because, by construction, in the two
approximate models studied by CKF, either �2,e = 0 (model
I) or �1,e = 0 (model II).

In this paper we extend the analysis of CKF to the full
four-pocket, three-orbital model of FeSCs. The goal is twofold:
(1) verify whether the hierarchy of instabilities remains the
same as in the approximate models studied by CKF and
(2) see whether the relations between �1,e,�1,h, and �2,e

reproduce the ones extracted from the ARPES measurements.
The four-pocket, three-orbital low-energy model has been
introduced by Cvetkovic and Vafek in Ref. [44]. These authors
have shown that the number of different symmetry-allowed
interactions between low-energy fermions is equal to 30. The
initial values of all 30 couplings are expressed via local
Hubbard and Hund interactions U , U ′, J , and J ′. But the
couplings evolve differently as one progressively integrates
out fermions with higher energies, i.e., in the process of the RG
flow the system self-generates longer-range interactions. We
derive and analyze, both analytically and numerically, the set
of 30 coupled parquet RG equations, which describe the flow of
the couplings. We show that the flow is towards universal fixed
trajectories, along which the ratios between the couplings tend
to fixed values. We then derive another set of RG equations for
the susceptibilities in different channels (SDW, SC, orbital)
and solve them using the running couplings as inputs [51–55].
We identify the channel in which the system first develops an
instability as the one where the susceptibility diverges at the
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highest T , and, if critical T are the same in several channels,
as the one where the divergent susceptibility has the largest
exponent.

We show that two of the universal fixed trajectories are
stable, and that they are separated by several unstable fixed
trajectories. (The system approaches a stable fixed trajectory
from all directions within its basin of attraction, it approaches
an unstable fixed trajectory from some directions and moves
away from it along other directions.) We argue that on a stable
fixed trajectory the system behavior effectively reduces to that
of one of the two models considered by CKF. Specifically, on
one stable trajectory, interactions involving dxy components
of the electron pockets vanish compared to the interactions
involving dxz (or dyz) components (same as in model I of
CKF), while along the other stable fixed trajectory interactions
involving dxz (or dyz) orbital components vanish compared
to the interactions involving dxy components (model II of
CKF). Like we said, each of these two models yields the same
hierarchy of orderings (orbital order, then SC, but no SDW,
if the pockets are small enough). However, neither model I,
nor model II, reproduces the observed near equivalence of �1,e

and �2,e.
We next analyze the unstable fixed trajectories. In general,

these trajectories are irrelevant for the RG analysis, because
the RG flow moves the system away from these trajectories
towards the stable ones. In our case, however, the system
behavior is more nuanced. Namely, we show that there are
several truly unstable fixed trajectories and one “weakly
unstable” fixed trajectory with just one direction, along which
the system eventually moves away from it (i.e., the stability
analysis yields one positive exponent). This weakly unstable
fixed trajectory is located in between the two stable fixed
trajectories. We argue that under RG the system first flows
away from truly unstable trajectories towards the weakly
unstable trajectory, and then flows towards one of the two
stable fixed trajectories. However, the positive exponent, which
characterizes how fast the system moves away from this
trajectory, is quite small. This implies that the weakly unstable
fixed trajectory behaves as a stable one nearly up to the very
end of the RG flow, when the hierarchy of susceptibilities is
already established. We analyze the system behavior on this
weakly unstable fixed trajectory and obtain the same sequence
of orderings as the two stable trajectories, i.e., the leading
instability is towards C4-breaking orbital order, the subleading
is towards s+− SC, and SDW order does not develop. In
distinction to the stable fixed trajectories, however, now the
interactions involving dxz(dyz) and dxy orbital components
on electron pockets are of the same order. Therefore �1,h,
�1,e, and �2,e all become nonzero once the orbital order sets
in. We solve the set of coupled equations for �1,h,�1,e, and
�2,e on the weakly unstable fixed trajectory and find that
the magnitudes of �1,e, and �2,e are nearly equal, and the
signs of �1,h and �1,e are opposite. This is fully consistent
with the ARPES data [45,47,49]. We view the agreement
as an indication that the parquet RG analysis of the full
four-pocket, three-orbital model is capable to reproduce not
only the sequence of phase transitions in FeSe upon lowering
of temperature, but also the ARPES results for the magnitudes
and signs of the nematic orbital order parameters. At the same
time, our analysis yields a larger ratio of �1,h/�1,e than in the

data. This may reveal a limited validity of the RG analysis.
But the discrepancy may also be due to the fact that, according
to ARPES [45], the largest splitting of dxz and dyz orbitals on
hole pockets comes from spin-orbit coupling, which we did
not include into the analysis. We conjecture that the feedback
from spin-orbit-induced band splitting reduces the value of
the orbital order parameter on hole pockets compared to our
result, which, we reiterate, is obtained neglecting spin-orbit
interaction.

The paper is organized as follows. In Sec. II, we discuss
the generic four-band, three-orbital model for FeSCs. We first
present the kinetic energy and then introduce the 30 different
C4-symmetric interactions between low-energy fermions. We
argue that the structure of the interaction Hamiltonian remains
invariant under RG, but the values of the couplings flow. In
Sec. III, we derive and solve the set of 30 coupled differential
RG equations for the flow of the couplings. In Sec. III B, we
analyze the fixed trajectories resulting from the solution of
the RG equations. Because the system behavior along the two
stable fixed trajectories is the same as in the two approximate
models studied by CKF, we do not rederive the results here and
instead focus on the system behavior along the weakly unstable
fixed trajectory. In Sec. IV, we discuss the RG flow of the
susceptibilities in different channels and analyze the hierarchy
of the instabilities on the weakly unstable fixed trajectory. In
Sec. V, we discuss the interplay between the three orbital order
parameters �1,h,�1,e, and �2,e and compare our results with the
ARPES data. We present our conclusions in Sec. VI. Technical
details of the RG analysis are presented in Appendix.

In the complimentary work [56], we applied parquet RG to
five-band, three-orbital model with an additional dxy pocket
at (π,π ) in the 1Fe BZ (at � in the 2Fe BZ). We argued that
in some range of input parameters the fifth pocket does not
affect the low-energy behavior, and remains the same as in the
four-pocket, three-orbital model.

II. THE MODEL

We consider a four-band model with two hole pockets
at the center of the 1FeBZ and two electron pockets at the
zone edges, and keep the actual orbital content of low-energy
excitations near each pocket (see Fig. 1). Each of the two hole
pockets have orbital character alternating between dxz and dyz,
with negligible contribution from dxy and other orbitals. Of
the two symmetry-related electron pockets, one is constructed
from dxz and dxy orbitals, the other from dyz and dxy orbitals,
again with negligible contribution from other orbitals. Below
we first consider the effective model for the low-energy band
structure and then construct the interactions, consistent with
the tetragonal crystal symmetry above the nematic transition.

A. Effective model of the band structure

We follow the approach by Cvetkovic and Vafek [44], who
used Luttinger’s method of invariants (also known as k · p

theory) and symmetry constraints to construct the effective
low energy model of the band structure. We neglect spin-
orbit coupling, assuming that is does not affect the RG
flow at energies above EF , and perform calculations in the
unfolded 1FeBZ. Because we are interested in the low-energy
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TABLE I. Affiliation of ψi with a pocket and an orbital.

ψi Pocket Orbital

ψ1 Y dxz

ψ2 Y dxy

ψ3 X dyz

ψ4 X dxy

ψ5 � dyz

ψ6 � dxz

theory, fermions near different pockets are treated as different
species. Namely, we introduce a six-component spinor ψ =
(ψ1, . . . ,ψ6) (see Fig. 1). The components ψ1(k) and ψ2(k)
are the Bloch states of pure dxz and dxy orbital character,
respectively, with momentum near Y (spin indices are omitted
for clarity). The components ψ3(k) and ψ4(k) are the Bloch
states of pure dyz and dxy orbital character near X, and ψ5(k)
and ψ6(k) are the Bloch states of pure dyz and dxz orbital
character near �. We list pocket and orbital “affiliations” of ψi

in Table I (see also Fig. 1).
The noninteracting part of the effective Hamiltonian is

expressed as

H 0 =
∑
k,σ

ψ†
σ (k)

⎛
⎝hY (k)

hX(k)
h�(k)

⎞
⎠ψσ (k) . (1)

In Eq. (1) and in what follows, all momenta k are counted
relative to the respective high symmetry points �, X, or
Y . The dxz dispersion at Y and the dyz dispersion at X

are doubly degenerate, and the dxy dispersions at X and Y

are also degenerate (see left panel in Fig. 16). These two
degeneracies can be traced to the fact that chalcogen atoms
in Fe-chalcogenides (Se in FeSe) or pnictogen atoms in Fe
pnictides are located above or below the Fe plane in chesslike
order. In group theory language, this “up-down” location of
chalcogen/pnictogen atoms implies that the symmetry group
P 4/nmm contains a glide plain symmetry element. The
corresponding symmetry operation is a mirror reflection about
the iron plane, followed by a translation by one lattice side
along X or Y directions in the 1FeBZ or, equivalently, along
the half of the unit cell diagonal in the actual 2FeBZ (see,
e.g., Ref. [44]). The symmetry group P 4/nmm containing this
glide plain symmetry is a nonsymmorphic group and therefore
all physical irreducible representations are two-dimensional at
M point (X and Y point in 1FeBZ map to M point in 2FeBZ;
see left panel of Fig. 15), implying any states are doubly
degenerate at M point. This is reflected in the expressions
for hX and hY in Eq. (1). We have

hY,X(k)=
(
ε1+ k2

2m1
±a1

(
k2
y −k2

x

) −iv±(k)

iv±(k) ε2+ k2

2m2
±a2

(
k2
y −k2

x

)
)

,

(2)

where the upper sign is for the Y pocket and the lower one is for
the X pocket, v+(k) = v(2kx) + O(k3), v−(k) = v(−2ky) +
O(k3), and v,ε1,2, a1,2, and m1,2 are parameters, which can
be determined by fitting the band structure to ARPES data.

The two pockets are interchangeable under a 90◦ rotation,
hX(kx,ky) = h∗

Y (−ky,kx).
The hole pockets are described by the effective Hamiltonian

h�(k)=
(

ε3 − k2

2m3
+ b

(
k2
y − k2

x

)
2ckxky

2ckxky ε3 − k2

2m3
− b

(
k2
y − k2

x

)
)

.

(3)

The parameters ε3, m3, b, and c are again determined by fitting
the band structure to ARPES data. Note that these parameters
generally differ from the ones obtained by taking tight-binding
LDA dispersion and expanding it near �, X, and Y points, as
Eqs. (2) and (3) include regular self-energy corrections coming
from high-energy fermions.

The band dispersions are obtained by diagonalizing the
effective Hamiltonian (1). The result is

H 0 =
∑
k,σ

[εc(k)c†kσ ckσ + εd (k)d†
kσ dkσ

+ εf1 (k)f †
1,kσ f1,kσ + εf2 (k)f †

2,kσ f2,kσ ]

+ εg1 (k)g†
1,kσ g1,kσ + εg2 (k)g†

2,kσ g2,kσ ]. (4)

The dispersions are

εc(k) = ε3 − k2

2m3
+

√
b2

(
k2
x − k2

y

)2 + 4c2k2
xk

2
y,

εd (k) = ε3 − k2

2m3
−

√
b2

(
k2
x − k2

y

)2 + 4c2k2
xk

2
y,

εf1 (k) = ε1,Y + ε2,Y

2
+

√(
ε1,Y − ε2,Y

2

)2

+ 4v2k2
x,

εg1 (k) = ε1,Y + ε2,Y

2
−

√(
ε1,Y − ε2,Y

2

)2

+ 4v2k2
x,

εf2 (k) = ε1,X + ε2,X

2
+

√(
ε1,X − ε2,X

2

)2

+ 4v2k2
y,

εg2 (k) = ε1,X + ε2,X

2
−

√(
ε1,X − ε2,X

2

)2

+ 4v2k2
y, (5)

where

ε1,Y (X) = ε1 + k2

2m1
± a1

(
k2
y − k2

x

)
,

ε2,Y (X) = ε2 + k2

2m2
± a2

(
k2
y − k2

x

)
(6)

(upper sign for Y , lower for X). The transformation from
orbital basis to band basis is a generalized rotation,

(
ψ1(k)
ψ2(k)

)
=

(
cos φe,k −i sin φe,k

−i sin φe,k cos φe,k

)(
f1,k

g1,k

)
, (7)(

ψ3(k)
ψ4(k)

)
=

(
cos φ′

e,k −i sin φ′
e,k

−i sin φ′
e,k cos φ′

e,k

)(
f2,k

g2,k

)
, (8)(

ψ5(k)
ψ6(k)

)
=

(
cos φh,k sin φh,k

− sin φh,k cos φh,k

)(
ck

dk

)
. (9)
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The rotation angles φe,k, φ′
e,k, and φh,k depend on the

parameters in hX, hY , and h� as

tan 2φe,k = −4vkx

ε1,Y − ε2,Y

,

tan 2φ′
e,k = 4vky

ε1,X − ε2,X

, (10)

tan 2φh,k = 2ckxky

b
(
k2
x − k2

y

) .

Fermions labeled by f1 and f2 cross the Fermi level and
form the electron pockets near Y and X, respectively. Fermions
labeled by c and d form the two hole pockets near �. We call
these fermions low-energy excitations. Fermions labeled by
g1 and g2 are gapped and do not cross the Fermi level. In
principle, g1,2 fermions have to be included into the parquet
RG analysis as the gap in their excitation spectrum is of order
EF , which is the lower edge of parquet RG analysis. To avoid
dealing with too many couplings, we assume that parameters
are such that the gap in the spectra of g1 and g2 fermions is
numerically much larger than EF and treat these fermions as
high-energy, in which case they are not subjects of RG.

We make two additional assumptions to simplify the
evaluation of the integrals below. First, we assume that the
hole pockets are circular rather than just C4-symmetric. This
is the case when c = b in Eq. (3). For circular hole pockets

εc,d (k) = μh − k2

2mc,d

, (11)

where μh = ε3, mc = m3(1 − 2m3b), md = m3(1 + 2m3b),
and the rotation angle φh,k in Eq. (9) coincides
with the angle θh between k and X axis along the
hole Fermi surfaces. Second, on electron pockets we
set cos φe,k = A0 cos θe, sin φe,k = √

1 − A2
0 cos2 θe, and

cos φ′
e,k = −A0 sin θe, sin φ′

e,k = √
1 − A2

0 sin2 θe, where θe is
the angle between k and X direction on both electron Fermi
surfaces and 1/

√
2 < A0 < 1. This parametrization is indeed

an approximation, but it is consistent with symmetry, and
we verified numerically (see Fig. 2) that it matches quite
accurately the actual φe,k and φ′

e,k from Eq. (10), at least
for the parameters of the tight-binding dispersion listed in
Ref. [44]. The condition A0 > 1/

√
2 follows from the fact

that ε1,Y (X) and ε2,Y (X) must cross at some value of θe to ensure
that over some range along each of the electron pockets the
largest spectral weight comes from the dxz(dyz) orbital, while
over the rest of the pockets the largest spectral weight comes
from dxy orbital. [A larger value of A0 would mean a larger
total weight of the dxz(dyz) orbital on an electron pocket.]
These two approximations simplify the evaluation of angular
integrals later in the paper, but they do not affect the structure
of RG equations and the interplay between susceptibilities in
different channels.

