
PHYSICAL REVIEW B 94, 115159 (2016)

Orbital order from the on-site orbital attraction
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We study the model of Fe-based superconductors with intraorbital attraction, designed to favor a spontaneous
orbital polarization. Previous studies of this model within the two-orbital approximation indicated that the leading
instability is toward s-wave superconductivity and the subleading one is toward anti-ferro-orbital order, which
breaks the translational symmetry of the crystal. The two-orbital approximation is, however, not consistent with
the Fermi surface geometry of Fe superconductors, as it yields the wrong position of one of the hole pockets. Here
we analyze the model with the same interaction but with realistic Fermi surface geometry (two hole pockets at the
center of the Brillouin zone and two electron pockets at its boundary). We apply the parquet renormalization-group
(pRG) technique to detect the leading instability upon the lowering of the temperature. We argue that the pRG
analysis strongly favors a q = 0 orbital order, which in the band basis is a d-wave Pomeranchuk order.
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I. INTRODUCTION

The analysis of the competition and the interplay between
different types of electronic order remain the key research
direction in the studies of Fe-based superconductors (FeSCs)
[1–5]. The three experimentally observed macroscopic orders
in FeSCs are magnetism, superconductivity, and nematic order.
The nematic order is less conventional than the other two, but
it is ubiquitous in all known families of FeSCs and has been
actively investigated in the past few years [5–9].

The nematic order breaks lattice rotational C4 symmetry
down to C2 and gives rise to unequal population of dxz and dyz

Fe orbitals and to the anisotropy of magnetic susceptibilities
χxx �= χyy , without breaking the spin rotational and time-
reversal symmetry. The imbalance in the orbital population
may or may not be accompanied by the breaking of the
translational invariance of the crystal (q = 0 orbital order or
finite q orbital order, respectively). In the band basis, a q = 0
order is a zero-momentum d-wave order in the particle-hole
channel.

The origin of the nematic order remains the subject of
debates. In many FeSCs, it is likely associated with partial
melting of stripe magnetism [10–17]. In FeSe, however, the
nematic order is not followed by a stripe magnetic order, and it
may be the result of a spontaneous symmetry breaking between
dxz and dyz orbitals [18–23]. Interestingly, the nematic order
in FeSe emerges at Tn = 85 K, well above superconducting
Tc ∼ 8 K. To clarify the role of the orbital degrees of
freedom in nematicity and the interplay between nematicity
and superconductivity and other potential orders, it is useful
to study the models in which a spontaneous orbital order is
explicitly favored by the interaction. The simplest model of this
kind is a two-orbital (dxz/dyz) model with on-site intraorbital
attraction and interorbital repulsion, tailored to favor nonequal
density of fermions on dxz and dyz orbitals. The tight-binding
fermionic dispersion in this model is obtained from the full
five-orbital tight-binding dispersion by keeping only dxz and
dyz orbitals. The two-orbital model has been studied within
the random-phase approximation (RPA) (Refs. [24,25]) by
weak-coupling logarithmical perturbation theory [26] and by

the Quantum Monte Carlo method (Ref. [27]). The outcome
is that the two leading instabilities are the ordinary s-wave
superconductivity and the q = (π,π ) orbital order. At weak
coupling, superconductivity wins. At larger couplings, the
(π,π ) orbital order may develop first. The two-orbital model
is not, however, directly applicable to FeSCs because it places
one of the hole Fermi surfaces in the wrong place in the
Brillouin zone (BZ)—at (π,π ) instead of (0,0) 1FeBZ.

In this paper, we consider the model with the same
interaction, but with more realistic band structure with two hole
pockets centered at (0,0) and two electron pockets centered
at (π,0) and (0,π ) in the 1FeBZ. The goal of our study is to
analyze the interplay between superconductivity (SC) and q =
0 orbital order, and also spin-density-wave (SDW) and charge-
density-wave (CDW) orders. Several groups have argued
[28–32] that to adequately describe the interplay between
different ordering tendencies, one has to include into consider-
ation the orbital composition of the low-energy excitations and
analyze how different interaction channels affect each other. To
do this, we apply the parquet renormalization-group technique
(pRG). This technique is adequate for FeSCs because the in-
teractions between fermions with intermediate energies W �
E � EF , where W is of order of bandwidth, are logarithmic
not only in the particle-particle (Cooper) channel, but also in
the particle-hole channel at momenta (π,0) and (0,π ), due to
opposite signs of the dispersions near the hole and electron
pockets. Because the distance between the hole and electron
pockets in momentum space is half of the reciprocal-lattice
vector, a composite effect of two particle-hole excitations
gives rise to a logarithmic enhancement of the interaction
also in the q = 0 Pomeranchuk channel. In the situation when
renormalizations of the interactions in more than one channel
are logarithmical, the most log-divergent Feynman graphs
are known as parquet diagrams. The solution of the pRG
equations amounts to the summation of all such diagrams.
Physically, pRG equations show how different couplings and
susceptibilities in various channels evolve as one progressively
integrates out high-energy fluctuations. In all cases studied,
the susceptibilities in several channels increase under pRG
and diverge at some RG scale L = log W/E, where E is
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the running energy. The instability develops in the channel in
which the susceptibility diverges at the highest energy (i.e., the
smallest L = L0 = log W/E0). The instability temperature is
of order E0. If susceptibilities in several channels diverge at
the same L = L0, the most likely outcome is that the order
develops in the channel whose susceptibility diverges with
the largest exponent. This reasoning works when E0 > EF ,
i.e., when the instability develops before the scale of EF

is reached. Below E = EF , different channels effectively
decouple. Hence, if E0 < EF , one should run pRG down to
E = EF , obtain the values of the couplings at this scale, and
then independently consider different channels (say, within the
RPA) using the couplings at E = EF as the “bare” couplings.

In our previous work [33] the two of us and R. Fernandes
applied pRG technique to apply the pRG technique to the
four-pocket model with repulsive intrapocket and interpocket
interactions. We found that at intermediate energies, the largest
susceptibility is in the SDW channel, the one in the s+− SC
channel is subleading, and the susceptibility in the orbital
order channel is much smaller than the other two. However, at
smaller energies the SDW and SC channels strongly compete
with each other. The SC susceptibility eventually gets larger
than the one in the SDW channel and diverges at the RG
scale L = L0 as χSC ∝ (L0 − L)−αSC , where L = log W/E,
and E is the running energy. However, due to competition
with SDW, the exponent αSC is smaller than its would-be
BCS value. This reduction of the exponent paves the way
for the “secondary” channels, such as the orbital order channel
(the d-wave Pomeranchuk channel in the band basis), which
also becomes attractive due to a push from spin fluctuations,
but it does not get weakened due to competition with the
SDW. The susceptibility in the d-wave Pomeranchuk channel
χP is smaller than χSC at intermediate energies because
the bare Pomeranchuk susceptibility is nonlogarithmic, but
it may eventually diverge with the exponent αP > αSC. We
found that this is what actually happens. Namely, the d-wave
Pomeranchuk susceptibility χP diverges with the exponent
αP = 1 and becomes the largest near L = L0. As a result,
within one-loop pRG, the leading instability upon the lowering
of T is toward a spontaneous orbital order. This scenario is a
plausible one for FeSe [33], however it cannot be rigorously
justified for the four-pocket model because there αSC is not
particularly small, and χP becomes larger than χSC only in the
vicinity of L0, where the running couplings are of order 1 and
the corrections to one-loop pRG equations are also of order 1.