Expanding the dispersions of f1 and f2 fermions in Eq. (5)
in powers of momenta, we find that electron pockets are
elliptical, and the dispersions near these pockets are

εf1,f2 (k) = k2
x

2mx,y

+ k2
y

2my,x

− μe. (12)

The parameters mx,y and μe are determined by Eq. (5).

cos2 e,k

�A0cos e�2

0 2
3
2

0

0.5

1

Angle

FIG. 2. Approximation for the transformation matrix between
orbital and band basis. Solid line: the actual cos2 φe,k from Eq. (10).
Dashed line: (A0 cos θe)2, where θe is the angle along an electron
pocket.

B. The interactions

We now move to the interaction part of the Hamiltonian. We
can either derive the four-fermion part of the Hamiltonian by
using symmetry arguments, or just depart from the model with
local Hubbard-Hund interactions. In the notations of Ref. [57],
we have

Hint = U

2

∑
i,μ

ni,μni,μ + U ′

2

∑
i,μ �=μ′

niμniμ′

+ J

2

∑
i,μ′ �=μ

∑
σσ ′

ψ
†
iμσψ

†
iμ′σ ′ψiμσ ′ψiμ′σ

+ J ′

2

∑
i,μ′ �=μ

ψ
†
iμσψ

†
iμσ ′ψiμ′σ ′ψiμ′σ . (13)

Here, ψ
†
iμσ creates an electron on iron site Ri , in orbital

state μ, and in spin state σ . The operator ni,μ = ψ
†
i,μψi,μ is

the density operator at an orbital μ at site i. U and U ′ are
Hubbard intraorbital and interorbital density interactions, J

is the Hund’s exchange coupling, and J ′ is the amplitude of
the interorbital pair hopping. The Hamiltonian Hint is invariant
under SU(2) spin rotations.

The relation between the local operators, ψiμσ and orbital
operators ψaσ (k) near �, X, and Y is

ψi,xz,σ = 1√
N

∑
k

eikRi [ψ1σ (k)ei Qy Ri + ψ6σ (k)],

ψi,yz,σ = 1√
N

∑
k

eikRi [ψ3σ (k)ei Qx Ri + ψ5σ (k)], (14)

ψi,xy,σ = 1√
N

∑
k

eikRi [ψ2σ (k)ei Qy Ri + ψ4σ (k)ei Qx Ri ].
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Substituting Eq. (14) in Eq. (13), we obtain the interaction Hamiltonian in the orbital representation:

Hint = U1

∑′
[ψ†

1σψ1σ ψ
†
6σ ′ψ6σ ′ + ψ

†
3σ ψ3σψ

†
5σ ′ψ5σ ′] + Ū1

∑′
[ψ†

1σψ1σ ψ
†
5σ ′ψ5σ ′ + ψ

†
3σ ψ3σψ

†
6σ ′ψ6σ ′]

+ Ũ1

∑′
[ψ†

2σψ2σ ψ
†
6σ ′ψ6σ ′ + ψ

†
4σ ψ4σψ

†
5σ ′ψ5σ ′] + ˜̃U1

∑′
[ψ†

4σψ4σ ψ
†
6σ ′ψ6σ ′ + ψ

†
2σ ψ2σψ

†
5σ ′ψ5σ ′]

+U2

∑′
[ψ†

1σψ6σ ψ
†
6σ ′ψ1σ ′ + ψ

†
3σ ψ5σψ

†
5σ ′ψ3σ ′] + Ū2

∑′
[ψ†

1σψ5σ ψ
†
5σ ′ψ1σ ′ + ψ

†
3σ ψ6σψ

†
6σ ′ψ3σ ′]

+ Ũ2

∑′
[ψ†

2σψ6σ ψ
†
6σ ′ψ2σ ′ + ψ

†
4σ ψ5σψ

†
5σ ′ψ4σ ′] + ˜̃U2

∑′
[ψ†

2σψ5σ ψ
†
5σ ′ψ2σ ′ + ψ

†
4σ ψ6σψ

†
6σ ′ψ4σ ′]

+ U3

2

∑′
[ψ†

1σψ6σψ
†
1σ ′ψ6σ ′ + ψ

†
3σψ5σ ψ

†
3σ ′ψ5σ ′ + H.c.] + Ū3

2

∑′
[ψ†

1σ ψ5σψ
†
1σ ′ψ5σ ′ + ψ

†
3σ ψ6σψ

†
3σ ′ψ6σ ′ + H.c.]

+ Ũ3

2

∑′
[ψ†

2σψ6σψ
†
2σ ′ψ6σ ′ + ψ

†
4σψ5σ ψ

†
4σ ′ψ5σ ′ + H.c.] +

˜̃U3

2

∑′
[ψ†

2σ ψ5σψ
†
2σ ′ψ5σ ′ + ψ

†
4σ ψ6σψ

†
4σ ′ψ6σ ′ + H.c.]

+ U4

2

∑′
[ψ†

5σψ5σψ
†
5σ ′ψ5σ ′ + ψ

†
6σψ6σ ψ

†
6σ ′ψ6σ ′ ] + Ū4

2

∑′
[ψ†

5σ ψ6σψ
†
5σ ′ψ6σ ′ + ψ

†
6σ ψ5σ ψ

†
6σ ′ψ5σ ′]

+ Ũ4

∑′
ψ

†
5σ ψ5σ ψ

†
6σ ′ψ6σ ′ + ˜̃U4

∑′
ψ

†
5σ ψ6σ ψ

†
6σ ′ψ5σ ′ + U5

2

∑′
[ψ†

1σψ1σψ
†
1σ ′ψ1σ ′ + ψ

†
3σψ3σ ψ

†
3σ ′ψ3σ ′ ]

+ Ū5

2

∑′
[ψ†

1σψ3σψ
†
1σ ′ψ3σ ′ + H.c.] + Ũ5

∑′
ψ

†
1σψ1σ ψ

†
3σ ′ψ3σ ′ + ˜̃U5

∑′
ψ

†
1σψ3σ ψ

†
3σ ′ψ1σ ′

+ U6

2

∑′
[ψ†

2σψ2σψ
†
2σ ′ψ2σ ′ + ψ

†
4σψ4σ ψ

†
4σ ′ψ4σ ′ ] + Ū6

2

∑′
[ψ†

2σ ψ4σψ
†
2σ ′ψ4σ ′ + H.c.]

+ Ũ6

∑′
ψ

†
2σ ψ2σ ψ

†
4σ ′ψ4σ ′ + ˜̃U6

∑′
ψ

†
2σ ψ4σ ψ

†
4σ ′ψ2σ ′

+ Ū7

2

∑′
[ψ†

1σψ2σψ
†
1σ ′ψ2σ ′ + ψ

†
3σψ4σ ψ

†
3σ ′ψ4σ ′ + H.c.]

+ Ũ7

∑′
[ψ†

1σψ1σ ψ
†
2σ ′ψ2σ ′ + ψ

†
3σ ψ3σψ

†
4σ ′ψ4σ ′] + ˜̃U7

∑′
[ψ†

1σψ2σ ψ
†
2σ ′ψ1σ ′ + ψ

†
3σ ψ4σψ

†
4σ ′ψ3σ ′]

+ Ū8

2

∑′
[ψ†

1σψ4σψ
†
1σ ′ψ4σ ′ + ψ

†
2σψ3σ ψ

†
2σ ′ψ3σ ′ + H.c.] + Ũ8

∑′
[ψ†

1σψ1σψ
†
4σ ′ψ4σ ′ + ψ

†
2σψ2σ ψ

†
3σ ′ψ3σ ′ ]

+ ˜̃U8

∑′
[ψ†

1σψ4σ ψ
†
4σ ′ψ1σ ′ + ψ

†
2σ ψ3σψ

†
3σ ′ψ2σ ′] , (15)

where

U1 = U2 = U3 = U4 = U5 = U6 = Ū6 = Ũ6 = ˜̃U6 = U,

Ū1 = Ũ1 = ˜̃U1 = Ũ4 = Ũ5 = Ũ7 = Ũ8 = U ′,

Ū2 = Ũ2 = ˜̃U2 = ˜̃U4 = ˜̃U5 = ˜̃U7 = ˜̃U8 = J,

Ū3 = Ũ3 = ˜̃U3 = Ū4 = Ū5 = Ū7 = Ū8 = J ′. (16)

In Eq. (15), the momentum arguments of the fermion operators
ki , i = 1,2,3,4 are omitted and the summation is over
spin indices σ , σ ′ and momenta, subject to the momentum
conservation condition

∑4
i=1 ki = 0.

The next step is to realize that Eq. (15) with arbitrary
prefactors is the most general form of the interaction for the
four-band, three-orbital model, consistent with the C4 lattice
symmetry. The C4 symmetry implies that the four-fermion
Hamiltonian must be invariant under the transformation ψ1 ↔
ψ3, ψ2 ↔ ψ4, ψ5 ↔ ψ6. One can easily check that each term
in Eq. (15) is C4-symmetric on its own. Then the coupling
constants do not have to be bound by the relations (16).

This reasoning implies that Eq. (15) is the most generic
form of fermion-fermion interaction for a model with not

necessarily local interactions. The total number of different
terms in Eq. (15) is 30, hence there are 30 independent coupling
constants. This number was first reported in Ref. [44]. At a bare
level, the couplings may be related, as in Eq. (16). However,
once we integrate out fermions with energies above a certain
cutoff, all 30 coupling constants renormalize differently. As a
result the conditions set by Eq. (16) do not hold for the running
couplings. We also verified explicitly that no new interactions
are generated by the RG flow, i.e., the terms which we present
in Eq. (15) exhaust all possible symmetry allowed interactions
between low-energy fermions. In RG language this implies
that the theory is renormalizable.

III. RENORMALIZATION GROUP (RG) ANALYSIS

Like we said, we will use the parquet RG technique
to analyze the flow of the couplings. The RG technique
is generally applicable when interactions in some channels
evolve logarithmically with the running energy. Ladder RG is
applicable when there is only one channel with logarithmic
interactions (e.g, the Cooper channel). The parquet RG is
applied when there is more than one channel, in which the
renormalization of the coupling is logarithmic.
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Parquet RG was first introduced in field theory [58].
In condensed matter it was successfully used to map the
phase diagram of one-dimensional systems, where logarithmic
renormalizations are present in both particle-particle and
particle-hole channels [59], and was also applied to several
2D systems, e.g., to the 2D σ model [60], fermions near
a van-Hove singularity in the dispersion [61], and bilayer
graphene [62]. The leading logarithmic contributions at each
order of perturbation are represented by the so-called parquet
diagrams. The RG technique allows one to express infinite
series of logarithmic renormalizations by differential equations
for fully renormalized vertices.

The application of parquet RG to FeSCs has been discussed
before [63]. Like we said, the new key element of our analysis
is the inclusion of the orbital content of the excitations around
the Fermi pockets. We refer to earlier literature for details and
here just state the two main reasons to use parquet RG for
FeSCs. First, the very fact that hole and electron dispersions
have opposite signs implies that the renormalizations in the
particle-hole channel at momenta separating hole and electron
pockets are logarithmic at energies between the bandwidth
and the Fermi energy. Nesting does not play a crucial role here
as the two dispersions have opposite sign with or without
nesting. Nesting (the near equivalence between hole and
electronic dispersions, up to a sign) extends the logarithmic
renormalizations in the particle-hole channel to energies
smaller than EF (down to energies of order |μh − μe|), but
at such low energies parquet RG is already not applicable as
particle-particle and particle-hole channels no longer “talk”
to each other. Second, the logarithm in the particle-particle
channel is not the Cooper logarithm (which comes from
fermions in the near vicinity of the Fermi surfaces), but
the one associated with the renormalization of the scattering
amplitude in 2D (Ref. [64]). In this respect, the pairing
instability within the parquet RG is actually towards a bound
state formation of two particles. In a one-band 2D system, the
actual superconducting Tc would be much smaller than this
temperature [65]. However, in our case, when hole and electron
bands are both present, the temperature, at which bound pairs
develop, and the actual superconducting Tc are of the same

order [66]. For this reason, we will not distinguish between
a bound state formation (which develops within parquet RG)
and a true superconductivity.

In the calculations below, we assume that the bare values
of the interactions are small compared to the bandwidth and
restrict the analysis to one loop parquet RG. We show that
some interactions grow in the process of the RG flow, i.e.,
the system flows towards strong coupling. If we set the bare
interactions to be larger, the system will more rapidly flow
towards strong coupling, and the temperature of the leading
instability will increase. In FeSe, the leading instability is
at Ts = 85 K ∼ 8 meV. This temperature is two orders of
magnitude smaller than the bandwidth W ∼ 1 eV. We consider
the smallness of Ts/W as at least partial justification to apply
the RG procedure. At the same time, we caution that our
approximation of the dispersions of the bands which cross the
Fermi level by parabolas is not well justified, as other bands
hybridize with dxz, dyz, and dxy bands already at energies
below W . These additional bands, however, affect only the
value of the upper cutoff for parquet RG, but not the outcome
of the RG flow.

A. RG equations for the interactions

In this section, we derive and solve the set of parquet RG
equations for the interactions. The derivation of 30 coupled RG
equations is a cumbersome but straightforward procedure. As
we said, solving one-loop parquet RG equations is equivalent
to summing up all leading logarithmic contributions originat-
ing from both particle-particle and particle-hole channels. Like
in BCS theory, logarithms come from internal energies larger,
in logarithmic sense, than the external ones. To logarithmic
accuracy, we set all external frequencies to be of the same order
E and set external momenta kext to be of order (2mE)1/2. We
obtain the interactions Ui(kext) by integrating first over internal
frequency and then over internal momentum between

√
2mW

and (2mE)1/2.
As an example, we derive the RG equations for the interac-

tions Ũ4 and ˜̃U4. The renormalizations of these couplings are
given by diagrams shown in Fig. 3. Evaluating the diagrams,

Ũ4

ψ5 ψ5

ψ6 ψ6

= Ũ4 Ũ4

ψ5 ψ5

ψ6 ψ6

ψ5

ψ6

+ ˜̃U4
˜̃U4

ψ5 ψ5

ψ6 ψ6

ψ6

ψ5

+

ψ5

ψ6

Ũ4
˜̃U4

ψ6

ψ5

ψ5 ψ5

ψ6 ψ6

+

ψ6

ψ5

˜̃U4 Ũ4

ψ5

ψ6

ψ5 ψ5

ψ6 ψ6

˜̃U4

ψ5 ψ6

ψ5ψ6

= Ũ4
˜̃U4

ψ5 ψ6

ψ5ψ6

ψ5

ψ6

+ ˜̃U4 Ũ4

ψ5 ψ6

ψ5ψ6

ψ6

ψ5

+

ψ5

ψ6

Ũ4 Ũ4

ψ6

ψ5

ψ5 ψ6

ψ5ψ6

+

ψ6

ψ5

˜̃U4
˜̃U4

ψ5

ψ6

ψ5 ψ6

ψ5ψ6

FIG. 3. The diagrams for the renormalizations of Ũ4 and ˜̃U4. The propagators are identified by their label. Note that there are contributions
involving Green’s functions which are nondiagonal in the orbital index.
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we obtain

Ũ4(kext) = −
∫ √

2mW

kext

d2k
4π2

(
Ũ 2

4 (k) + ˜̃U 2
4 (k)

)

×
∫

dε

2π
Gψ5;ψ5 (iε,k)Gψ6;ψ6 (−iε,−k)

−
∫ √

2mW

kext

d2k
4π2

2Ũ4(k) ˜̃U4(k)

×
∫

dε

2π
Gψ5;ψ6 (iε,k)Gψ6;ψ5 (−iε,−k), (17)

˜̃U4(kext) = −
∫ √

2mW

kext

d2k
4π2

2Ũ4(k) ˜̃U4(k)

×
∫

dε

2π
Gψ5;ψ5 (iε,k)Gψ6;ψ6 (−iε,−k)

−
∫ √

2mW

kext

d2k
4π2

(
Ũ 2

4 (k) + ˜̃U 2
4 (k)

)

×
∫

dε

2π
Gψ5;ψ6 (iε,k)Gψ6;ψ5 (−iε,−k), (18)

where Gψi ;ψj
(iε,k) = −i〈T ψi(ε,k)ψ†

j (ε,k)〉. To select the
logarithms, we use Eq. (9) and re-express Gψi ;ψj

(iε,k) in
terms of Green’s functions of band operators (in this case,
operators c and d), Gc,d (iε,k) = 1/(iε − εc,d (k)). Integrating
over frequency, introducing the logarithmic variable

L = ln
W

k2
ext/2m

= ln
W

E
, (19)

and combing the equations (17) and (18), we obtain

Ũ4(L) ± ˜̃U4(L) = −A±
∫ L

0
dL′ (Ũ4(L′) ± ˜̃U4(L′))2

4π
, (20)

where

A± =
[

1

8
(mc + md ) + 3

8

4mcmd

mc + md

± 1

8

(mc − md )2

mc + md

]
. (21)

Note that A± > 0. Differentiating in Eq. (20) over the upper
limit, we obtain

4π
d(Ũ4 ± ˜̃U4)

dL
= −A±(Ũ4 ± ˜̃U4)2. (22)

Solving the equations for Ũ4 + ˜̃U4 and Ũ4 − ˜̃U4, we find that
both interactions flow to zero under RG, provided that at the
bare level Ũ4 > ˜̃U4. Using Eq. (16) for the bare couplings, we
see that this holds if U ′ > J . We assume in this paper that this
condition is satisfied. If it is not satisfied, the conclusions will
be different [67].

Because both Ũ4 and ˜̃U4 vanish under RG for any A+ and
A−, i.e., for any ratio of mc/md , as long as both masses are
nonzero, below we set mc = md = mh to reduce the number
of parameters in the RG equations. By the same reason, we
also set mx = my = me, i.e., approximate electron pockets as
circular. Keeping mc �= md and mx �= my only complicates the
formulas but does not lead to any novel system behavior. With

these approximations, Eq. (22) simplifies to

4π
d(Ũ4 ± ˜̃U4)

dL
= − Ah(Ũ4 ± ˜̃U4)2, (23)

where Ah = mh.
Using the same reasoning, we obtain eight similar-looking

RG equations:

4π
dŨ5

dL
= − A′

e

(
Ũ 2

5 + ˜̃U 2
5

)
,

4π
d ˜̃U5

dL
= − 2A′

eŨ5
˜̃U5,

4π
dŨ6

dL
= − A′′

e

(
Ũ 2

6 + ˜̃U 2
6

)
,

4π
d ˜̃U6

dL
= − 2A′′

e Ũ6
˜̃U6, (24)

4π
dŨ7

dL
= 4π

d ˜̃U7

dL
= −Ãe(Ũ7 + ˜̃U7)2,

4π
dŨ8

dL
= − A′′′

e

(
Ũ 2

8 + ˜̃U 2
8

)
,

4π
d ˜̃U8

dL
= − 2A′′′

e Ũ8
˜̃U8,

where

Ãe = me

∫
dθe

2π
cos2 φe,k sin2 φe,k,

A′
e = me

∫
dθe

2π
cos2 φe,k cos2 φ′

e,k,

A′′
e = me

∫
dθe

2π
sin2 φe,k sin2 φ′

e,k,

A′′′
e = me

∫
dθe

2π
cos2 φe,k sin2 φ′

e,k , (25)

and we remind that we set cos φe,k = A0 cos θe,
sin φe,k = √

1 − A2
0 cos2 θe, and cos φ′

e,k = −A0 sin θe,

sin φ′
e,k = √

1 − A2
0 sin2 θe, where 1/

√
2 < A0 < 1. The

different A’s in Eq. (25) all scale as me and are functions
of A0. One can easily see from Eq. (24) that the couplings
Ũj and ˜̃Uj with j = 5, 6, and 8 flow to zero (upper panel

in Fig. 4) if the bare values Ũj and ˜̃Uj are positive and bare

Ũj � ˜̃Uj , which is the case when U ′ > J . Like we said, we
assume that this holds.

The RG equations for Ũ7 and ˜̃U7 are somewhat different
compared to the other six equations in Eq. (24). The reason is
that the couplings Ũ7 and ˜̃U7 are density-density and exchange
couplings for dxz and dxy (or dyz and dxy) orbital components
on the same pockets. Because only one combination of these
orbitals forms the band that crosses the Fermi level, the
difference Ũ7 − ˜̃U7 does not flow under RG. (The situation
is similar to the case of RG flow of Ũ4 and ˜̃U4 when one of the
masses vanishes and A− becomes equal to zero.) Solving the
RG equations for Ũ7 and ˜̃U7, we find that these two couplings
tend to finite values under RG, Ũ7 = − ˜̃U7 = const. We will see
that the other couplings increase under RG, and in comparison
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0 10 20
0

0.05

0.1

L

ar
b.
un
its U4 U4

0 10 20

�0.02

0

0.02

L

ar
b.
un
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FIG. 4. Representatrive RG flow of some of 10 decoupled
interactions. The upper panel shows the flow of Ũ4 and ˜̃U4. Both
flow to zero under RG. The flow of Ũ5 and ˜̃U5, Ũ6 and ˜̃U6, and Ũ8 and
˜̃U8 are similar. The lower panel shows the flow of Ũ7 and ˜̃U7. Both

flow to small but finite values under RG.

the couplings Ũ7 and ˜̃U7 become negligible (compare the lower
panel in Figs. 4 and 5).

Performing an analogous diagrammatic analysis for the
remaining 20 couplings, we obtain 20 coupled RG equations.
We write these equations below for dimensionless couplings,

0 5 10 15 L0

�0.5

0

0.5

L

u1
u1

0 5 10 15 L0

�0.5

0

0.5

L

u3
u3

0 5 10 15 L0

�0.5

0

0.5

L

u4
u5

0 5 10 15 L0

�0.5

0

0.5

L

u6
u7

FIG. 5. Representative RG flows of some of the 20 coupled
interactions. The flow of eight couplings is shown. All couplings
diverge at L = L0. In the particular case, we show here L0 = 16.47.

which we introduce as follows:

u1,2 = A

4π
U1,2, ū1,2 = Ā

4π
Ū1,2,

ũ1,2 = Ã

4π
Ũ1,2, ˜̃u1,2 = Ã

4π
˜̃U1,2,

u3 = AC

4π
U3, ū3 = ĀC̄

4π
Ū3, ũ3 = ÃC̃

4π
Ũ3, ˜̃u3 = ÃC̃

4π
˜̃U3,

u4 = Ah

4π
U4, ū4 = Ah

4π
Ū4, u5 = Ae

4π
U5, ū5 = Ae

4π
Ū5,

u6 = Āe

4π
U6, ū6 = Āe

4π
Ū6,

ū7 =
√

AeĀe

4π
Ū7, ū8 =

√
AeĀe

4π
Ū8, (26)

where

A = Ā = 2memh

me + mh

∫
dθ

2π
cos2 φe,k,

Ã = 2memh

me + mh

∫
dθ

2π
sin2 φe,k,

Ae = me

∫
dθ

2π
cos4 φe,k,

Āe = me

∫
dθ

2π
sin4 φe,k, (27)

and

C = C̄ =
√

AhAe

A
= me + mh

2
√

memh

√∫
dθ
2π

cos4 φe,k∫
dθ
2π

cos2 φe,k

,

C̃ =
√

AhĀe

Ã
= me + mh

2
√

memh

√∫
dθ
2π

sin4 φe,k∫
dθ
2π

sin2 φe,k

. (28)

We also introduce the ratio

E = Ãe√
AeĀe

=
∫

dθ
2π

cos2 φe,k sin2 φe,k√∫
dθ
2π

cos4 φe,k

∫
dθ
2π

sin4 φe,k

. (29)

With these notations the 20 coupled RG equations read

u̇1 = u2
1 + u2

3/C2,

˙̄u1 = ū2
1 + ū2

3/C2,

˙̃u1 = ũ2
1 + ũ2

3/C̃
2,

˙̃̃u1 = ˜̃u2
1 + ˜̃u2

3/C̃
2,

u̇2 = 2u1u2 − 2u2
2,

˙̄u2 = 2ū1ū2 − 2ū2
2,

˙̃u2 = 2ũ1ũ2 − 2ũ2
2,

˙̃̃u2 = 2 ˜̃u1 ˜̃u2 − 2 ˜̃u2
2,

u̇3 = −ū3ū5 − u3u5 − ũ3ū7 − ˜̃u3ū8

− E(ũ3u5 + ˜̃u3ū5 + u3ū7 + ū3ū8)

− u3u4 − ū3ū4 + 4u1u3 − 2u2u3,
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˙̄u3 = −ū3u5 − u3ū5 − ˜̃u3ū7 − ũ3ū8

− E(ũ3ū5 + ˜̃u3u5 + ū3ū7 + u3ū8)

− u3ū4 − ū3u4 + 4ū1ū3 − 2ū2ū3,

˙̃u3 = − u3ū7 − ū3ū8 − ũ3u6 − ˜̃u3ū6

− E(u3u6 + ū3ū6 + ũ3ū7 + ˜̃u3ū8)

− ũ3ū4 − ˜̃u3u4 + 4ũ1ũ3 − 2ũ2ũ3,

˙̃̃u3 = −ū3ū7 − u3ū8 − ˜̃u3u6 − ũ3ū6

− E(ū3u6 + u3ū6 + ˜̃u3ū7 + ũ3ū8)

− ũ3u4 − ˜̃u3ū4 + 4 ˜̃u1 ˜̃u3 − 2 ˜̃u2 ˜̃u3,

u̇4 = −u2
3 − ū2

3 − ũ2
3 − ˜̃u2

3 − E(2u3ũ3 + 2ū3 ˜̃u3) − u2
4 − ū2

4,

˙̄u4 = −2u3ū3 − 2ũ3 ˜̃u3 − E(2u3 ˜̃u3 + 2ū3ũ3) − 2u4ū4,

u̇5 = −u2
5 − ū2

5 − ū2
7 − ū2

8 − E(2u5ū7 + 2ū5ū8) − u2
3 − ū2

3,

˙̄u5 = −2u5ū5 − 2ū7ū8 − E(2ū5ū7 + 2u5ū8) − 2u3ū3,

u̇6 = −ū2
7 − ū2

8 − u2
6 − ū2

6 − E(2u6ū7 + 2ū6ū8) − ũ2
3 − ˜̃u2

3,

˙̄u6 = −2ū7ū8 − 2u6ū6 − E(2ū6ū7 + 2u6ū8) − 2ũ3 ˜̃u3,

˙̄u7 = −u5ū7 − ū5ū8 − ū6ū8 − u6ū7

− E
(
u5u6 + ū5ū6 + ū2

7 + ū2
8

) − u3ũ3 − ū3 ˜̃u3,

˙̄u8 = −u5ū8 − ū5ū7 − ū6ū7 − u6ū8

− E(u5ū6 + ū5u6 + 2ū7ū8) − u3 ˜̃u3 − ū3ũ3, (30)

where u̇ = du
dL

. The three parameters in this RG set, C, C̃, and
E depend on the ratio of hole and electron masses mh/me and
on A0. We remind that A0 determines over which portion of the
electron Fermi surface the dxy orbital component is stronger
than the dxz (dyz) component.

The analysis of the set shows that couplings grow under
the RG and diverge at a finite critical L = L0 (see Fig. 5).
Physically, this scale can be seen as a temperature of order
We−L0 . This signals an instability of the normal state. The
symmetry that is actually broken at L0 has to be determined
by comparing the susceptibilities in different channels. We will
do this after we analyze the flow of the couplings.

B. Fixed trajectories of the RG equations

A stable fixed trajectory is the solution for ui , to which the
system flows from all directions as L tends to the critical value
L0. Each fixed trajectory has a basin of attraction in the space of
bare interactions. A fixed trajectory is universal in the sense
that the system behavior on this trajectory does not depend on
the initial conditions. The latter only determine how fast the
system approaches a given fixed trajectory. We will show that
in our case there are two stable fixed trajectories.

An unstable fixed trajectory is approached from some
directions, but along other directions the system moves away
from it (i.e., the stability analysis for deviations from an
unstable fixed trajectory yields at least one positive exponent).
Unstable fixed trajectories are located in between stable fixed
trajectories and in general are irrelevant for the RG analysis
because the RG flow moves the system away from these
trajectories towards the stable ones. In our case, however,

we show that there is one weakly unstable fixed trajectory
with just one positive exponent, whose value is small. In
this situation, a weakly unstable fixed trajectory behaves, for
practical purposes, as a stable one because deviations from
it become relevant only near the end of the RG flow, when
the hierarchy of susceptibilities is already established. By this
reason, below we treat the two stable and one weakly unstable
fixed trajectories on equal footing.