In this paper, we report the results of pRG analysis of the
same model as in Ref. [33] but with intrapocket attraction. We
show that in this model, s-wave and d-wave SC channels,
the SDW channel, and the CDW channel are degenerate,
and the susceptibilities in all these channels diverge with the
same exponent, χ ∝ 1/(L0 − L)α . Because of the competition
between many channels, α turns out to be very small: α =
(
√

5 − 2)/3 ≈ 0.08. As a result, these susceptibilities barely
diverge. Meanwhile, the susceptibility in the Pomeranchuk
channel still diverges with the exponent αP = 1. Because
of the large difference in the values of the exponents, the
susceptibility in the Pomeranchuk channel becomes the largest
at smaller L, where one-loop pRG is under better control.
In other words, the fierce competition between the two SC
channels, the SDW channel, and the CDW channel nearly

halts the divergencies of the corresponding susceptibilities
and allows the Pomeranchuk channel to emerge as a clear
winner. These results differ from the earlier studies of a
two-orbital model where the Pomeranchuk instability was
found to be subleading [26,27]. This can be traced to the
competition between the channels described above that is
absent in the previously studied model. The Pomeranchuk
instability dominates in the present case since the correlations
in other channels are suppressed.

The paper is organized as follows. In Sec. II we introduce
our model and discuss approximations. In Sec. III we introduce
superconducting, SDW, CDW, and nematic (Pomeranchuk)
order parameters, and we analyze the development and hier-
archy of different types of order within the RPA, i.e., without
the inclusion of the couplings between different channels. In
Sec. IV we include interchannel couplings and analyze the
flow of the interactions within pRG. In Sec. V we reexamine
the hierarchy of instabilities by evaluating the susceptibilities
in different channels along the fixed trajectories of the pRG
flow. We present our conclusions in Sec. VI.

II. THE MODEL WITH INTRAORBITAL ATTRACTION

The model we study is defined by the Hamiltonian

H = H0 + Hint, (1)

where H0 is the quadratic part and Hi is the interaction
Hamiltonian. We discuss the effective low-energy band-
structure model captured by the H0 first. We consider the
1FeBZ with the two hole pockets at the BZ center and the two
electron pockets centered at Q1 = (0,π ) and Q2 = (π,0). As
in Ref. [33], we treat the two hole pockets as consisting of dxz

and dyz orbitals (as they actually are), and we approximate the
electron pocket at (0,π ) as consisting of the dyz orbital and the
one at (π,0) as consisting of the dxz orbital, i.e., we neglect the
contributions to electron pockets from the dxy orbital.

The quadratic part of the Hamiltonian is expressed as
follows:

H0 =
∑
k,α

∑
μ,ν=1,2

[
d†

μα(k)H�
μ,ν(k)dνα(k)

+ f †
μα(k)HM

μ,ν(k)fνα(k)
]
, (2)

where the subscripts μ,ν = 1,2 refer to the xz and yz orbitals,
respectively, and

H�(k) =
[
εh + k2

2mh
+ ak2 cos 2θk ck2 sin 2θk

ck2 sin 2θk εh + k2

2mh
− ak2 cos 2θk

]

(3)

for states near hole pockets, and

HM (k) =
[
εe + k2

2me
+ bk2 cos 2θk 0

0 εe + k2

2me
− bk2 cos 2θk

]

(4)

for states near electron pockets [34]. In Eqs. (3) and (4),
θk = arctan(ky/kx). The parameters εh,e, 1/mh,e, a, b, and
c can be either determined by comparison with the band-
structure calculations or, preferably, taken from experiments.
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To simplify the calculations, we set a = c in Eq. (3), in which
case the two hole FSs are circular, and the dispersions of the
two hole excitations are εh + k2/(2mh1) and εh + k2/(2mh2),
where mh1,2 = mh/(1 ± 2amh). To simplify the presentation
of the pRG results, below we neglect the difference between
the two hole masses, i.e., we approximate mh,1,2 ≈ mh. We
will also neglect the b term in Eq. (4). We verified that keeping
mh1 and mh2 different complicates the formulas for pRG flow,
but it does not affect the results.

We now turn to the interaction Hamiltonian. We follow
Refs. [24–27] and consider four-fermion interaction tailored
to favor a spontaneous orbital polarization:

Hint = −g
∑

j

(nj,xz − nj,yz)
2, (5)

where the summation index j enumerates the iron sites located
at Rj . The orbital occupation nj,μ with μ = xz,yz includes
contributions from the two spin orientations, nj,μ = nj,μ↑ +
nj,μ↓. For each spin polarization, σ = ↑,↓, the occupation
nj,μσ = ψ

†
jμσψjμσ , where

ψjμσ = 1√
N

∑
k

[dμσ (k) + fμσ (k)ei Q1(2) Rj ]eikRj (6)

annihilates the electron at the site Rj with spin σ in the orbital
state μ.

The Hamiltonian (5) is a particular realization of the
Hubbard-Hund on-site interaction Hamiltonian,

HUJ = U

2

∑
j,μ

nj,μnj,μ + U ′

2

∑
j,μ �=μ′

nj,μnj,μ′

+ J

2

∑
j,μ′ �=μ

∑
σσ ′

ψ
†
jμσψ

†
jμ′σ ′ψjμσ ′ψjμ′σ

+ J ′

2

∑
j,μ′ �=μ

ψ
†
jμσψ

†
jμσ ′ψjμ′σ ′ψjμ′σ (7)

with

U = −2g, U ′ = 2g, J = J ′ = 0. (8)

As we discuss below, the actual number of independent
interaction constants is higher than one. As a result, few
interaction channels are degenerate for the model specified
by Eq. (5). For instance, as J ′ = 0, the pairing processes
for dxz- and dyz-derived Cooper pairs are independent, which
makes the s- and d-wave superconducting pairing degenerate.
We furthermore expect the degeneracy between interorbital
SDW and CDW channels as in this case the direct process
contributions of Eq. (5) are absent regardless of the state of
spin polarization of interacting electrons. These expectations
are confirmed by explicit evaluation in Sec. III.

The original interaction Hamiltonian has just one coupling
g, and one may think that one needs just one pRG equation
for the flow of g. However, earlier pRG studies of FeSCs
already indicated that this is not the case for two reasons. First,
under pRG, U and U ′ become nonequivalent, and J and J ′
are generated. Second, the full on-site interaction Hamiltonian
does not remain invariant under pRG, i.e., new interactions
are generated, which can be identified as interactions between

fermions at neighboring sites. One can make sure (see Ref. [33]
for details) that the total number of different C4-symmetric
four-fermion combinations of low-energy fermions from
Eq. (2) is equal to 14. The corresponding Hamiltonian is

H =
5∑

j=1

HUj
, (9)

where

HU1 = U1

∑′
[f †

1σ f1σ d
†
1σ ′d1σ ′ + f

†
2σ f2σ d

†
2σ ′d2σ ′]

+ Ū1

∑′
[f †

2σ f2σ d
†
1σ ′d1σ ′ + f

†
1σ f1σ d

†
2σ ′d2σ ′], (10)

HU2 = U2

∑′
[f †

1σ d1σ d
†
1σ ′f1σ ′ + f

†
2σ d2σ d

†
2σ ′f2σ ′]

+ Ū2

∑′
[f †

1σ d2σ d
†
2σ ′f1σ ′ + f

†
2σ d1σ d

†
1σ ′f2σ ′], (11)

HU3 = U3

2

∑′
[f †

1σ d1σ f
†
1σ ′d1σ ′ + f

†
2σ d2σ f

†
2σ ′d2σ ′ + H.c.]

+ Ū3

2

∑′
[f †

1σ d2σ f
†
1σ ′d2σ ′ + f

†
2σ d1σ f

†
2σ ′d1σ ′ + H.c.],

(12)

HU4 = U4

2

∑′
[d†

1σ d1σ d
†
1σ ′d1σ ′ + d

†
2σ d2σ d

†
2σ ′d2σ ′]

+ Ū4

2

∑′
[d†

1σ d2σ d
†
1σ ′d2σ ′ + d

†
2σ d1σ d

†
2σ ′d1σ ′]

+ Ũ4

∑′
d
†
1σ d1σ d

†
2σ ′d2σ ′ + ˜̃U4

∑′
d
†
1σ d2σ d

†
2σ ′d1σ ′ ,

(13)

HU5 = U5

2

∑′
[f †

1σ f1σ f
†
1σ ′f1σ ′ + f

†
2σ f2σ f

†
2σ ′f2σ ′ ]

+ Ū5

2

∑′
[f †

1σ f2σ f
†
1σ ′f2σ ′ + f

†
2σ f1σ f

†
2σ ′f1σ ′ ]

+ Ũ5

∑′
f

†
1σ f1σ f

†
2σ ′f2σ ′ + ˜̃U5

∑′
f

†
1σ f2σ f

†
2σ ′f1σ ′ .

(14)

In Eqs. (10)–(14), the notation
∑′ stands for the summation

over spins and over the momenta subject to the momentum
conservation. For instance,∑′

f
†
1σ f1σ d

†
1σ ′d1σ ′

=
∑

k1,k2,k3,k4

∑
σ,σ ′

f
†
1σ (k1)f1σ (k2)d†

1σ ′(k3)d1σ ′(k4)

× δk1+k2+k3+k4,0, (15)

where δ in the last line stands for the Kronecker δ.
At the bare level,

U1 = U2 = U3 = U4 = U5 = −2g,

Ū1 = Ũ4 = Ũ5 = 2g, (16)

and other interactions are zero. Generally, however, all 14
interactions are generated under pRG, i.e., the full set of pRG
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equations contains 14 coupled equations. One can easily make
sure that no other terms are generated by pRG.

Because pRG calculations involve fermions near hole and
electron pockets, it is advantageous to move to the band basis,
i.e., diagonalize the quadratic Hamiltonian for excitations
near hole pockets and reexpress the interaction Hamiltonian
in terms of band operators. We refrain from presenting the
corresponding Hamiltonian, as the formula for it is quite
lengthy.

III. ORDER PARAMETERS AND SUSCEPTIBILITIES
WITHIN THE RPA

We begin the discussion of potential ordered states in the
model of Eq. (5) by first treating all channels as independent
and analyzing the corresponding susceptibilities within the
RPA. To avoid complex formulas, we present the order
parameters in the orbital basis and list the results of the
computations of the susceptibilities within the RPA. The actual
computations of the susceptibilities were performed in the
band basis.

A. SDW channels

There are two SDW orders with momenta (0,π ) and (π,0).
One involves bilinear combinations of fermions from the
same orbital, while the other involves fermions from different
orbitals.

The two intraorbital SDW order parameters are constructed
of f †

αdα , which are diagonal in the orbital index:

sr
1,2 = f

†
1,2σd1,2 + d

†
1,2σf1,2,

si
1,2 = i(f †

1,2σd1,2 − d
†
1,2σf1,2). (17)

We will refer to sr
1,2 and si

1,2 as real and imaginary SDW order
parameters. The real sr

1,2 gives rise to a SDW on Fe cites, and
si

1,2 gives rise to a spin current.
The interorbital antiferromagnetism is described by the

order parameters

s̄r
1,2 = f

†
1,2σd2,1 + d

†
1,2σf2,1,

s̄i
1,2 = i(f †

1,2σd2,1 − d
†
1,2σf2,1), (18)

which are off-diagonal in the orbital index. The real s̄r
1,2

gives rise to an unconventional SDW, which in real space is
concentrated on pnictogen/chalcogen sites and has no weight
on Fe sites, and s̄r

1,2 gives rise to a corresponding spin current.
The part of the interaction Hamiltonian (9), bilinear in SDW

order parameter, is

Hs,π = 1
8 (−U1 − U3)

[
sr

1sr
1 + sr

2sr
2

]
+ 1

8 (−U1 + U3)
[
si

1si
1 + si

2si
2

]
+ 1

8 (−Ū1 − Ū3)
[
s̄r

1 s̄r
1 + s̄r

2 s̄r
2

]
+ 1

8 (−Ū1 + Ū3)
[
s̄i

1 s̄i
1 + s̄i

2 s̄i
2

]
. (19)

At the bare level, the interaction between sr
1,2 is repulsive:

(−U1 − U3)/8 = g/2 > 0, while the interaction between si
1,2

vanishes. The interactions between s̄r
1,2 and between s̄i

1,2 are
attractive and have the same magnitude: (−Ū1 ∓ Ū3)/8 =

FIG. 1. (a) Graphical representation of the Dyson equation for
the vertices �s in the SDW channel. Equation (20) for �̄s is obtained
by replacing all Ui by Ūi . Single (double) lines represent propagators
of fermions near hole (electron) pockets. (b) Graphical representation
of the RPA formula for the susceptibility in the spin channel, Eq. (23).

−g/4 < 0. Adding the terms �̄s;0sr,i
1,2 with infinitesimally small

prefactors �̄s;0 to the Hamiltonian and summing up ladder
series of renormalizations of �̄, we obtain [see Fig. 1(a)]

�̄
r,i
s;1,2 = �̄s;0

1 − 2ḡ log W/T
, (20)

where we introduced

ḡ = gm

4π
(21)

with m = 2mhme/(mh + me), and mh and me are the masses
for excitations near hole and electron pockets; see Eqs. (3)
and (4) and the discussion after them.

Equation (20) holds for T larger than a typical energy below
which the logarithm in the particle-hole channel at momenta
(0,π ) and (π,0) is cut (Ref. [35]). We see that, within the RPA,
interorbital magnetic instability develops at the temperature
TSDW at which

2ḡ log
W

TSDW
= 1. (22)

The same result can be obtained by analyzing the suscep-
tibilities within the RPA. The bare susceptibilities in sr,i

1,2
channels are χ0(T ) = (2m/π ) log W/T . Within the RPA, the
full susceptibilities in sr,i

1,2 channels are [see Fig. 1(b)]

χ̄
r,i
s;1,2(T ) = χ0(T )

1 − (g/4)χ0(T )
= χ0(T )

1 − 2ḡ log W/T
. (23)

The susceptibilities obviously diverge at the same TSDW as the
vertices �̄

r,i
1,2.

B. CDW channels

We next consider CDW order parameters with momenta
(π,0) and (0,π ). As in the SDW case, we have two types
of order parameters: diagonal and nondiagonal in the orbital
index. The order parameters diagonal in the orbital index
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FIG. 2. Graphical representation of the Dyson equation for
the vertices, �c, in the CDW channel. The infinitesimal external
perturbation giving rise to the vertex is proportional to δr,i introduced
in Eq. (24), which is diagonal in spin indices. Equation (27) for �̄s is
obtained by replacing all Ui by Ūi and δr,i by δ̄r,i .

are

δr
1,2 = f

†
1,2d1,2 + d

†
1,2f1,2,

δi
1,2 = i(f †

1,2d1,2 − d
†
1,2f1,2), (24)

and the ones nondiagonal in the orbital index are

δ̄r
1,2 = f

†
1,2d2,1 + d

†
2,1f1,2,

δ̄i
1,2 = i(f †

1,2d2,1 − d
†
2,1f1,2). (25)

The order parameter that gives rise to the CDW on the Fe cites
is δr

1,2. The order parameter δi
1,2 gives rise to charge current.

The corresponding interaction terms, bilinear in δ
r,i
1,2 and δ̄

r,i
1,2,

are

Hδ,π = 1
8 (−U1 + 2U2 + U3)

[
δr

1δ
r
1 + δr

2δ
r
2

]
+ 1

8 (−U1 + 2U2 − U3)
[
δi

1δ
i
1 + δi

2δ
i
2

]
+ 1

8 (−Ū1 + 2Ū2 + Ū3)
[
δ̄r

1 δ̄
r
1 + δ̄r

2 δ̄
r
2

]
+ 1

8 (−Ū1 + 2Ū2 − Ū3)
[
δ̄i

1δ̄
i
1 + δ̄i

2δ̄
i
2

]
. (26)

Performing the same analysis as in the previous section,
i.e., adding to the Hamiltonian the extra terms �c;0δ

r,i
1,2 and

�̄c;0δ̄
r,i
1,2 with infinitesimally small �c;0 and summing up ladder

diagrams for the renormalization of the vertices in δ
r,i
1,2 and

δ̄
r,i
1,2 channels, we find two results. First, the interaction in both

interorbital CDW channels is (−Ū1 + 2Ū2 ± Ū3)/8 = −g/4.
The equation for the full vertex �̄

r,i
c;1,2 then has the same form

as Eq. (20) for the SDW vertex; see Fig. 2:

�̄
r,i
c;1,2 = �̄c;0

1 − 2ḡ log W/T
. (27)

Accordingly, the instability temperature in this channel is the
same as for the interorbital SDW; see Eq. (22).