As a first step, we verified, both analytically and numeri-
cally, that along stable and weakly unstable trajectories

u1 = ū1, ũ1 = ˜̃u1, u2 = ū2, ũ2 = ˜̃u2,

u3 = ū3, ũ3 = ˜̃u3, u4 = ū4, u5 = ū5, (31)

u6 = ū6, ū7 = ū8 ≡ u7.

Specifically, we verified that if we set initially u1 �= ū1, the
difference between the two running couplings will decrease in
the process of the RG flow.

Equation (31) allows one to reduce the 20 RG equations
from Eq. (30) to ten equations:

u̇1 = u2
1 + u2

3/C2, ˙̃u1 = ũ2
1 + ũ2

3/C̃
2,

u̇2 = 2u1u2 − 2u2
2,

˙̃u2 = 2ũ1ũ2 − 2ũ2
2,

u̇3 = − 2u3u5 − 2ũ3u7 − E(2ũ3u5 + 2u3u7)

− 2u3u4 + 4u1u3 − 2u2u3,

˙̃u3 = − 2u3u7 − 2ũ3u6 − E(2u3u6 + 2ũ3u7)

− 2ũ3u4 + 4ũ1ũ3 − 2ũ2ũ3,

u̇4 = − 2u2
3 − 2ũ2

3 − E(4u3ũ3) − 2u2
4,

u̇5 = − 2u2
5 − 2u2

7 − E(4u5u7) − 2u2
3,

u̇6 = − 2u2
7 − 2u2

6 − E(4u6ū) − 2ũ2
3,

u̇7 = − 2u5u7 − 2u6u7 − E
(
2u5u6 + 2u2

7

) − 2u3ũ3. (32)

Along the fixed trajectories, the couplings grow (and
diverge at L = L0), but their ratios tend to universal constant
values. We introduce such ratios by selecting, say, u1, and
writing ui = γiu1, ũi = γ̃iu1, etc. We then set γi to be
constants and solve the algebraic equations for γi . The
solutions yield nondivergent γi if u1 is one of the most
strongly divergent couplings. If some γi come out infinite,
we select another coupling as the primary one and repeat the
procedure until all γi are nondivergent. We then check the
stability of the solution by expanding around it to linear order
and solving for the deviations δuj . The deviations behave
as δγj = ∑

m Amj ( 1
L0−L

)βm (m = 1,2, . . . ,10). If all βm are
negative, the trajectory is fully stable. If one or more βm > 0,
the trajectory is unstable. Like we said, we call a trajectory
weakly unstable if only one βm > 0 and its value is numerically
small.

Carrying out this procedure, we obtain two stable fixed
trajectories and one weakly unstable trajectory. We present
technical details of our analysis in Appendix A. For the two
stable fixed trajectories, we find

u1(L) = 1

1 + γ 2
3 /C2

1

L0 − L
,

γ̃1 = γ2 = γ̃2 = γ̃3 = γ6 = γ7 = 0,
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γ3 = +C

√
−1 + 8C2 + 4

√
1 − C2 + 4C4,

γ4 = γ5 = 1 − 2C2 −
√

1 − C2 + 4C4 (33)

for the one and

ũ1(L) = 1

1 + γ̃ 2
3 /C̃2

1

L0 − L
,

γ1 = γ2 = γ̃2 = γ3 = γ5 = γ7 = 0,

γ̃3 = +C̃

√
−1 + 8C̃2 + 4

√
1 − C̃2 + 4C̃4,

γ4 = γ6 = 1 − 2C̃2 −
√

1 − C̃2 + 4C̃4 (34)

for the other.
Along the first fixed trajectory, the interactions Ũ1, U2, Ũ2,

Ũ3, U6, and U7 become negligible compared to interactions
U1, U3, U4, and U5. Going back to Eq. (15), we find that this
separation between the couplings implies that the interactions
involving dxy components on electron pockets vanish com-
pared to interactions involving dxz or dyz components. In other
words, the electron pockets can be effectively approximated
as pure dxz (the Y pocket) and pure dyz (the X pocket).
Along the second fixed trajectory, the situation is opposite—
the interactions involving dxz or dyz orbital components on
electron pockets vanish compared to interactions involving
dxy components. In this case, both electron pockets can be
effectively approximated as pure dxy . These two situations
correspond to the two approximate models, considered in
Ref. [50]—models I and II, respectively.

Additionally, we found a new fixed trajectory not present in
the approximate models. This new fixed trajectory is formally
an unstable one, but it is weakly unstable, with only one
unstable direction. Furthermore, the corresponding positive
exponent is numerically small, e.g., β1 = 0.10 for mh/me = 1
and A0 = 0.8. On this fixed trajectory, the couplings behave
as

ũ1 = u1 = 1

1 + γ 2
3 /C2

1

L0 − L
> 0,

γ2 = γ̃2 = 0,

γ3/C = γ̃3/C̃,

γ4,γ5,γ6,γ7 < 0. (35)

The values of the couplings γ3, γ4, γ5, γ6, and γ7 depend on
the three parameters C, C̃, and E, defined in Eqs. (28) and
(29), which in turn depend on the ratios of hole and electron
masses and on A0. The analytical formulas for γi are somewhat
involved and we present them in Appendix A. For mh/me = 1
and A0 = 0.8, the numbers are γ3 = 9.62, γ4 = −14.69, γ5 =
−5.50, γ6 = −3.74, and γ7 = −4.56.

The key feature of this fixed trajectory is that now
interactions involving dxz/dyz and dxy orbital components
of the electron pockets remain of the same order and both
grow under RG. We will see below that, as a consequence,
an instability towards orbital order leads to simultaneous
appearance of three order parameters, two involving dxz/dyz

orbitals on hole pockets and on electron pockets, and one
involving dxy orbitals on the electron pockets. We argue below

that all three orbital order parameters are required to explain
recent ARPES data on FeSe [45].

IV. SCALING OF SUSCEPTIBILITIES AND THE
HIERARCHY OF PHASE TRANSITIONS

In this section, we analyze the hierarchy of instabilities,
which break different symmetries. For this we introduce
auxiliary order parameter fields in different channels. We
obtain the RG equations for the vertices, which couple the
corresponding auxiliary fields to fermions, and solve them
using the running couplings as inputs. We then express the
running susceptibilities χi(L) in terms of running vertices
and obtain the expressions for χi(L) in different channels.
Similar procedure was applied to other problems [62,68]. The
divergence of the susceptibility in a particular channel signals
an instability towards developing a long-range order in this
channel. We will see that not all susceptibilities diverge as L

approaches L0. For divergent susceptibilities, we compare the
exponents and select the channel, in which the the exponent is
the largest, as the one where the leading instability occurs.

Below we consider SDW, charge-density-wave (CDW),
superconducting, and orbital channels. The interplay between
the susceptibilities in these channels on the the two stable
fixed trajectories is the same as in the two approximate models
considered in Ref. [50]. We will not repeat the analysis here
and focus on the system behavior along the weakly unstable
fixed trajectory.

A. SDW and CDW order parameters

The SDW order introduces a spatial modulation at wave-
vectors X = (π,0) and/or Y = (0,π ) and breaks spin SU(2)
symmetry. If SDW order develops at a single wave vector, X

or Y , it in addition breaks the C4 lattice rotational symmetry
(the stripe order). If the modulations at X and Y wave vectors
coexist, the resulting checkerboard SDW order preserves the
C4 lattice symmetry. In the RG approach, we perform a linear
stability analysis of the paramagnetic state, i.e., we analyze
the behavior of susceptibilities at temperatures above the one
for the leading instability. By symmetry, SDW susceptibilities
at X and Y are equivalent in the paramagnetic (nonnematic)
phase. To distinguish between stripe and checkerboard orders,
one has to include nonlinear couplings between the X and Y

SDW order parameters [13]. This analysis is beyond the scope
of our RG analysis.

In a multiorbital system, the orbital content must be
included in the classification of different order parameters in
terms of irreducible representations of the symmetry group
of the lattice. Specifically, for a tetragonal lattice, the SDW
order parameters must come in degenerate pairs because an
SDW order parameter at the wave vector X transforms into an
SDW order parameter at the wave vector Y under a rotation by
π/2. In addition, SDW order parameters split into two distinct
groups, depending on whether the order parameter is diagonal
or off-diagonal in the orbital index [44]. The SDW order in the
first group gives rise to a finite magnetization on Fe ions, while
for the order in the second group the magnetization vanishes
on Fe sites, but is finite on pnictogen or chalcogen ions (on
Se ions in FeSe). In our case, the first group contains two

085108-11



XING, CLASSEN, KHODAS, AND CHUBUKOV PHYSICAL REVIEW B 95, 085108 (2017)

elements (SDW involving dxz or dyz orbitals) and the second
group contains six elements (between dxz at � and dyz at X, or
dxy at X or dxy at Y , and between dyz at � and dxz at Y , or dxy at
Y or dxy at X). Accordingly, we introduce eight auxiliary fields
s(0)
i(i ′), i = 1, . . . ,4, choose them to be along the z direction for

definiteness, and couple them to fermions as

HSDW

=
∑

k

[
s(0)

1 ·ψ†
1,α(k)σ α,βψ6,β (k) + s(0)

1′ ·ψ†
1,α(k)σ α,βψ5,β(k)

+ s(0)
2 · ψ

†
2,α(k)σ α,βψ5,β (k) + s(0)

2′ · ψ
†
2,α(k)σ α,βψ6,β(k)

+ s(0)
3 · ψ

†
3,α(k)σ α,βψ5,β (k) + s(0)

3′ · ψ
†
3,α(kσ α,βψ6,β (k)

+ s(0)
4 · ψ

†
4,α(k)σ α,βψ6,β (k) + s(0)

4′ · ψ
†
4,α(k)σ α,βψ5,β(k)

+ H.c.
]
. (36)

We recall that in our notations ψ1(k) and ψ6(k) are Bloch
states of pure dxz character at Y and at �, ψ3(k) and ψ5(k) are
the Bloch states of pure dyz character at X and at �, and ψ2(k)
and ψ4(k) are the Bloch states of pure dxy character at Y and
at X, respectively. The field s(0)

1 (s(0)
3 ) couples to intraorbital

SDW order parameters on dxz (dyz) Fe orbitals,
The intraorbital SDW at Y and at X are related by C4

lattice rotation, and the susceptibilities with respect to s(0)
1 and

s(0)
3 must be equal by symmetry. The other four auxiliary fields

couple to interorbital SDW. By symmetry, the susceptibilities
with respect to s(0)

1′ and s(0)
3′ and with respect to s(0)

2(2′) and s(0)
4(4′)

must coincide.
The RG equations for the flow of the running auxiliary

fields si(i ′) away from the bare values s(0)
i(i ′) from Eq. (36) are

obtained in the same way as the flow of the couplings—by
analyzing diagrams with renormalizations of s(0)

i(i ′) due to the

interactions. In general, s(0)
i(i ′) are complex fields, whose real

part Re si(i ′) describes the actual SDW, and whose imaginary
part Im si(i ′) describes spin currents. We analyzed RG flows
for both Re si(i ′) and Im si(i ′) and found that the RG equations
for the two decouple, and in the process of the RG flow, Re
si(i ′) becomes larger than Im si(i ′), even if the bare values of
the two are comparable. For brevity, we then only consider the
flow of Re si(i ′) and skip “Re” in the formulas below.

The RG equations describing the renormalization of s1, s1′ ,
s2, and s2′ are (see Fig. 6)

ds1

dL
= s1

(
u1 + u3

C

)
,

ds2

dL
= s2

(
ũ1 + ũ3

C̃

)
,

ds1′

dL
= s1′

(
ū1 + ū3

C

)
,

ds2′

dL
= s2′

(
˜̃u1 +

˜̃u3

C̃

)
. (37)

On the fixed trajectories, the running couplings satisfy Eq. (31),
and the RG equations for si and si ′ become identical. We
emphasize that this equivalence is the property of the fixed
trajectories of the RG flow of the couplings rather than

ψ1

ψ6

s1

=

ψ1

ψ1

U1

ψ6

ψ6

s1

+

ψ1

ψ6

U3

ψ6

ψ1

s1

s
(0)
1 s

(0)
1

χSDW

=

ψ6

ψ1

s1 s1

FIG. 6. The diagrams for the renormalization of the SDW vertex
(top) and the susceptibility (bottom).

the consequence of tetragonal symmetry. The latter only
guarantees that the vertices s3(3′) and s4(4′) satisfy the same
parquet RG equations as s1(1′) and s2(2′), respectively.

On the weakly unstable fixed trajectory the couplings are
related by Eq. (35). Expressing u3(L) in terms of u1(L) and
using u1(L) = 1

1+γ 2
3 /C2

1
L0−L

, we obtain from the first equation

in Eq. (37)

s1(L) ∝ s
(0)
1

(
1

L0 − L

) 1+γ3/C

1+γ 2
3 /C2

. (38)

The running susceptibility χSDW,1(L) is represented within RG
by the bubble diagram with fully renormalized side vertices.
We emphasize that both vertices should be treated as the
running ones (see Fig. 6). The RG equation for χSDW,1(L)
is then (

s
(0)
1

)2 dχSDW,1

dL
= s2

1 . (39)

Solving this equation, we obtain

χSDW,1(L) =
(

1

L0 − L

)αSDW,1

, (40)

where the scaling exponent αSDW,1 is given by

αSDW,1 = 2
1 + γ3/C

1 + γ 2
3 /C2

− 1. (41)

Performing the same calculations for χSDW,2(L), we obtain

χSDW,2(L) ∝
(

1

L0 − L

)αSDW,2

(42)

with

αSDW,2 = 2
1 + γ̃3/C̃

1 + γ̃ 2
3 /C̃2

− 1. (43)

Using the fact that on the weakly unstable fixed trajectory
γ3/C = γ̃3/C̃ [see Eq. (35)], we find

αSDW,2 = αSDW,1 ≡ αSDW. (44)

By C4 symmetry, the other susceptibilities χSDW,i(i ′)(L) have
the same exponent αSDW,1′ = αSDW,3 = αSDW,3′ = αSDW,2′ =
αSDW,4 = αSDW,4′ = αSDW. We plot αSDW along with the
exponents in other channels in Fig. 10.
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Δ6

ψ6

ψ6

=

ψ6

U4

ψ6

Δ6

ψ6

ψ6

+

ψ6

Ū4

ψ6

Δ6

ψ6

ψ6

ψ5

ψ5

+

ψ5

ψ5

Δ5

ψ6

ψ6

Ū4 +
ψ5

ψ5
Δ5

ψ6

ψ6

U4

ψ6

ψ6

+

ψ4

ψ4

Δ4

ψ6

ψ6

˜̃U3
+

ψ4

ψ4
Δ4

ψ6

ψ6

Ū3

ψ3

ψ3

+

ψ3

ψ3

Δ3

ψ6

ψ6

Ū3 +
ψ3

ψ3
Δ3

ψ6

ψ6

˜̃U3

ψ4

ψ4

+

ψ2

ψ2

Δ2

ψ6

ψ6

Ũ3 +
ψ2

ψ2
Δ2

ψ6

ψ6

U3

ψ1

ψ1

+

ψ1

ψ1

Δ1

ψ6

ψ6

U3 +
ψ1

ψ1
Δ1

ψ6

ψ6

Ũ3

ψ2

ψ2

FIG. 7. The diagraamatic representation of the renormalizations of the vertices in SC channel.