Second, the interaction in the δi
1,2 channel vanishes, and

the one in the δr
1,2 channel (a conventional CDW channel)

is attractive: (−U1 + 2U2 + U3)/8 = −g/2. Accordingly, the
vertex renormalization is given by

�r
c;1,2 = �c;0

1 − 4ḡ log W/T
. (28)

The coupling in (28) is twice as large as that in (27), hence the
leading instability in the CDW subset is toward a conventional
CDW order δr

1,2. The corresponding instability temperature
TCDW is the solution of

4ḡ log
W

TCDW
= 1. (29)

C. Superconducting channels

We now turn to the Cooper channel. We introduce

κ
f

μμ′ = fμ↑fμ′↓, κd
μμ′ = dμ↑dμ′↓. (30)

and we classify fermion bilinear operators with zero total mo-
mentum via the one-dimensional irreducible representations
of the D4h point group A1g , B1g , B2g , and A2g as

κ
f (d)
A1g

= κ
f (d)
11 + κ

f (d)
22 ,

κ
f (d)
B1g

= κ
f (d)
11 − κ

f (d)
22 ,

κ
f (d)
B2g

= κ
f (d)
12 + κ

f (d)
21 ,

κ
f (d)
A2g

= κ
f (d)
12 − κ

f (d)
21 . (31)

The subscript g in the labels implies that the order pa-
rameters are even under inversion. The A2g combination
vanishes for a singlet pairing because it is odd in the orbital
indices.

The interaction terms bilinear in κ are obtained from Eq. (9)
by setting the momenta of the two creation operators appearing
in each separate term in Eqs. (10)–(14) to be opposite. [See
Eq. (15) for the explicit definition of these terms.] The resulting
interaction decouples between different symmetries:

Hκ = HκA1
+ HκB1

+ HκB2
. (32)

Each term in Eq. (32) is expressed through the bilinear
components, Eq. (31), as

HκA1
= 1

2 (U5 + Ū5)
[
κ

f

A1

]†
κ

f

A1
+ 1

2 (U4 + Ū4)
[
κd

A1

]†
κd

A1

+ 1
2 (U3 + Ū3)

([
κ

f

A1

]†
κd

A1
+ H.c.

)
, (33)

HκB1
= 1

2 (U5 − Ū5)
[
κ

f

B1

]†
κ

f

B1
+ 1

2 (U4 − Ū4)
[
κd

B1

]†
κd

B1

+ 1
2 (U3 − Ū3)

([
κ

f

B1

]†
κd

B1
+ H.c.

)
, (34)

HκB2
= 1

2 (Ũ5 + ˜̃U5)
[
κ

f

B2

]†
κ

f

B2
+ 1

2 (Ũ4 + ˜̃U4)
[
κd

B2

]†
κd

B2
. (35)

In the B2 channel represented by Eq. (35), the interactions in-
volving fermions near the hole and electron pockets decouple,
and the interactions are repulsive: Ũ5 + ˜̃U5 = Ũ4 + ˜̃U4 = 2g.
As a result, there is no SC instability in the B2g channel within
the RPA.

In A1g (s-wave) and B1g (d-wave) Cooper chan-
nels, we have, at the bare level, U5 + Ū5 = U5 − Ū5 =
−2g, U4 + Ū4 = U4 − Ū4 = −2g, and U3 + Ū3 = U3 −
Ū3 = −2g. Comparing (33) and (34), we immediately find
that A1g and B1g channels are degenerate. Introducing the order
parameters κ

f (d)
A1g

and κ
f (d)
B1g

with the bare vertices �
f,d

SC;A1g(B1g) =
�SC,0 into the Hamiltonian, and summing up the series of
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FIG. 3. Graphical representation of the Dyson equation (36) for
the vertices �

f,d

SC in spin-singlet A1g and B1g Cooper channels.
Antisymmetrization with respect to spin indices is assumed. The
equations for A1g and B1g are the same, but the bare vertices
�0

SC;A1g (B1g
and �0

SC;A1g (B1g
have different symmetry properties (both

are labeled as �0
SC in the figure).

ladder renormalizations (see Fig. 3), we obtain

�
f

SC;A1g(B1g) = −�
f

SC;A1g (B1g)u5L − �d
SC;A1g(B1g)u3aL + �

f,0
SC ,

�d
SC,A1g(B1g) = −�

f

SC;A1g (B1g)u3bL − �d
SC;A1g(B1g)u4L + �

d,0
SC ,

(36)

where L = log(W/T ) is the Cooper logarithm, and the
dimensionless interactions are

u4 = U4mh/(4π ), u5 = U5me/(4π ),

u3a,b = U3mh,e/(4π ). (37)

Introducing the matrix

MSC = −L

[
u5 u3

u3 u4

]
, (38)

we can rewrite Eq. (36) as[
�

f

SC;A1g,B1g

�d
SC;A1g,B1g

]
= MSC

[
�

f

SC;A1g,B1g

�d
SC;A1g,B1g

]
+

[
�0

SC;A1g,B1g

�0
SC;A1g,B1g

]
. (39)

The instability occurs once the largest of the eigenvalues of
the matrix MSC reaches unity. There are two eigenvalues of
MSC, equal in A1g and B1g channels. In the A1g channel, they
describe the sign-preserving s-wave order parameter s++ and
the order parameter s+−, which changes the sign between
the hole and electron Fermi surfaces. In the B1g channel,
the corresponding eigenvalues describe a conventional d-
wave order parameter (d++) and a d+− order parameter that
additionally changes the sign between the hole and electron
Fermi surfaces. Evaluating the eigenvalues, we immediately
find that λs++ = λd++ > λs+± = λd+± , hence the first instability
upon the lowering of T is in the ++ channel (s-wave or
d-wave). The corresponding eigenvalue is

λs++ = λd++ =
[
− (u4 + u5) +

√(
u4 − u5

2

)2

+ u3au3b

]
L.

(40)

Substituting the bare values of the couplings, we find

λs++ = λd++ = 4ḡL. (41)

Note that this result holds for any ratio of the masses me/mh.
The superconducting Tc in the s++ and d++ channels is then

determined from

4ḡ log
W

Tc

= 1. (42)

Comparing with Eq. (29), we find that Tc and TCDW coincide,
i.e., within the RPA, two superconducting channels and a
conventional CDW channel are degenerate in the sense that
the instability temperatures are the same in all three channels.
Intraorbital SDW and CDW channels are also degenerate, but
the instability temperatures in these channels are smaller.

D. Particle-hole channels at zero-momentum transfer

We next analyze the potential instabilities in the particle-
hole channel that do not break the translational symmetry of the
crystal. The corresponding order parameters involve bilinear
fermion combinations

ρ
f

μμ′ =
∑

σ

f †
μσfμ′σ , ρd

μμ′ =
∑

σ

d†
μσ dμ′σ . (43)

As we did for superconductivity, we classify fermion bilinear
operators with zero transferred momentum via the irreducible
representations of the D4h point group. The combinations
in (43) are even under inversion, and their transformation
includes only one-dimensional irreducible representations
A1g , B1g , B2g , and A2g . We omit subscript g below to simplify
the notations.

A simple experimentation shows that the combinations of
ρ

f,d

μμ′ , which transform as a particular representation, are

ρ
f (d)
A1

= ρ
f (d)
11 + ρ

f (d)
22 ,

ρ
f (d)
B1

= ρ
f (d)
11 − ρ

f (d)
22 ,

ρ
f (d)
A2

= i
(
ρ

f (d)
12 − ρ

f (d)
21

)
,

ρ
f (d)
B2

= ρ
f (d)
12 + ρ

f (d)
21 . (44)

To obtain the interactions in the particle-hole charge
channel at zero-momentum transfer, we set k1 = k2 or k1 = k4

in Eq. (9). Expressing Eq. (9) in terms of the combinations (44),
we obtain

Hρ = HρA1
+ HρA2

+ HρB1
+ HρB2

, (45)

where

HρA1
= 1

8 (U5 + 2Ũ5 − ˜̃U5)
[
ρ

f

A1

]2 + 1
8 (U4 + 2Ũ4 − ˜̃U4)

[
ρd

A1

]2

+ 1
4ρ

f

A1
ρd

A1
(2U1 − U2 + 2Ū1 − Ū2), (46)

HρB1
= 1

8 (U5 − 2Ũ5 + ˜̃U5)
[
ρ

f

B1

]2 + 1
8 (U4 − 2Ũ4 + ˜̃U4)

[
ρd

B1

]2

+ 1
4ρ

f

B1
ρd

B1
(2U1 − U2 − 2Ū1 + Ū2), (47)

HρA2
= 1

8 (Ū5 − 2 ˜̃U5 + Ũ5)
[
ρ

f

A2

]2 + 1
8 (Ū4 − 2 ˜̃U4 + Ũ4)

[
ρd

A2

]2
,

(48)

HρB2
= 1

8 (Ū5 + 2 ˜̃U5 − Ũ5)
[
ρ

f

B2

]2 + 1
8 (Ū4 + 2 ˜̃U4 − Ũ4)

[
ρd

B2

]2
.

(49)

We consider different channels separately, each time intro-
ducing order parameters into the Hamiltonian and summing
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FIG. 4. Diagrammatic representation of the Dyson equation for
the interaction vertices in the Pomeranchuk channels A1 and B1,
Eqs. (50) and (54). The contributions from the interactions Ū1,2, Ũ4,5,
and ˜̃U4,5, which distinguish between A1 and B1 channels, are not
shown.

up ladder series of vertex renormalizations. To simplify the
formulas, below we set mh = me.

1. B1 Pomeranchuk channel

The B1g order parameter ρ
f (d)
B1

changes sign under the C4

rotation. The vertices �
f (d)
ph;B1

satisfy (see Fig. 4)[
�d

ph;B1

�
f

ph;B1

]
= Mph;B1

[
�d

ph;B1

�
f

ph;B1

]
+

[
�

d,0
ph;B1

�
f,0
ph;B1

]
, (50)

where �
d(0)
ph;B1

and �
f (0)
ph;B1

are the bare vertices, and

Mph;B1 = −2

[
u4 − 2ũ4 + ˜̃u4 2u1 − 2ū1 − u2 + ū2

2u1 − 2ū1 − u2 + ū2 u5 − 2ũ5 + ˜̃u5

]
.

(51)

Notice that there is no logarithm on the right-hand side
of (51). This is a consequence of the fact that particle-hole
susceptibility at zero-momentum transfer is nonlogarithmic
and is just the density of states at the Fermi level.

Using the values of the bare couplings from Eqs. (16)
and (37), we obtain

Mph;B1 = 12ḡ

[
1 1
1 1

]
. (52)

As before, there are two eigenvalues. One corresponds to the
d-wave order parameter nxz-nyz with the same sign on the hole
and electron pockets, while for the other there is a sign change
between nxz-nyz on the hole and electron pockets. In analogy
with superconductivity, we label these order parameters as
d++ and d+−. The eigenvalues of Mph;B1 are λP ;++ = 24ḡ,
λP ;+− = 0. The coupling in the d++ channel is attractive, but
because there is no logarithm, the B1g Pomeranchuk instability

develops only if the coupling exceeds the critical value

g > gph;B1 = π

6m
. (53)

2. A1 Pomeranchuk channel

The order parameter ρ
f (d)
A1

does not reduce the symmetry of
the system, and as a result the susceptibility in this channel
never truly diverges. Nevertheless, the A1g susceptibility
can become large, and if the corresponding order parameter
changes sign between the electron and hole pockets, the
enhancement of the A1g susceptibility leads to simultaneous
shrinking (or enhancement) of electron and hole pockets. The
vertices �

d,f

ph;A1
satisfy (see Fig. 4)[

�d
ph;A1

�
f

ph;A1

]
= Mph;A1

[
�d

ph;A1

�
f

ph;A1

]
+

[
�

d,0
ph;A1

�
f,0
ph;A1

]
, (54)

where

Mph;A1 = −2

[
u4 + 2ũ4 − ˜̃u4 2u1 + 2ū1 − u2 − ū2

2u1 + 2ū1 − u2 − ū2 u5 + 2ũ5 − ˜̃u5

]
.

(55)

The matrix Mph;A1 in Eq. (55) differs from the matrix Mph;B1

in Eq. (51) by signs in front of ũ4,5, ˜̃u4,5, and ū1,2. Substituting
the bare values of the couplings from Eq. (16), we obtain

Mph;A1 = −4ḡ

[
1 1
1 1

]
. (56)

We see that the matrix Mph;A1 has no positive eigenvalues. As
a result, there is no enhancement of the susceptibility in the
A1g Pomeranchuk channel.

3. A2 and B2 Pomeranchuk channels

Equations (48) and (49) show that the interaction in the A2g

channel is repulsive, and that in the B2g channel is attractive.
Analyzing the effects of the vertex renormalization in the same
way as for other channels, we find that the instability in the B2

channel occurs at

gph;B2 = m

4π
. (57)

Comparing (53) and (57), we see that gph;B2 > gph;B1 . As
a result, within the RPA, the instability in the d-wave
Pomeranchuk channel occurs at a smaller coupling.

IV. RG ANALYSIS

The existence of logarithmic renormalizations in both
particle-hole and Cooper channels makes it necessary to study
the coupling between the different channels. As we said in
the Introduction, this can be achieved by applying the pRG
technique. The pRG approach goes well beyond the RPA. In
particular, it includes nonladder diagrams that describe how
fluctuations in one channel affect an effective interaction in
the other channel. pRG studies have been performed for pure
band models with angle-independent interactions between
band fermions [29–31], and recently for an orbitally projected
four-pocket model with repulsive intraorbital interactions [33].
To incorporate the Pomeranchuk channels, it is crucial to
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maintain the orbital content of the low-energy fermions. Our
model is the same as that studied in Ref. [33], but some
bare interactions are of different sign. We show that in our
situation the system is in the basin of attraction of another fixed
trajectory, and the system behavior is qualitatively different
from that found in Ref. [33].

To simplify the presentation, we again assume that mh =
me. The derivation of pRG equations has been presented in
Ref. [33], and we use the results of that paper.

The pRG equations are split into three groups. The two
interactions ũ5 and ˜̃u5 describe the subclass of scattering
processes within the electron pockets. The flow of these two
interactions decouples from that of other interactions and
is only due to logarithmic renormalizations in the Cooper
channel:

˙̃u5 = −(
ũ2

5 + ˜̃u2
5

)
,

˙̃̃u5 = −2ũ5 ˜̃u5, (58)

where the derivative is with respect to L = log W/E, and E is
the running energy at which the system is probed (all couplings
vary with L). In our case, the bare value ˜̃u5(L = 0) = 0.
Equation (58) shows that this coupling is then not generated
under pRG. The bare value of ũ5(L = 0) is gm/(2π ) > 0.
According to (58), this coupling then flows to zero under pRG.