We also analyzed the susceptibility in the CDW channel at
the same momentum X and Y . We found (see Appendix C 1)
that along the weakly unstable fixed trajectory different
CDW components are degenerate and the susceptibility ex-
ponent in the CDW channel is the same as in the SDW
channel, i.e.,

αCDW = αSDW . (45)

B. Superconducting order parameters

To study superconductivity we analyze the response to
the auxiliary intraorbital pairing fields �

(0)
i , i = 1, . . . ,6 and

interorbital pairing fields �
(0)
1,2, �

(0)
3,4, and �

(0)
5,6. These 12

auxiliary fields couple to 12 distinct singlet superconducting
order parameters which one can construct out of dxz,dyz, and
dxy orbitals:

H
(0)
SC

=
∑
kσ

[
�

(0)
1 ψ

†
1,σ (k)ψ†

1,−σ (−k) + �
(0)
2 ψ

†
2,σ (k)ψ†

2,−σ (−k)

+ �
(0)
3 ψ

†
3,σ (k)ψ†

3,−σ (−k) + �
(0)
4 ψ

†
4,σ (k)ψ†

4,−σ (−k)

+ �
(0)
5 ψ

†
5,σ (k)ψ†

5,−σ (−k) + �
(0)
6 ψ

†
6,σ (k)ψ†

6,−σ (−k)

+ �
(0)
1,2ψ

†
1,σ (k)ψ†

2,−σ (−k) + �
(0)
3,4ψ

†
3,σ (k)ψ†

4,−σ (−k)

+ �
(0)
5,6ψ

†
5,σ (k)ψ†

6,−σ (−k) + H.c.
]
. (46)

The parameters �
(0)
i and �

(0)
ij play the role of bare super-

conducting vertices with zero total momenta in the particle-
particle channel. We label the full vertices as �i and �i,j ,
without the superscript.

Like we did in the SDW case, we first obtain and solve
the RG equations for the vertices and then use the results to
obtain the exponents for superconducting susceptibilities. For
symmetry analyses it is useful to introduce the symmetrized
combinations �1 ± �3, �2 ± �4, and �5 ± �6. These com-
binations transform as A1g (B1g) representations of the D4h

point group of a tetragonal lattice. Similarly, the combinations
�

re(im)
1,2 = �1,2 ± �∗

1,2, �
re(im)
3,4 = �3,4 ± �∗

3,4 and �
re(im)
5,6 =

�5,6 ± �∗
5,6 transform as A2g (B2g) representations of the D4h

group. Because the interaction is a D4h scalar, renormalizations
do not mix vertices from different representations. As a
result, all symmetrized combinations, belonging to different
representations, decouple and flow separately under RG.

The derivation of RG equations proceeds in the same way
as for SDW vertices. We show the corresponding diagrams in
Fig. 7. The RG equations for particle-particle vertices in the
A1g channel on the weakly unstable fixed trajectory are

d

dL

⎛
⎝�1 + �3

�2 + �4

�5 + �6

⎞
⎠ =

⎛
⎜⎜⎜⎝

−2(u5 + Eu7) −2
(√

Ae

Ae
u7 +

√
Ae

Ae
Eu5

) −2
(√

Ah

Ae
u3

)
−2

(√
Ae

Ae
u7 +

√
Ae

Ae
Eu6

) −2(u6 + Eu7) −2
(√

Ah

Ae
ũ3

)
−2

(√
Ae

Ah
u3 +

√
Ae

Ah
Eũ3

) −2
(√

Āe

Ah
ũ3 +

√
Āe

Ah
Eu3

) −2u4

⎞
⎟⎟⎟⎠

⎛
⎝�1 + �3

�2 + �4

�5 + �6

⎞
⎠. (47)

085108-13



XING, CLASSEN, KHODAS, AND CHUBUKOV PHYSICAL REVIEW B 95, 085108 (2017)

We solve the RG equations by taking the interactions
ui to be on the weakly unstable fixed trajectory, (35). The
diagonalization of the 3 × 3 matrix yields three independent
combinations of A1g vertices, corresponding to three eigenval-
ues: eαu1, eβu1, and eγ u1. Solving the three independent RG
equations, we obtain

�μ(L) ∝
(

1

L0 − L

) eμ

1+γ 2
3 /C2

, (48)

where μ = α,β,γ . We choose the solution with the largest
exponent, which corresponds to the largest eigenvalue eSC =
max{eα,eβ,eγ }. For the corresponding susceptibility, we then
obtain χSC(L) ∝ 1/(L0 − L)αSC , where

αSC = 2
eSC

1 + γ 2
3 /C2

− 1 . (49)

The values eα,β,γ depend on our three parameters C,C̃, and
E, which, we recall, depend on A0 and mh/me. We obtain
the largest exponent αSC numerically and show it in Fig. 10
as a function of A0 along with the exponents in the other
channels. The corresponding A1g order parameter is plotted in
Fig. 12 as a function of the angle along the Fermi surfaces.
The order parameter has opposite signs on electron and hole
Fermi surfaces, i.e., the gap structure is s+−.

We also analyzed the three other superconducting
channels B1g , A2g , and B2g , and found that the vertices
and susceptibilities in these channels do not diverge. In the
B1g channel, the analog of the 3 × 3 matrix for �1 − �3,
�2 − �4, and �5 − �6 vanishes on the weakly unstable fixed
trajectory, because the corresponding couplings vanish [see
Eq. (31)]. The vertices in A2g and B2g channels describe
interorbital pairing. These vertices are renormalized via the
interactions Ũ4, ˜̃U4, Ũ7, and ˜̃U7. For our choice U ′ > J ,
these interactions renormalize to zero under RG, hence the
corresponding vertices do not increase.

C. Orbital order parameters

We consider orbital order parameters with zero transferred
momentum. In the band basis, an instability leading to
condensation of any of such orbital order parameters is a
Pomeranchuk instability. A non-s-wave Pomeranchuk order
breaks the rotational symmetry of the lattice but does not break
the translational invariance. The reconstruction of the Fermi
surfaces for a d-wave (B1g) Pomeranchuk order is shown in
Fig. 11.

To analyze the susceptibilities in the orbital channel, we
again introduce auxiliary fields, this time real charge fields
�

(0)
i and complex charge fields �

(0)
i,j . The coupling of auxiliary

fields to fermions is described by

HPom =
∑
kσ

[
�

(0)
1 ψ

†
1,σ (k)ψ1,σ (k) + �

(0)
2 ψ

†
2,σ (k)ψ2,σ (k)

+ �
(0)
3 ψ

†
3,σ (k)ψ3,σ (k) + �

(0)
4 ψ

†
4,σ (k)ψ4,σ (k)

+ �
(0)
5 ψ

†
5,σ (k)ψ†

5,−σ (k) + �
(0)
6 ψ

†
6,σ (k)ψ6,σ (k)

+ (
�

(0)
1,2ψ

†
1,σ (k)ψ2,σ (k) + �

(0)
3,4ψ

†
3,σ (k)ψ4,σ (k)

+ �
(0)
5,6ψ

†
5,σ (k)ψ6,σ (k) + H.c.

)]
. (50)

The coefficients �
(0)
i and �

(0)
i,j are bare vertices with zero

momentum in the particle-hole charge channel. We label
dressed vertices by the same �i and �i,j , but without the
superscript. We introduce symmetrized combinations �1 ± �3,
�2 ± �4, and �5 ± �6, which transform as A1g (B1g) repre-
sentations of the D4h group, and the combinations �

re(im)
1,2 =

�1,2 ± �∗
1,2, �

re(im)
3,4 = �3,4 ± �∗

3,4, and �
re(im)
5,6 = �5,6 ± �∗

5,6,
which transform as A2g (B2g). Combinations belonging to
different representations again decouple in the RG equations.

The renormalization of the vertices in the orbital (Pomer-
anchuk) channels is different from the ones in SDW and
superconducting channels, because the particle-hole suscep-
tibility at zero momentum transfer is nonlogarithmical. Still,
the renormalization involves the running couplings ui(L).

One can demonstrate (see Ref. [69] for details) that the
renormalization of �i(L) and �ij (L) comes from internal
energies comparable to L. As a consequence, the vertices at a
scale L are expressed in terms of interactions ui at the same
scale L.

We now need to select diagrammatic series for �i . In SDW
and superconducting channels, the RG flow of the vertices
is given by a series of ladder diagrams. The selection of
these diagrams is rigorously justified within the one-loop RG.
For the Pomeranchuk vertices, there are no logarithms and
hence no parameter to select a particular set of diagrams. We
choose, without proof, the same set of ladder diagrams as for
SDW and superconducting channels (see Fig. 8). Within this
approximation, the equations for the dressed Pomeranchuk
vertices are

⎛
⎝�1 − �3

�2 − �4

�5 − �6

⎞
⎠= MB1g

⎛
⎝�1 − �3

�2 − �4

�5 − �6

⎞
⎠+

⎛
⎜⎝

�
(0)
1 − �

(0)
3

�
(0)
2 − �

(0)
4

�
(0)
5 − �

(0)
6

⎞
⎟⎠ , (51)

⎛
⎝�1 + �3

�2 + �4

�5 + �6

⎞
⎠= MA1g

⎛
⎝�1 + �3

�2 + �4

�5 + �6

⎞
⎠+

⎛
⎜⎝

�
(0)
1 + �

(0)
3

�
(0)
2 + �

(0)
4

�
(0)
5 + �

(0)
6

⎞
⎟⎠ , (52)

where

MB1g
=

⎛
⎜⎝

−2u5 −2 Ãe

Ae
u5 −2Ah

A
ε1

−2 Ãe

Ae
u6 −2u6 −2Ah

Ã
ε2

−2Ae

A
ε1 − 2 Ãe

Ã
ε2 −2 Ãe

A
ε1 − 2 Āe

Ã
ε2 −2u4

⎞
⎟⎠

(53)

and

MA1g
=

⎛
⎜⎝

−2u5 −2 Ãe

Ae
u5 −8Ah

A
u1

−2 Ãe

Ae
u6 −2u6 −8Ah

Ã
ũ1

−8
(

Ae

A
u1 + Ãe

Ã
ũ1

) −8
(

Ae

A
u1 + Āe

Ã
ũ1

) −2u4

⎞
⎟⎠.

(54)

In Eqs. (53) and (54), we introduced

ε1 = u2 − ū2 − 2(u1 − ū1),

ε2 = ũ2 − ˜̃u2 − 2(ũ1 − ˜̃u1) . (55)

The ratios Ae/A, etc. are functions of A0 and mh/me.
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FIG. 8. The diagramatic representation of the renormalization of the vertices in the Pomeranchuk channel.

In what follows, we focus on the instability in the B1g

channel, which gives rise to a true C4 breaking orbital order.
Solving the 3 × 3 matrix equation for the three order parame-
ters �1,e = �1 − �3, �2,e = �2 − �4, and �1,h = −(�5 − �6),
we obtain

�1,e,�2,e,�1,h ∝ 1/(1 − λu1) ∝ (
LB1g

− L
)−1

, (56)

where λu1 is the largest eigenvalue of MB1g
and

LB1g
= L0 − λ

1 + γ 2
3 /C2

. (57)

We verified that the largest eigenvalue of MB1g
is positive. Then

LB1g
< L0, i.e., the instability in the orbital channel occurs at

a larger T than the one in the superconducting channel. This,
however, may be the artefact of our approximation, because
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FIG. 9. The RG flow of susceptibilities as functions of the
RG parameter L. The susceptibilities in the superconducting and
Pomeranchuk channels diverges, while the one in the SDW channel
initially increases but remains finite as L approaches L0, which is
slightly to the right from the right boundary of the figure.

the correction to L0 in Eq. (57) is nonlogarithmical and, strictly
speaking, the difference between L0 and LB1g

is outside of the
applicability of the one-loop RG analysis. Put it differently,
at L = LB1g

, the running couplings become of order of one,
i.e., one-loop RG is at the border of its applicability. In this
respect, the ladder approximation is a bit biased towards a
Pomeranchuk order. We note, however, that, even if we neglect
the difference between L0 ad LB1g

, we still find that the expo-
nent for the B1g Pomeranchuk vertices is βPom = 1. Evaluating
then the susceptibility in the Pomeranchuk channel, we obtain

χB1g
∝ (L0 − L)−1, (58)

i.e., the susceptibility exponent αPom = 1.
For completeness, we also considered A1g , A2g , and B2g

Pomeranchuk channels. The divergence of the Pomeranchuk
susceptibility in the A1g channel gives rise to a shift of the
chemical potential, with different magnitudes on hole and
electron pockets [50]. It does not, however, give rise to a
true symmetry breaking as A1g symmetry is the same as the
symmetry of the tetragonal phase. In practice, it implies that
the divergence of the A1g Pomeranchuk susceptibility is very
likely cut by terms beyond RG. The order parameters �ij in
A2g and B2g channels are interpocket ones and do not break
symmetry between x and y directions. We discuss these orders
in Appendix C 3.