Similarly, the two interactions involving fermions only near
hole pockets also decouple and flow according to

˙̃u4 = −(
ũ2

4 + ˜̃u2
4

)
,

˙̃̃u4 = −2ũ4 ˜̃u4. (59)

Again, in our model the bare values are ˜̃u4(L = 0) = 0 and
ũ4(L = 0) > 0. According to (59), ˜̃u4 is not generated, and
ũ4(L) flows to zero.

The third group of pRG equations reads

u̇1 = u2
1 + u2

3, ˙̄u1 = ū2
1 + ū2

3,

u̇2 = 2u1u2 − 2u2
2, ˙̄u2 = 2ū1ū2 − 2ū2

2,

u̇3 = −u3u4 − ū3ū4 + 4u3u1 − 2u2u3 − u5u3 − ū5ū3,

˙̄u3 = −ū3u4 − u3ū4 + 4ū3ū1 − 2ū2ū3 − u5ū3 − ū5u3,

u̇4 = −u2
4 − ū2

4 − u2
3 − ū2

3,

˙̄u4 = −2u4ū4 − 2u3ū3,

u̇5 = −u2
5 − ū2

5 − u2
3 − ū2

3,

˙̄u5 = −2u5ū5 − 2u3ū3. (60)

In our model, ūi(L = 0) = 0, i = 2,3,4,5. Because the deriva-
tive ˙̄ui is proportional to ūi , the running ūi(L) simply remain
zero:

ūi(L) = 0, i = 2 − 5. (61)

With this simplification, the equation for ū1 also decouples
from the rest and becomes

˙̄u1 = ū2
1. (62)

FIG. 5. The numerical solution of Eq. (64) for the RG flow of
dimensionless vertices ui under the variation of the RG parameter
L = log W/E, where W is of order bandwidth and E is the running
energy (or temperature). The initial condition is ui(L = 0) = −2ḡ,
i = 1 − 5, and we set ḡ = 0.1. (a) The flow of the interaction u4. It
remains negative, increases by magnitude, and diverges at the critical
RG scale L0. The divergence indicates that the system develops some
form of order. (b) The RG flow of the ratios of the interactions ui/u4.
As the RG scale L approaches the critical value L0, the ratios tend
to finite values, u1/u4 = −γ

f

1 = −1, u2/u4 = γ
f

2 = 0, and u3/u4 =
γ

f

3 = √
5, in agreement with Eq. (70).

Solving it, we obtain

ū1(L) = 1

L′ − L
, (63)

where L′ = [ū1(L = 0)]−1 = (2ḡ)−1.
The remaining equations from the set (60) reduce to

u̇1 = u2
1 + u2

3,

u̇2 = 2u1u2 − 2u2
2,

u̇3 = −u3u4 + 4u3u1 − 2u2u3 − u5u3,

u̇4 = −u2
4 − u2

3,

u̇5 = −u2
5 − u2

3. (64)

The bare u4(L = 0) = u5(L = 0). One can easily check that
the running couplings remain equal, i.e., u4(L) = u5(L). The
numerical solution of Eq. (64) is presented in Fig. 5.

Compared to the fixed trajectory found previously in
Ref. [33], the interactions u1 and u4 switch their respec-
tive roles. In the model with purely repulsive interactions,
considered in [33], the interpocket density-density interaction
u1 > 0 gradually increases in the process of pRG flow, while
the intrapocket interaction u4 (initially positive) changes sign
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under pRG and gets more and more negative (attractive). The
pair hopping term u3 is positive, and, like u1, it gradually
increases under pRG. In our model, intrapocket u4 is negative
from the start, and it just gets more negative in the pRG flow.
At the same time, interpocket u1 is initially negative, but it
changes sign in the pRG flow and keeps increasing as a positive
(repulsive) interaction. The pair-hopping term u3 is negative,
and it gets more and more negative under pRG, much like u4.
As a result, in our case the interactions flow to a different fixed
trajectory than that found in Ref. [33].

To analyze the fixed trajectories analytically, it is convenient
to introduce vi = −ui , i = 1–4 and reduce the system of the
remaining pRG equations to

v̇1 = −v2
1 − v2

3,

v̇2 = −2v1v2 + 2v2
2,

v̇3 = 2v3v4 + 2v3v2 − 4v3v1,

v̇4 = v2
4 + v2

3, (65)

with the initial conditions vi(L = 0) = 2ḡ, i = 1–4. We search
for the fixed trajectory along which the ratios of the couplings
tend to finite values. Accordingly, we introduce

v1 = −γ1v4, v2 = γ2v4, v3 = γ3v4, (66)

where γi , i = 1–3 are constants. Substitution of (66) in (65)
yields the set of algebraic equations

γ1
(
1 + γ 2

3

) = γ 2
1 + γ 2

3 ,

γ2
(
1 + γ 2

3

) = 2γ2(γ1 + γ2),

γ3
(
1 + γ 2

3

) = 2γ3(1 + γ2 + 2γ1). (67)

The trivial fixed trajectory γ1 = γ2 = γ3 = 0 is unstable
because the growth of v4 makes the solution with v3 = 0
unstable, as follows from the third line in Eq. (65). For
the same reason, the solutions γ1 = 1,γ2 = 0,γ3 = 0 and
γ1 = 0,γ2 = 1/2,γ3 = 0 are unstable. One can also check that
the solution γ1 = 1,γ2 = −1/2,γ3 = 0 is unstable and that
there is no solution with γ1 = 0,γ2 = 0,γ3 �= 0.

The remaining possibility is that γ1 �= 0, γ3 �= 0, and
γ2 = 0. In this case, the set of equations (67) reduces to two
equations,

γ1
(
1 + γ 2

3

) = γ 2
1 + γ 2

3 ,(
1 + γ 2

3

) = 2(1 + 2γ1). (68)

It follows from the second line of Eqs. (68) that γ 2
3 = 1 + 4γ1.

The first line of Eqs. (68) can be written as

γ 2
3 (γ1 − 1) = γ1(γ1 − 1). (69)

Equation (69) offers two alternatives. The first is γ1 = 1, and
the second is γ1 = γ 2

3 . The latter possibility is, however, not
viable as in combination with the second line of Eq. (68) it
results in the relation 3γ 2

3 + 1 = 0, which cannot be satisfied.
We therefore have γ1 = 1, and from the second line of Eq. (68),
γ3 = ±√

5. To fix the sign of γ3, we note that the unstable fixed
trajectory γ1 = 1, γ2 = 0, and γ3 = 0 is the separatrix that
cannot be crossed under the pRG flow. In other words, the in-
teraction u3 maintains its sign under pRG, i.e., it is fixed by the

initial conditions. Since v3(L = 0) > 0, the fixed trajectory is

γ
f

1 = 1, γ
f

2 = 0, γ
f

3 =
√

5. (70)

Let us verify that the fixed trajectory set by Eq. (70) is stable.
For this we allow the coefficients γi , i = 1–3 to vary slightly,
rewrite the set of pRG equations as the set for γi(L),

γ̇1 = v4
[(

γ 2
1 + γ 2

3

) − γ1
(
1 + γ 2

3

)]
,

γ̇2 = v4
[
2γ1γ2 + 2γ 2

2 − γ2
(
1 + γ 2

3

)]
,

γ̇3 = v4
[
2γ3 + 2γ2γ3 + 4γ3γ1 − γ3

(
1 + γ 2

3

)]
, (71)

and linearize Eqs. (71) in small deviations, δγi = γi − γ
f

i .
The set of linear differential equations can be cast into the
matrix form

δγ̇i =
3∑

j=1

�ij δγj , (72)

with

� = −v4

⎡
⎣ 4 0 0

0 4 0
4
√

5 2
√

5 10

⎤
⎦. (73)

We see that � is negative-definite. As a result, the fixed
trajectory defined by Eq. (70) is stable.