D. Comparative analysis of susceptibilities

The explicit results for the RG flow of susceptibilities in SC,
SDW, and d-wave (B1g) Pomeranchuk channels are presented
in Fig. 9. We obtained this flow by selecting a particular set
of initial conditions, for which the RG flow moves the system
towards the weakly unstable fixed trajectory, solving for ui(L),
and using these running couplings to obtain L dependencies
first of the vertices and then of the susceptibilities. We see
the same behavior as we obtained by analyzing the fixed
trajectories. Namely, the susceptibility in the Pomeranchuk
channel is initially the smallest one, because its bare value
is nonlogarithmic, but it becomes the largest at L ≈ L0. The
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FIG. 10. The exponents αi for susceptibilities χ0 ∝ 1/(L0 − L)αi

in SDW, SC, and d-wave Pomeranchuk channels for interactions on
the weakly unstable fixed trajectory, Eq. (35). (Top) αi as functions
of A0 at fixed mh/me = 1. (Bottom) αi as functions of mh/me at
fixed A0 = 0.8. A larger exponent means a faster divergence of
the susceptibility. We recall that A2

0 determines a relative weight
of dxz(dyz) and dxy orbitals along the electron pockets.

susceptibility in the SC channel increases, but not as fast as
the Pomeranchuk susceptibility, and the susceptibility in SDW
channel does not diverge at L = L0.

To see more accurately the scaling behavior of various
susceptibilities we compared the exponents α in χ (L) ∝
1/(L0 − L)α in SDW, SC, and Pomeranchuk channels for ui

on the weakly unstable fixed trajectory. We plot αi in Fig. 10 as
a function of A0 at fixed mh/me and as a function of mh/me at
fixed A0. The value of αPom = 1 is independent on the mh/me

mass ratio and the parameter A0. The values of αSDW = αCDW

and αSC weakly depend on on A0 (and on mh/me). We see
that αSC is positive, but smaller than one, and αSDW = αCDW is
negative. This is fully consistent with Fig. 9. The conclusion
from both figures is then that, upon increasing L (i.e.,
lowering the temperature), the first instability occurs in the
B1g Pomeranchuk channel and leads to a spontaneous orbital
order, which breaks C4 rotational symmetry. Superconducting
order develops at a lower temperature (which will be further
reduced due to a negative feedback from the orbital order), and
SDW and CDW orders do not develop down to T = 0.

A word of caution, the Pomeranchuk susceptibility has a
small overall factor compared to the one in the superconducting
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Y

X

dxz
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FIG. 11. Electron structure in the nematic state above and below
the onset of B1g Pomeranchuk instability. The two originally circular
hole pockets (dashed lines) are distorted into ellipses with orthogonal
directions of elongation (solid lines). The electron pockets at X

and Y , originally of the same size and form (dashed lines), become
inequivalent in the presence of a nematic order (solid lines).

channel because the bare Pomeranchuk susceptibility is non-
logarithmical, while bare susceptibility in the superconducting
channel scales as L. As the consequence, Pomeranchuk
susceptibility becomes the largest only at L − L0 � 1, where,
strictly speaking, higher-loop corrections to RG equations
become relevant. We assume, without proof, that these correc-
tions do not change the interplay between αPom and αSC. This
issue has been considered in the functional RG (fRG) analyses
of the 2D Hubbard model [70,71], where it was shown [71]
that the modified fRG analysis, which includes fluctuations
around the Fermi surface, weakens the tendency towards a
Pomeranchuk instability.

We also remind that our consideration applies to systems for
which L0 � LF = ln W/EF . When LF < L0, the one-loop
parquet RG runs up to L = LF , and the system generally de-
velops an instability in the channel in which the susceptibility
is the largest at L = LF (see Refs. [3,50,69]).

V. THE STRUCTURE OF SUPERCONDUCTING AND
ORBITAL ORDER PARAMETERS AND IMPLICATIONS

FOR THE EXPERIMENTS

The susceptibility analysis reveals instabilities towards
superconducting and orbital order. In this section we determine
the structure of the corresponding order parameters and discuss
the implications of the orbital order for the band structure.

The magnitudes of different order parameters at T → 0
can only be obtained by solving the full set of nonlinear gap
equations, which include a nonlinear coupling between orbital
and superconducting orders. This accounts for the fact that,
once orbital order develops first, it tends to suppress the onset
of superconducting order. This analysis is beyond the scope of
our RG study, in which we approach the instabilities from the

disordered state at higher T . Nevertheless, the RG analysis al-
lows one to detect the symmetry of superconducting and orbital
orders, and also find the ratios between different components
of superconducting and orbital order parameters near their
onsets, i.e., between superconducting gaps on hole and electron
pockets and between various xy and xz/yz components of
the orbital order parameter. We assume that the vertices �i

for superconductivity and �i for orbital order (i = 1–6) in
Eqs. (47), (51), and (52), are proportional to the corresponding
condensates in the ordered phases. Furthermore, we assume
that, with one exception, which we discuss below, the ratios
between the components of �i and �i do not change between
the onset of the order and lower T , at which they are measured
by ARPES and other techniques. We consider the supercon-
ducting channel first and then analyze the orbital channel.

A. Superconducting order parameter

The vertices �i represent fermionic bilinears in the particle-
particle channel in the orbital basis. To obtain the supercon-
ducting order parameters on different pockets, we need to
convert these �i into band basis using the orbital-to-band
transformation from Eq. (9). For the SC order parameter on
hole pockets, we obtain

〈ckc−k〉 = 〈
cos2 θhψ5(k)ψ5(−k) + sin2 θhψ6(k)ψ6(−k)

+ 1
2 sin 2θh(ψ5(k)ψ6(−k) + ψ6(k)ψ5(−k))

〉
= cos2 θh�5 + sin2 θh�6 + 1

2 sin 2θh(�5,6 + �6,5)

= �5 ≡ �h (59)

and

〈dkd−k〉 = 〈
sin2 θhψ5(k)ψ5(−k) + cos2 θhψ6(k)ψ6(−k)

+ 1
2 sin 2θh(ψ5(k)ψ6(−k) + ψ6(k)ψ5(−k))

〉
= sin2 θh�5 + cos2 θh�6 + 1

2 sin 2θh(�5,6 + �6,5)

= �5 ≡ �h. (60)

The A1g SC order parameter on the electron pocket near Y is

〈f1,kf1,−k〉 = 〈
cos2 φe,kψ1(k)ψ1(−k) + sin2 φe,kψ2(k)ψ2(−k)

+ 1

2
sin 2φe,k(ψ1(k)ψ2(−k) + ψ2(k)ψ1(−k))

〉
= cos2 φe,k�1 + sin2 φe,k�2

= A2
0 cos2 θe�1 + (1 − A2

0 cos2 θe)�2

=
(

A2
0

2
�1 +

(
1 − A2

0

2

)
�2

)

+ A2
0
�1 − �2

2
cos 2θe

= �a,e + �b,e cos 2θe, (61)

where �a,e = �1A
2
0/2 + �2(1 − A2

0/2) and �b,e = (�1 −
�2)A2

0/2. The order parameter on the electron pocket near
X is obtained from (61) by π/2 rotation:

〈f2,kf2,−k〉 = �a,e − �b,e cos 2θe. (62)

The ratios of �h, �a,e, and �b,e are determined by extracting
the components �1 = �3,�2 = �4, and �5 = �6 from the
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FIG. 12. Superconducting gaps along the Fermi surfaces for the
interactions on the weakly unstable fixed trajectory. The solid blue
line is the gap �h on the two hole pockets, the dashed lines are the
gaps on the electron pockets: the green one is the gap on the Y pocket
and red one is on the X pocket. The angle is counted anti-clockwise
from kx direction. We set mh/me = 1, A0 = 0.8.

matrix equation (47), i.e., from the solution, which corresponds
to the largest eigenvalue of this matrix. We show the results for
SC gaps on hole and electron pockets on the weakly unstable
fixed trajectory in Fig. 12. We see that all three components
�h, �a,e, and �b,e are nonzero and of the same order. The two
angle-independent components �h and �a,e have opposite
signs, i.e., the A1g order parameter has s+− structure, as
expected. We also see that �a,e > �b,e, i.e., there are no
accidental nodes on the electron pockets. We note by passing
that on the stable fixed trajectories the angular dependence of
the gaps on the electron pockets becomes more pronounced.

B. Orbital order parameter

Long-range orbital order in our RG analysis emerges
as a d-wave Pomeranchuk order. Such an order leads to
unequal occupations of dxz and dyz orbital states near hole
and electron pockets, and also to unequal occupations of
dxy orbital states near X and Y electron pockets. The
three B1g order parameters in the orbital basis are �1,e =
nY

xz − nX
yz, �1,h = n�

xz − n�
yz, and �2,e = nY

xy − nX
xy . In our

notations, �1,e = �1 − �3 = 2�1,�2,e = �2 − �4 = 2�2, and
�1,h = �6 − �5 = 2�6. Transforming from orbital to band
basis, we obtain for electron and hole densities

〈f †
1,kf1,k〉 ∝

[
A2

0

2
�1 +

(
1 − A2

0

2

)
�2

]
+ A2

0
�1 − �2

2
cos 2θe

≡ �a,e + �b,e cos 2θe,

〈
f

dag
2,k f2,k

〉 ∝
[
A2

0

2
�3 +

(
1 − A2

0

2

)
�4

]
+ A2

0
�3 − �4

2
cos 2θe

= −
[
A2

0

2
�1+

(
1 − A2

0

2

)
�2

]
+A2

0
�1 − �2

2
cos 2θe

= −�a,e + �b,e cos 2θe,

〈c†kck〉 ∝ cos2 θh�5 + sin2 θh�6 = − cos 2θh�6,

〈d†
kdk〉 ∝ cos2 θh�6 + sin2 θh�5 = cos 2θh�6, (63)
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FIG. 13. d-wave Pomeranchuk order parameters [Eq. (63)] for
interactions on the weakly unstable fixed trajectory. The order
parameters on the hole pockets are shown by solid lines, and the
ones on the electron pockets by dashed lines. The cos 2θ form of
order parameters on the hole pockets deform C4-symmetric hole
pockets into ellipses, with long axis along orthogonal directions on
the two pockets. Almost constant order parameters of opposite sign
on the two electron pockets make one pocket larger and the other
smaller in the nematic phase (see Fig. 11). The angle θ is counted
anticlockwise from kx direction. We use mh/me = 1, A0 = 0.8 to
determine the order parameters on the electron pockets. The overall
magnitude of the order parameters on the hole pockets was adjusted
to be comparable to that on the electron pockets.

where �a,e = �1A
2
0/2 + �2(1 − A2

0/2) and �b,e = (�1 −
�2)A2

0/2. We show the order parameters on hole and electron
pockets in Fig. 13. Like in the superconducting case, we extract
the relations between �1, �2, and �6 from the matrix equation
(53), i.e., from the solution which corresponds to the largest
eigenvalue.

Exactly on the weakly unstable fixed trajectory the 3 ×
3 matrix MB1g

decouples into the 2 × 2 set for �1 and �2

and a single equation for �6, because ε1 and ε2 in Eq. (53)
vanish. From the 2 × 2 set, one can obtain the ratio �1/�2 =
�1,e/�2,e. The ratio does depend on A0, but is generally close
to one (see Fig. 14). This result implies that the d-wave order
parameters made out of dxz/dyz orbitals and dxy orbitals at X

and at Y pockets are nearly equal. This is very different from
the behavior on the two stable fixed trajectories, where either
�1 or �2 vanishes.

To obtain the ratios of the order parameters on hole and
on electron pockets, e.g., �6/�1 = �1,h/�1,e, one needs to
include the fact that in reality the system approaches a fixed
trajectory in the process of the RG flow, but is never strictly
on the fixed trajectory, i.e., ε1 and ε2 are small but nonzero.
Analyzing the RG flow towards the weakly unstable fixed
trajectory, we find that �1,h/�1,e is negative and its magnitude
is large.

C. Implications for experiments

We now compare our theoretical results with the experi-
ments on FeSe, where at ambient pressure a nematic order has
been observed below 85 K, and superconductivity has been
observed below 8 K. This sequence of transitions is consistent
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FIG. 14. The orbital order parameters on the electron pockets
�1,e = nY

xz − nX
yz = 2�1 and �2,e = nY

xy − nX
xy = 2�2 as functions of

A0 at fixed mh/me = 1 for interactions on the weakly unstable
fixed trajectory. Each order parameter determines the splitting of
the corresponding bands at M point in the 2Fe BZ.

with the outcome of our RG analysis. We identify the nematic
order with a spontaneous d-wave orbital order.

The most generic feature of d-wave orbital order is the elon-
gation of the pockets due to breaking of C4 lattice rotational
symmetry down to C2. This effect is particularly pronounced
for the two hole pockets, which in the absence of orbital order
are C4-symmetric. Below the nematic transition, the pockets
become elongated. In the 2Fe Brillouin zone, where ARPES
experiments are performed, one pocket becomes elongated
along one BZ diagonal and the other along the other zone
diagonal (see Fig. 15). Such an elongation has been observed

M M

FIG. 15. (Left) Fermi surfaces in 2Fe Brillouin zone above the
nematic transition. Each of the two hole pockets is C4 symmetric. The
two electron pockets are centered at M = (π,π ) and form an inner and
outer pocket. The inner pocket predominantly consists of dxz and dyz

orbital states, the outer pocket is predominantly made out out of dxy

orbital states. These pockets touch each other along k̃x = π and k̃y =
π directions (k̃ is the momentum in 2Fe BZ). Within our model, the
location of the pockets in 2Fe BZ and their dispersion can be obtained
by a simple folding, i.e., by changing momentum components kx

and ky in the 1Fe BZ to k̃x = kx + ky and k̃y = ky − kx . Spin-orbit
interaction, however, splits the inner and the outer pockets. (Right)
the structure of hole and electron pockets in the nematic phase in the
2Fe BZ.

dxz�dyz
dxy
Y �dxy

X

k

E

k

E

FIG. 16. The splittings in the band dispersions near the M point in
the 2Fe BZ for interaction on the weakly unstable fixed trajectory. The
M point is taken as the origin of the coordinates and the cut is along
M-� (kx = ky = k). (Left) Above the nematic transition. (Right) In
the nematic phase. Solid and dashed lines describe excitations with
near-pure and mixed orbital content, respectively.

in ARPES experiments on FeSe by several groups [45–47].
In addition, there is an elongation of electron pockets as well.
In the 2Fe BZ, the X and the Y electron pockets are centered
at the same M point (Fig. 15). The two form an inner and
outer pocket that touch each other in the absence of spin-orbit
coupling, but split in the presence of such a coupling. The
inner pocket predominantly consists of dxz and dyz orbital
states, the outer pocket is predominantly made out out of dxy

orbital states. Above the nematic transition, both inner and
outer pockets are C4-symmetric, but in the presence of orbital
order each pocket is elongated along the diagonal directions
(Fig. 15).