Along the fixed trajectory set by Eq. (70), the fourth
equation from Eq. (65) becomes v̇4 = 6v2

4 . Assuming that this
equation is valid starting already from small L, we find the
solution in the form

v4(L) = v4(0)

1 − 6Lv4(0)
= 1

6(L0 − L)
, (74)

where

L0 = 1

6v4(0)
. (75)

The initial value v4(0) = −u4(0) = 2ḡ. Hence

L0 = 1

12ḡ
. (76)

Comparing with Eq. (63), we see that L0 < L′, hence the
couplings vi (and ui = −vi) diverge at a smaller L (i.e., larger
energy) than ū1. Then, ū1 can be neglected compared to ui

near the fixed trajectory.
Summarizing the pRG analysis, we find that for our model

there exists one stable fixed trajectory along which

u1(L) = 1

6(L0 − L)
, u3(L) = −

√
5

6(L0 − L)
,

u4(L) = u5(L) = − 1

6(L0 − L)
, (77)

and the rest of the interactions are either zero, or flow to zero,
or increase but at a smaller rate than the interactions listed in
Eq. (77).

V. HIERARCHY OF INSTABILITIES WITHIN pRG

We now reexamine the hierarchy of instabilities using the
renormalized, scale-dependent interactions listed in Eq. (77).
For this we follow Ref. [33] and earlier functional RG works
(Ref. [28]) and obtain and solve the RG equations for the
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FIG. 6. Diagrammatic representation of pRG expressions for the
susceptibility in the SDW channel (a) and the Cooper channel (b),
which give rise to Eqs. (80) and (84), respectively.

vertices �i in different channels, using the running couplings
as inputs. We then use the running vertices to compute the
susceptibilities in different channels, and we compare the
exponents for the susceptibilities χj ∝ 1/(L0 − L)αj , where
j labels different channels. As in other RG-based approaches,
we assume that the instability at L = L0 will lead to the
development of a nonzero mean value of the order parameter,
for which αj is the largest. We will not present the details of
the derivation of RG equations as the computational steps have
already been described in Ref. [33]. However, we discuss the
computations of the running susceptibility in the Pomeranchuk
channels in some more detail.

A. Magnetism

Within the RPA, the intraorbital SDW does not develop,
while the interorbital SDW develops at a lower T than
superconductivity and CDW order. The result of pRG analysis
is somewhat different. Namely, real intraorbital order sr

1,2 does
not develop because the coupling −u1 − u3 remains positive
(repulsive) under pRG. But for imaginary intraorbital order si

1,2
the corresponding dimensionless coupling −u1 + u3 becomes
positive and grows in the process of RG flow. The RG equation
for the vertex function �i

s (introduced in the same way as in
Sec. III) is

d�i
s

dL
= (u1 − u3)�i

s, (78)

where u1 = u1(L) and u3 = u3(L) are the running couplings.
The boundary condition is �i

s(L = 0) = �i
s(0). The solution of

Eq. (78) along the fixed trajectory, i.e., with u1(L) and u3(L)
given by Eq. (77), is

�i
s = �i

s(0)

(L0 − L)βi
s

, βi
s = 1 + √

5

6
. (79)

The running susceptibility χi
s (L) evolves according to

dχi
s

dL
= [

�i
s

]2
; (80)

see Fig. 6(a). Substituting �i
s(L) from Eq. (79) and integrating

over L, we obtain

χi
s ∝ (L0 − L)−αi

s ,

αi
s = 2βi

s − 1 =
√

5 − 2

3
≈ 0.08. (81)

The interactions in interorbital SDW channels with real and
imaginary order parameters are attractive already at the bare
level, and they keep increasing under pRG. The behavior of the
corresponding �̄r,i

s is governed by the running ū1. The latter
diverges, but at L = L′, which is larger than L0. As a result,
the instability in the intraorbital SDW channel occurs at higher
running energy, and hence at a higher temperature.

B. Superconductivity

We now consider susceptibilities in the superconducting
channels. First, A1 and B1 channels remain degenerate because
the running couplings in these two channels differ by ūj ,
j = 3,4,5 [see Eqs. (33) and (34)]. These couplings are zero
at the bare level and remain zero under pRG; see Eq. (61).
The interaction in the s+− and d+− channels is u4 − u3. This
interaction is repulsive along the fixed trajectory, hence the
corresponding susceptibility does not diverge. The interaction
in the s+− and d+− channels is u4 + u3, and this one is negative
(attractive) along the fixed trajectory. The RG equation for the
SC vertex in the s++ and d++ channels is

d�
s,d
SC

dL
= −(u4 + u3)�s,d

SC . (82)

Solving this equation, we find

�
s,d
SC = �

s,d
SC (0)

(L0 − L)β
s,d
SC

, βs
SC = βd

SC = 1 + √
5

6
. (83)

The running susceptibilities χ
s,d
SC (L) again evolve according to

dχ
s,d
SC

dL
= [

�
s,d
SC

]2
; (84)

see Fig. 6(b). Substituting �
s,d
SC (L) from Eq. (83) and integrat-

ing over L, we obtain

χ
s,d
SC ∝ (L0 − L)−α

s,d
SC ,

α
s,d
SC = 2β

s,d
SC − 1 =

√
5 − 2

3
= αi

SC. (85)

We see that the susceptibilities in the s++ and d++ channels
have the same exponents as the susceptibility in the intraorbital
SDW channel with imaginary order parameter. For the B2

channel, the tendency toward pairing is suppressed at low
energies because ũ4,5 and ˜̃u4,5 flow to zero.

C. CDW order

The same analysis as in the previous two subsections shows
that the susceptibility for the real intraorbital order parameter
δr

1,2 diverges as L approaches L0, while the susceptibilities
in other CDW channels do not diverge. The divergent CDW
susceptibility scales as

χr
c ∝ (L0 − L)−αr

c , (86)

where αr
c = (

√
5 − 2)/3. This exponent is the same as α

s,d
SC and

αi
s , i.e., within the RG the susceptibilities in all these channels

scale with each other. The susceptibilities in the interorbital
CDW channels remain regular, i.e., the corresponding order
parameters do not develop at L = L0.

115159-10



ORBITAL ORDER FROM THE ON-SITE ORBITAL ATTRACTION PHYSICAL REVIEW B 94, 115159 (2016)

FIG. 7. The diagrammatic representation of the lowest-order
vertex renormalization in the Pomeranchuk channel. The double wavy
line represents the running interaction Ui(L). The external E and
E′′ ∼ E can be regarded either as frequencies in T = 0 calculations
or as a temperature. In the first case, the integral over internal E′

does not vanish because the running interaction is also a function of
E′, and it is equal to the density of states NF times the coupling at
a scale E. In the second case, the interaction is treated as static, but
the convolution of the two fermion propagators is again nonzero and
equal to the density of states NF .

D. Pomeranchuk order

Within the RPA, the instability in any of the Pomeranchuk
channels develops only when the interaction exceeds a
certain threshold. This is a consequence of the fact that the
renormalization of the Pomeranchuk vertex is determined by
the convolution of the two fermion propagators at vanishing
transferred momentum and zero transferred frequency. This
convolution gives a constant (equal to the density of states at
the Fermi level), but not a logarithm.

Within pRG, we need to evaluate the vertex at a running
frequency. The triple vertex, shown in Fig. 7, depends on two
external frequencies, E and E′′ (the third one is E′′ + E by
frequency conservation). To obtain susceptibility, we will need
to integrate over E′′. We assume and then verify that relevant
E′′ are comparable to E.