The orbital order also affects the states away from the
Fermi surface, in particular the hierarchy of electronic states
at high-symmetry � and M points in the 2Fe BZ. In the
absence of orbital order, the states at M are doubly degenerate
even in the presence of spin-orbit interaction [43] (left panel
in Fig. 16). One degeneracy is between dxz and dyz states,
another is between two dxy states. In the 1Fe Brillouin zone,
one of the states in each subset comes from the pocket at
X, another from the pocket at Y . In the presence of orbital
order, these degenerate states split. The splitting of dxz/dyz

states is 2�1,e(=4�1), the splitting of dxy states is 2�2,e(=4�2).
Assuming that one can extend the results of the RG analysis
to the high-symmetry points, one can compare the ratios of
the two splittings between theory and experiment. In the
RG analysis, either �1,e or �2,e vanish on the stable fixed
trajectories, but the ratio of the two is close to one on the
weakly unstable fixed trajectory (see Fig. 14).

ARPES data for �1,e/�2,e from different groups [45–48]
are similar but not identical. We will use recent ARPES data
from Ref. [45] for comparison. These authors have found
that the magnitudes of the splittings within dxz/dyz and dxy

subsets are close to each other: each is about 15 meV. In
our notations, this implies that �1,e ≈ �2,e ≈ 7.5 meV. Such
near-equal splitting is not reproduced on the two stable fixed
trajectories, but it is well reproduced on the weakly unstable
fixed trajectory. We illustrate this in Figs. 16 and 17. We argue,
based on this comparison, that the RG analysis does agree
with the ARPES data on the electron pockets, if, indeed, the
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k

E

k

E

FIG. 17. The same as in Fig. 16 but for interactions on one of
the two stable fixed trajectories. In this situation either the splitting
between dxz/dyz bands or the splitting between the two dxy bands
vanishes.

parameters for FeSe are such that the system is in the basin of
attraction of the weakly unstable fixed trajectory.

The comparison with orbital order on the hole pockets
requires more care. On one hand, Suzuki et al. reported [49],
based on their ARPES data, that the signs of the dxz/dyz order
parameters on hole and electron pockets are opposite. This is
consistent with the RG result that on the weakly unstable fixed
trajectory, as we found that �1,h and �1,e have different signs
(the same sign difference between �1,h and �1,e holds on the
two stable fixed trajectories [50]). On the other hand, our RG
analysis yields a larger magnitude of �1,h than that of �1,e, and,
hence, a larger splitting at the � point than that at the M point.
The authors of Ref. [45], meanwhile, argued that the splitting
at � is comparable to that at M . However, when comparing
our RG result for �1,h with the measured splitting at �, one has
to bear in mind that our �1,h was obtained without spin-orbit
coupling. Meanwhile, Ref. [45] found that the splitting at �

largely survives above the nematic transition and hence is
predominantly due to spin-orbit coupling, which is known to
split the bands at � already in the absence of an orbital order
[43]. The �1,h ∼ 15 meV was extracted from the ARPES data
in Ref. [45] by detecting an additional splitting in the nematic
phase at low T . Because of this, a meaningful comparison of
the magnitude of �1,h between experiment and theory is only
possible after the inclusion of spin-orbit interaction into the
theoretical analysis.

VI. CONCLUSION

In this paper, we reported the results of the parquet RG
study of competing instabilities in the full 2D four pocket,
three orbital low-energy model for FeSCs. Our four-pocket
model consists of two �-centered hole pockets, made out of dxz

and dyz orbitals, and two symmetry-related electron pockets
centered at X = (π,0) and Y = (0,π ) points in the 1Fe BZ
and made out of dyz/dxy and dxz/dxy orbitals, respectively.
We derived and analyzed the RG flow of 30 couplings,
which describe all symmetry-allowed interactions between
low-energy fermions. Despite that the number of couplings is
large, we argued that there are only two stable fixed trajectories
of the RG flow and one weakly unstable trajectory with a single
unstable direction. On one stable trajectory the interactions
involving dxz/dyz orbital components on electron pockets

vanish relative to interactions involving dxy components,
on the other interactions involving dxy orbital components
vanish relative to dxz/dyz components. On the weakly unstable
trajectory, interactions involving dxz/dyz and dxy orbital states
on electron pockets remain comparable. The behavior along
the two stable fixed trajectories has been analyzed in Ref. [50].
In this work, we analyzed the system behavior along the
weakly unstable trajectory. We argued, based on the analysis of
susceptibilities along this trajectory, that the leading instability
upon lowering the temperature is towards a three-component
d-wave orbital nematic order. Two orbital components are the
differences between fermionic densities on dxz and dyz orbitals
on hole pockets and on electron pockets, �1,h = n�

xz − n�
yz,

�1,e = nY
xz − nX

yz, the third one is the difference between the
densities of dxy orbitals on X and Y pockets, �2,e = nY

xy − nX
xy .

In our RG analysis, the magnitudes of �1,e and �2,e turn out
to be nearly equal, and the sign of �1,h is opposite to that of
�1,e. We applied the results to FeSe and found both qualitative
and quantitative agreement with ARPES data [45–47,49],
specifically on the ratio of �1,e/�2,e. We argue, based on this
agreement and the fact that Fermi surfaces in FeSe are all small,
that the nematicity, observed in FeSe below 85 K is likely the
result of a spontaneous orbital order, which is captured by RG.
The situation in other Fe pnictides, where either hole or/and
electron pockets are larger, is different, and there the nematic
order is likely due to softening of composite spin fluctuations.
This last scenario gives rise to a two-step magnetic transition
into the stripe SDW state, with an intermediate Ising nematic
phase, in which C4 symmetry is broken, but O(3) spin-rotation
symmetry remains intact.
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APPENDIX A: DETAILS OF RG ANALYSIS
ON FIXED TRAJECTORIES

As we wrote in Sec. III B, the solution of the parquet RG
equations leads to a divergence of various couplings, which
occurs in a universal way in the sense that the coupling ratios
tend to constants. These constants characterize the different
solutions—the fixed trajectories—of the flow. In the following,
we present the detailed solution of the parquet RG equations
and the stability analysis of the resulting fixed trajectories.
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1. Stable fixed trajectories

For the first fixed trajectory, we rewrite all couplings in
terms of the ratios γi,γ̃i as ui = γiu1, ũi = γ̃iu1. This leads
to flow equations for the ratios u1

dγi

dL
= d

dL
ui − γi

d
dL

u1 and

analogously for γ̃i . A fixed trajectory is set by conditions dγi

dL
=

0. In our case,

u̇1 = u2
1 + u2

3/C2,

γ̃1
(
1 + γ 2

3 /C2
) = γ̃ 2

1 + γ̃ 2
3 /C̃2,

γ2
(
1 + γ 2

3 /C2
) = 2γ2 − 2γ 2

2 ,

γ̃2
(
1 + γ 2

3 /C2
) = 2γ̃1γ̃2 − 2γ̃ 2

2 ,

γ3
(
1 + γ 2

3 /C2) = − 2γ3γ5 − 2γ̃3γ7 − E(2γ̃3γ5

+ 2γ3γ7) − 2γ3γ4 + 4γ3 − 2γ2γ3,

γ̃3
(
1 + γ 2

3 /C2
) = − 2γ3γ7 − 2γ̃3γ6 − E(2γ3γ6

+ 2γ̃3γ7) − 2γ̃3γ4 + 4γ̃1γ̃3 − 2γ̃2γ̃3,

γ4
(
1 + γ 2

3 /C2) = − 2γ 2
3 − 2γ̃ 2

3 − E(4γ3γ̃3) − 2γ 2
4 ,

γ5
(
1 + γ 2

3 /C2
) = − 2γ 2

5 − 2γ 2
7 − E(4γ5γ7) − 2γ 2

3 ,

γ6
(
1 + γ 2

3 /C2
) = − 2γ 2

7 − 2γ 2
6 − E(4γ6γ7) − 2γ̃ 2

3 ,

γ7
(
1 + γ 2

3 /C2
) = − 2γ5γ7 − 2γ6γ7 − E

(
2γ5γ6 + 2γ 2

7

)
− 2γ3γ̃3. (A1)

The solutions for γi in Ref. [50] are reproduced by setting
γ̃1 = γ2 = γ̃2 = γ̃3 = γ6 = γ7 = 0 to obtain

γ3
(
1 + γ 2

3 /C2
) = −2γ3γ5 − 2γ3γ4 + 4γ3 − 2γ2γ3,

γ4
(
1 + γ 2

3 /C2
) = −2γ 2

3 − 2γ 2
4 , (A2)

γ5
(
1 + γ 2

3 /C2
) = −2γ 2

5 − 2γ 2
3 .

This leads to the following five solutions:

(1) γ3 = ±C
√

−1 + 8C2 + 4
√

1 − C2 + 4C4,
γ4 = γ5 = 1 − 2C2 ± √

1 − C2 + 4C4;
(2) γ3 = 0, γ4 = − 1

2 , γ5 = − 1
2 ;

(3) γ3 = 0, γ4 = − 1
2 , γ5 = 0;

(4) γ3 = 0, γ4 = 0, γ5 = − 1
2 ;

(5) γ3 = 0, γ4 = 0, γ5 = 0.
Analyzing the stability as explained in the next section,

we find that solutions (2)–(5) are unstable with more than
one unstable direction. Additionally the negative sign in
the expression for γ4 and γ5 in solution (1) also leads to
several unstable directions. Regarding the remaining solution
in Eq. (1), we anticipate that it is stable and that γ3 retains a
positive sign, because its initial value is positive for repulsive
interactions. Therefore we obtain as a first stable fixed
trajectory

u1(L) = 1

1 + γ 2
3 /C2

1

L0 − L
,

γ3 = +C

√
−1 + 8C2 + 4

√
1 − C2 + 4C4, (A3)

γ4 = γ5 = 1 − 2C2 −
√

1 − C2 + 4C4,

which corresponds to Eq. (33) of the main text.

To obtain the second stable fixed trajectory, Eq. (34) in the
main text, we write the couplings as ui = γiũ1, ũi = γ̃i ũ1. One
finds the same structure of equations as above [Eq. (A2)] with
γ3 replaced by γ̃3, γ5 by γ6, and C by C̃. The stability analysis
then is analogous to the one for Eq. (A2), and we obtain as
second stable fixed trajectory

ũ1(L) = 1

1 + γ̃ 2
3 /C̃2

1

L0 − L
,

γ̃3 = +C̃

√
−1 + 8C̃2 + 4

√
1 − C̃2 + 4C̃4, (A4)

γ4 = γ6 = 1 − 2C̃2 −
√

1 − C̃2 + 4C̃4.

2. Weakly unstable fixed trajectory

Since in the case of the weakly unstable fixed trajectory
the situation is more involved, we first consider the simpler
case when C = C̃ (implying A0 = 1). Then the parquet RG
equations simplify to

u1 = ũ1,

u2 = ũ2,

u3 = ũ3,

u5 = u6,

u̇1 = u2
1 + u2

3/C2,

u̇2 = 2u1u2 − 2u2
2, (A5)

u̇3 = −2u3u5(1 + E) − 2u3u7(1 + E)

− 2u3u4 + 4u1u3 − 2u2u3,

u̇4 = −4u2
3(1 + E) − 2u2

4,

u̇5 = −2u2
5 − 2u2

7 − E(4u5u7) − 2u2
3,

u̇7 = −4u5u7 − E
(
2u2

5 + 2u2
7

) − 2u2
3.

We again reformulate these equations in terms of ui = γiu1

and determine the ratios γi . We solve the resulting algebraic set
of equations numerically. We find that solutions with γ3 = 0
are truly unstable and as above γ3 < 0 cannot be reached with
repulsive initial conditions. For γ3 > 0 and varying C and E,
we find two solutions. One of them exhibits only one unstable
directions, while the second one is more unstable. For example,

when mh/me = 1 and A0 = 1, we get C =
√

3
2 and E = 1

3 ,
and the two solutions are γ2 = 0 and

γ3 = 9.66, γ4 = −14.81,

γ5 = γ6 = −5.55, γ7 = −5.55;

γ3 = 9.66, γ4 = −14.81,

γ5 = γ6 = −29.27, γ7 = 18.16. (A6)

In this case, the first fixed trajectory has one unstable direction
and the second fixed trajectory has three such directions.

Also in the general case, when C̃ �= C, there are two
solutions for γ3 > 0. Both are unstable with one and three
unstable directions. We call the solution with only one unstable
direction, the weakly unstable fixed trajectory. Explicitly the
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solutions for general C̃ �= C are determined by

γ̃1 = 1, γ2 = γ̃2 = 0, γ̃3 = C̃

C
γ3,

γ3 =
√

−C2

[(
1 + E

C̃

C
+ α

(
C̃

C
+ E

))
2γ5 + 2β

(
C̃

C
+ E

)
γ6 + 2γ4 − 3

]
,

γ4 = −1

2

(
c1 − 3 + c2

a1γ5 + b1γ6 + c3

)
,

γ7 = αγ5 + βγ6, (A7)

where γ5 and γ6 are given by the solution of the following two equations of third order(−a2
1 + a1x1

)
γ 3

5 + (−2a1b1 + b1x1 + a1z1)γ 2
5 γ6 + (−a1 − a1c1 − a1c3 − 2a2

1C
2 + c3x1

)
γ 2

5

+ (−b2
1 + a1y1 + b1z1

)
γ5γ

2
6 + (−b1 − b1c1 − b1c3 − 4a1b1C

2 + c3z1)γ5γ6

+ (−c2 − c3 − c1c3 − 2a1c1C
2 − 2a1c3C

2)γ5 + b1y1γ
3
6 + (−2b2

1C
2 + c3y1

)
γ 2

6

+ (−2b1c1C
2 − 2b1c3C

2)γ6 + (−2c2C
2 − 2c1c3C

2) = 0,

a1x2γ
3
5 + (−a2

1 + b1x2 + a1z2
)
γ 2

5 γ6 + (−2a2
1C̃

2 + c3x2
)
γ 2

5 + (−2a1b1 + a1y2 + b1z2)γ5γ
2
6

+ (−a1 − a1c1 − a1c3 − 4a1b1C̃
2 + c3z2)γ5γ6 + (−2a1c1C̃

2 − 2a1c3C̃
2)γ5 + (−b2

1 + b1y2
)
γ 3

6

+ (−b1 − b1c1 − b1c3 − 2b2
1C̃

2 + c3y2
)
γ 2

6 + (−c2 − c3 − c1c3 − 2b1c1C̃
2 − 2b1c3C̃

2)γ6

+ (−2c2C̃
2 − 2c1c3C̃

2) = 0. (A8)

In these expressions, we introduced the parameters

α = −
(

1 + E
C̃

C

)/(
C̃

C
− C

C̃

)
,

β =
(

1 + E
C

C̃

)/(
C̃

C
− C

C̃

)
,

a1 = −2

[(
1 + E

C̃

C

)
+ α

(
C̃

C
+ E

)]
,

b1 = −2β

(
C̃

C
+ E

)
,

c1 = 3 + 4C2

(
1 + C̃2

C2
+ 2E

C̃

C

)
,

c2 = 4C2

(
1 + C̃2

C2
+ 2E

C̃

C

)[
4C2

(
1 + C̃2

C2
+ 2E

C̃

C

)
− 1

]
,

c3 = 4 − 4C2

(
1 + C̃2

C2
+ 2E

C̃

C

)
, (A9)

x1 = −2(1 + α2 + 2αE),

y1 = −2β2,

z1 = −(4αβ + 4βE),

x2 = −2α2,

y2 = −2(1 + β2 + 2βE),

z2 = −(4αβ + 4αE).

As we said, there are two solutions for γ5 and γ6, which we
obtain numerically with A0 and mh/me as parameters. One
of them leads to the weakly unstable trajectory with a single

unstable direction and the other leads to the solution with three
unstable directions.

APPENDIX B: STABILITY ANALYSIS

As we have explained in Appendix A, the calculation of
fixed trajectories can conveniently be done by transforming
the parquet RG equations for the couplings to equations for the
ratios γi,γ̃i . The ratios are determined by choosing one of the
relevant couplings, e.g., u1, and rewriting the other couplings
as ui = γiu1 and ũi = γ̃iu1. We can hence analyze the stability
of different fixed trajectories in terms of the flow equations for
the ratios. Therefore we consider small deviations of γi from
their values on a fixed trajectory and determine whether these
deviations increase or decrease during the RG flow. We label
the flow equations for the ratios as βi = d

dL
γi , β̃i = d

dL
γ̃i ,

and the deviations from a fixed trajectory as δ = γ − γ fix point.
Linearizing the flow equations for small deviations from a
fixed trajectory, we obtain⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

˙̃δ1

δ̇2
˙̃δ2

δ̇3
˙̃δ3

δ̇4

δ̇5

δ̇6

δ̇7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

∂β̃1

∂γ̃1

∂β̃1

∂γ2
. . .

∂β̃1

∂γ7

∂β2

∂γ̃1

∂β2

∂γ2
. . .

∂β2

∂γ7

...
...

. . .
...

∂β7

∂γ̃1

∂β7

∂γ2
. . .

∂β7

∂γ7

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ̃1

δ2

δ̃2

δ3

δ̃3

δ4

δ5

δ6

δ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

The eigenvalues of the stability matrix ∂βi/∂γi at γi taken on
the fixed trajectory determine if deviations grow or flow back to
a given fixed trajectory. A positive eigenvalue signals growing
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deviations, and therefore an unstable direction corresponding
to the eigenvector of the positive eigenvalue. Attaining such
an unstable fixed trajectory requires fine tuning of initial
conditions, and with more positive eigenvalues, more initial
couplings must be fined-tuned. Only if all eigenvalues are
negative, deviations in every direction will decrease during
the flow. This is what happens for a stable fixed trajectory.

For example for the stable fixed trajectory of Eq. (33) [i.e.,
Eq. (A3) in Appendix A], the eigenvalues for the stability
matrix are −4u1, −4(2C2 + √

1 − C2 + 4C4)u1, −4(2C2 +√
1 − C2 + 4C4)u1, −4(2C2 + √

1−C2+4C4)u1, −4(2C2−
1
2 + √

1 − C2 + 4C4)u1, −2(1 + 2C2 + √
1 − C2 + 4C4 ±

C
√

−1 + 8C2 + 4
√

1 − C2 + 4C4)u1, and −(1 + 8C2 +
4
√

1 − C2 + 4C4 ±
√

−15 + 32C2 + 16
√

1 − C2 + 4C4)u1.
Since u1 is positive, these eigenvalues are negative for any C,
i.e., the fixed trajectory is stable. Analogously we determine
that the fixed trajectory of Eq. (34) [Eq. (A4)] is stable and
that the weakly unstable fixed trajectory Eq. (35) [Eq. (A7)]
has merely one unstable direction. Furthermore we find that
this single unstable direction is weak in the sense that the
corresponding eigenvalue is small.

APPENDIX C: SUBLEADING ORDERING TENDENCIES

In the main text, we have discussed instabilities towards
superconducting order, (π,0) and (0,π ) SDWs, and Pomer-
anchuk order in the A1g and B1g channel. We also considered
further instabilities regarding CDW order, SDW order with
momentum transfer (π,π ) and Pomeranchuk order in the A2g

and B2g channel. However, we found them to be subleading.
We discuss the details in the following.

1. Charge-density-wave (CDW) channel at (0,π ) and (π,0)

A CDW instability breaks the translational symmetry of the
lattice and is characterized by particle-hole order parameters
at finite momenta, (0,π ) and (π,0). In this case, we define the
auxiliary complex test fields as follows:

HCDW =
∑
kσ

[
δ

(0)
1 ψ

†
1,σ (k)ψ5,σ (k) + δ

(0)
1′ ψ

†
1,σ (k)ψ6,σ (k)

+ δ
(0)
2 ψ

†
2,σ (k)ψ5,σ (k) + δ

(0)
2′ ψ

†
2,σ (k)ψ6,σ (k)

+ δ
(0)
3 ψ

†
3,σ (k)ψ6,σ (k) + δ

(0)
3′ ψ

†
3,σ (k)ψ5,σ (k)

+ δ
(0)
4 ψ

†
4,σ (k)ψ6,σ (k) + δ

(0)
4′ ψ

†
4,σ (k)ψ5,σ (k) + H.c.

]
.

(C1)

The parquet RG equations describing the renormalization
of the real and imaginary parts of these vertices are

d

dL
δre

1(1′) = δre
1(1′)

(
u1 − 2u2 − u3

C

)
,

d

dL
δim

1(1′) = δim
1(1′)

(
u1 − 2u2 + u3

C

)
,

d

dL
δre

2(2′) = δre
2(2′)

(
ũ1 − 2ũ2 − ũ3

C̃

)
,

d

dL
δim

2(2′) = δim
2(2′)

(
ũ1 − 2ũ2 + ũ3

C̃

)
, (C2)

where we have already used the equivalences of Eq. (31) to
simplify the expressions. The vertices δ3(3′) and δ4(4′) satisfy
the same parquet RG equations as δ1(1′) and δ2(2′), respectively,
due to the C4 symmetry explained below Eq. (16).

We perform the same procedure as in the main text,
i.e., we take the fixed-trajectory solutions for the couplings
as input for the Eqs. (C2), which allows to solve for the
vertices. The vertices, in turn, determine the susceptibilities
and signal the appearance or the absence of the corresponding
order. For the stable fixed trajectory in Eq. (33), we then obtain

δre
1 (L) = δ

re,(0)
1

(
L0

L0 − L

)βre
CDW,1

,

βre
CDW,1 = 1 − γ3/C

1 + γ 2
3 /C2

. (C3)

The parquet RG equation satisfied by the susceptibility reads

dχ re
CDW,1

dL
=

[
δre

1

δ
re,(0)
1

]2

. (C4)

With Eq. (C3) on the stable fixed trajectory, this leads to

χ re
CDW,1(L) = L

2βre
CDW,1

0

1 − 2βre
CDW,1

(L0 − L)−αre
CDW,1 , (C5)

where the scaling exponent of the susceptibility is

αre
CDW,1 = 2βre

CDW,1 − 1 . (C6)

Similarly, we determine αre
CDW,2 = αim

CDW,2 = 0 and αim
CDW,1 =

2β im
CDW,1 − 1, where β im

CDW,1 = 1+γ3/C

1+γ 2
3 /C2 . Furthermore, as can

be seen in Eq. (C2), we find α
re,im
CDW,i = α

re,im
CDW,i ′ .

We now perform the same analysis for the second stable
fixed trajectory and the weakly unstable fixed trajectory. For
the first stable fixed trajectory in Eq. (33), we obtain the
susceptibility exponents

αre
CDW,1 = 2

1 − γ3/C

1 + γ 2
3 /C2

− 1,

αim
CDW,1 = 2

1 + γ3/C

1 + γ 2
3 /C2

− 1,

αre
CDW,2 = 0,

αim
CDW,2 = 0. (C7)

Furthermore, we find that α
re,im
CDW,1 = α

re,im
CDW,1′ = α

re,im
CDW,3 =

α
re,im
CDW,3′ , and α

re,im
CDW,2 = α

re,im
CDW,2′ = α

re,im
CDW,4 = α

re,im
CDW,4′ . Among

the different exponents in Eq. (C7), the largest one is αim
CDW,1.

As a result the leading CDW instability is characterized by
the order parameter 〈ψ†

1ψ5 − ψ
†
5ψ1〉. Similarly, the order

parameters 〈ψ†
1ψ6 − ψ

†
6ψ1〉, 〈ψ†

3ψ5 − ψ
†
5ψ3〉, and 〈ψ†

3ψ6 −
ψ

†
6ψ3〉 lead to the same exponent on our level of approximation

and are thus equivalent candidates for the instability.
The susceptibility exponents of the second stable fixed

trajectory (34) are

αre
CDW,1 = 0, αim

CDW,1 = 0,

αre
CDW,2 = 2

1 − γ̃3/C̃

1 + γ̃ 2
3 /C̃2

− 1, αim
CDW,2 = 2

1 + γ̃3/C̃

1 + γ̃ 2
3 /C̃2

− 1.

(C8)
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In this case, the roles of the dxz/dyz and dxy orbitals on electron
pockets are interchanged, and the largest exponent is αim

CDW,2.
Correspondingly, the leading CDW instability is characterized
by the order parameter, 〈ψ†

2ψ5 − ψ
†
5ψ2〉, which is equivalent

to the order parameters 〈ψ†
2ψ6 − ψ

†
6ψ2〉, 〈ψ†

4ψ5 − ψ
†
5ψ4〉, and

〈ψ†
4ψ6 − ψ

†
6ψ4〉.

For the weakly unstable fixed trajectory, Eq. (35), we find

αre
CDW,1 = 2

1 − γ3/C

1 + γ 2
3 /C2

− 1,

αim
CDW,1 = 2

1 + γ3/C

1 + γ 2
3 /C2

− 1,

αre
CDW,2 = 2

1 − γ̃3/C̃

1 + γ̃ 2
3 /C̃2

− 1 = αre
CDW,1,

αim
CDW,2 = 2

1 + γ̃3/C̃

1 + γ̃ 2
3 /C̃2

− 1 = αim
CDW,1, (C9)

where we used that γ3/C = γ̃3/C̃ for this fixed trajectory. The
largest exponent in the CDW channel is again αim

CDW,1.
In summary we find that for all three fixed trajectories,

the largest exponent occurs for charge current operators. The
corresponding exponent αCDW ≡ 2 1+γ3/C

1+γ 2
3 /C2 − 1 is the same as

in the SDW channel, i.e., αCDW = αSDW. The reason is that
γ2 = γ̃2 = 0 on the fixed trajectories. However, if γ2 and γ̃2

are nonzero and small, we can see in Eq. (C2) that SDW wins
over CDW.

2. Spin density wave and charge density wave at (π,π )

Additionally, we consider SDW and CDW channels with
momentum transfer (π,π ). The corresponding coupling to
fermion bilinears is given by

HSDW,(π,π) =
∑

k

[
s(0)

1,3 · ψ
†
1,α(k)σ α,βψ3,β (k)

+ s(0)
2,4 · ψ

†
2,α(k)σ α,βψ4,β (k)

+ s(0)
1,4 · ψ

†
1,α(k)σ α,βψ4,β (k) + H.c.

]
(C10)

and

HCDW,(π,π) =
∑
kσ

[
δ

(0)
1,3ψ

†
1,σ (k)ψ3,σ (k) + δ

(0)
2,4ψ

†
2,σ (k)ψ4,σ (k)

+ δ
(0)
1,4ψ

†
1,σ (k)ψ4,σ (k) + H.c.

]
. (C11)

The RG equations for the vertices then are

ds
re,im
1,3

dL
= ±A′

e

Ae

u5,

ds
re,im
2,4

dL
= ±A′′

e

Āe

u6, (C12)

ds
re,im
1,4

dL
= ±A′′′

e

Ãe

Eu7,

and

dδ
re,im
1,3

dL
= ds

im,re
1,3

dL
,

dδ
re,im
2,4

dL
= ds

im,re
2,4

dL
, (C13)

dδ
re,im
1,4

dL
= ds

im,re
1,4

dL
.

We calculate the exponents of the susceptibilities for this SDW
and CDW order similarly as before. We find that all exponents
are smaller than zero. The result for the largest exponent is
shown in Fig. 10 in the main text as αSDW′(CDW′).

3. Pomeranchuk instability in A2g and B2g channel

The order parameters in the A2g and B2g Pomeranchuk
channel couple to the combination of vertices �

re(im)
1,2 =

�1,2 ± �∗
1,2, �re(im)

3,4 = �3,4 ± �∗
3,4, and �

re(im)
5,6 = �5,6 ± �∗

5,6 as
defined in Eq. (50). Let us recall that the indices 1–4 label states
on electron and 5–6 states on hole pockets. In the A2g channel,
the vertices are renormalized according to

�re
1,2 = −4Eu7�

re
1,2 + �

re,(0)
1,2 ,

�re
3,4 = −4Eu7�

re
3,4 + �

re,(0)
3,4 , (C14)

�re
5,6 = −2u4�

re
5,6 + �

re,(0)
5,6 .

On the weakly unstable fixed trajectory (35), the suscepti-
bilities in the A2g channel diverge as

χe
A2g

∝ (
Le

A2g
− L

)−1
,

χh
A2g

∝ (
Lh

A2g
− L

)−1
, (C15)

and the divergence occurs on electron and hole pockets at
scales Le

A2g
and Lh

A2g
, respectively,

Le
A2g

= L0 + 4Eγ7

1 + γ 2
3 /C2

,

Lh
A2g

= L0 + 2γ4

1 + γ 2
3 /C2

. (C16)

We see that Le
A2g

is larger than LB1g
, i.e., it is subleading to

the B1g channel. However, the critical scale in the B1g and
Ah

2g Pomeranchuk channel are formally the same. But if we
consider that the flow will only be close to and not exactly on
the weakly unstable fixed trajectory, ε1 and ε2 will be small
and nonzero. Then the B1g critical scale always appears before
the Ah

2g critical scale.
In the B2g channel, the vertices are renormalized by

�im
1,2 = �

im,(0)
1,2 ,

�im
3,4 = �

im,(0)
3,4 , (C17)

�im
5,6 = 2u4�

im
5,6 + �

im,(0)
5,6 .

In this channel, the vertices on electron pockets are not
renormalized, while the vertex involving the hole pockets is
reduced since u4 < 0. As a result, there is no instability in the
B2g Pomeranchuk channel.
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