If we reevaluate the convolution of the two propagators
at a finite E and Q = 0, we obtain that the result vanishes,
because the poles in the two fermionic propagators are in
the same half-plane of a complex frequency. Does this imply
that the Pomeranchuk vertex is not renormalized within the
RG? We argue that it does not, and the Pomeranchuk vertex
does flow under the RG. The reason is that to obtain vertex
renormalization, we actually need to compute the product
of the two fermionic propagators and the interaction. This
combination is expressed via the convolution of the two
fermionic propagators at a finite E and Q = 0 only if the
interaction is static. But the running interaction is not a constant
but rather a function of the running fermionic frequency E′
and also of external E′′ ∼ E. As a consequence, when we
compute the renormalization of the Pomeranchuk vertex at
a given energy E, we need to evaluate the momentum and
frequency integral of the product of the two propagators and
the running interaction (see Fig. 7):

I (E) =
∫

d2k dE′ 1

iE′ − εk

1

i(E′ + E) − εk

Uj (E,E′), (87)

where Uj is one of the interactions (see Fig. 7). One can verify
that, to logarithmic accuracy, the dependence of the interaction
Uj (E,E′) on |E| and |E′| can be cast as the dependence on

L = log W/(|E| + |E′|). Because Uj (E,E′) has a nonanalytic
dependence on the running E′, the integrand in (87) contains
branch cuts in addition to the poles, and the branch cuts are
present in both half-planes of complex E′. In this situation, it
is more convenient to first evaluate the integral over d2k and
then over dE′. For this, we subtract from Uj (E,E′) its constant
value at E,E′ = W . This does not change I (E) because, as we
just said, the term we subtract gives zero contribution to I (E).
The integrand in (87) with Uj (E,E′) − Uj (W ) converges,
and the integration can be done in any order. Taking for
definiteness fermions near an electron pocket, transforming
from the integration over d2k to integration over dεk via∫

d2k = NF

∫ W

−EF
dεk , and integrating over εk first, we obtain

for positive E > EF ,

I (E) ∼ NF

∫ E

EF

dE′

E
[Uj (E,E′) − Uj (W )], (88)

or, in logarithmic variables,

I (L) ∼ NF

∫ L

L−log 2
eL−L′

[Uj (L′) − Uj (W )] ∼ uj (L). (89)

Evaluating this integral to logarithmic accuracy, we find
that one-loop renormalization of the Pomeranchuk vertex
�ph(L) yields �ph(L) ∝ uj (L), i.e., the vertex at a scale L

is proportional to the running interaction at the same scale L.
Alternatively, we can view the RG energy variable E as

a temperature and consider how the couplings vary as one
progressively integrates out fluctuations at a higher T . In this
approach, the susceptibilities in all channels are the static ones
(E = 0), but taken at a finite T . The integration over E′ in (87)
now has to be replaced by the summation over Matsubara
frequencies. A static interaction can be taken outside the
frequency summation, but the latter now gives a finite result
because regularization by a finite T yields the same result—the
density of states NF —as the evaluation of the convolution
of the two G’s at T = 0, E = 0, and Q → 0. Furthermore,
relevant internal E′ is of order T . Hence, the vertex at a
given T is proportional to the interaction at the same T ,
i.e., in logarithmic variables we have the same dependence
�ph(L) ∝ uj (L) as in T = 0 analysis with frequency E as the
running variable.

Another consequence of the pRG flow of the couplings
is that the interplay between the running interactions uj (L)
is different from that between the bare interactions, chiefly
because u1(L) changes its sign in the process of RG flow and
becomes positive, i.e., attractive in A1g and B1g Pomeranchuk
channels.

We now sum up the ladder series of renormalizations of
�ph [see Fig. 8(a)]. These are the same series as we summed
up for the SDW and SC vertices. The summation leads to the
same matrix equations for the full vertices �

f,d

ph;B1
(L) as in the

RPA analysis of Pomeranchuk instabilities, Eq. (51), but now
ui are the running interactions. Along the fixed trajectory, we
obtain

Mph;B1 = −2

[
u4 2u1

2u1 u5

]
. (90)
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FIG. 8. (a) Series of ladder diagrams for the vertex function
in the Pomeranchuk channel. Compared to the diagram in Fig. 7,
these diagrams account for the shift of the critical L from L − 0
to Lph = L0 − 1. This shift is beyond logarithmic accuracy, and we
neglect it when we compare Pomeranchuk and other channels. (b) The
contribution to the Pomeranchuk susceptibility to first order in the
running coupling. The logarithmic enhancement of the Pomeranchuk
susceptibility is due to 1/(L0 − L) scaling of the interaction at the
running pRG scale L.

Substituting uj (L) from Eq. (77), we reexpress (90) as

Mph;B1 = 1

3(L0 − L)

[
1 −2

−2 1

]
. (91)

The two eigenvalues of this matrix are

λB1,++ = − 1

3(L0 − L)
, λB1,+− = 1

(L0 − L)
. (92)

We remind the reader that notations ++ and +− refer to B1

(d-wave) order parameters nxz-nyz with the same (opposite)
sign on the hole and electron pockets. It follows from Eq. (92)
that the Pomeranchuk instability is the d+− channel. This is
different from the RPA, where we found the leading instability
in the d++ channel. The discrepancy with the RPA is a
consequence of the sign reversal of the interaction u1(L) in
the process of pRG flow.

The instability toward d+− nematic order occurs when
λph;+− = 1, i.e., at Lph = L0 − 1. This difference, however,
is beyond logarithmic accuracy and we neglect it, i.e., we
approximate Lph by L0. In the diagrammatic approach, this
corresponds to keeping only the leading term in the ladder
series for �

f,d

ph,B1
(L); see Fig. 8(b).

More important is the fact that near the instability, the
Pomeranchuk vertex scales as

�
f,d

ph;B1
(L) ∝ 1

L0 − L
, (93)

i.e., the corresponding βph = 1, while for other channels β is
close to 1/2.

Using the same reasoning in the computation of the
susceptibility in the B1 Pomeranchuk channel, we find

χph;B1 (L) ∝ 1

L0 − L
, (94)

i.e., the exponent for the Pomeranchuk susceptibility in the
B1 channel is αph = 1, much larger than α = 0.08 in the
SDW, CDW, and s- and d-SC channels. This difference
in the numbers is important because compared to other
susceptibilities, the one in the Pomeranchuk channel contains
an additional factor of a running coupling u(L) due to the
absence of the logarithm in the vertex renormalization. At
some distance from L = L0, u(L) ∼ 1/L0 is small, hence
χph;B1 is parametrically smaller than other susceptibilities. If
the exponents in the Pomeranchuk and other channels were
similar in magnitude, χph,B1 would exceed susceptibilities in
other channels only at L near L0, where u(L) � 1, and the
accuracy of one-loop pRG is questionable. Because all other
α are small and αph,B1 = 1, χph;B1 becomes larger than the
susceptibilities in other channels at much larger distance from
L0, when one-loop pRG is likely still valid.

We refrain from discussing the susceptibility in the A1

Pomeranchuk channel because, as we said, this susceptibility
does not actually diverge. The interactions in A2 and B2

Pomeranchuk channels flow to zero under pRG, i.e., the
corresponding susceptibilities do not diverge.

We note that the Pomeranchuk order changes the shape of
the Fermi surface, but it leaves fermionic excitations gapless.
This leaves the possibility that superconductivity emerges at
a lower temperature inside the nematic phase, as happens in
FeSe. In our model, the behavior in the nematic phase may
be even more complex as the susceptibilities in SC, SDW,
and CDW channels are expected to continue to grow below
the nematic transition. These three channels compete for the
secondary instability, and the outcome of this competition
depends on the details of the electronic structure, such as the
degree of nesting between electron and hole pockets and the
ratio of hole and electron masses. A detailed study of this
competition is beyond the scope of this work.

VI. DISCUSSION

In this paper, we performed a detailed study of potential
two-fermion instabilities in a model of FeSCs with the
interaction tailored to favor C4-breaking orbital order. In
contrast with the two-orbital model with the same interaction
considered in earlier works, we used the correct four-pocket
band structure with two hole pockets at the center of the
BZ and two electron pockets at its boundaries. We kept the
orbital content of low-energy excitations, which allowed us
to include orbital fluctuations along with SDW, CDW, and
SC fluctuations. We have shown that the interplay between
different interaction channels has a substantial effect on the
hierarchy of the ordering tendencies.

We first analyzed the model within the RPA, which neglects
the interplay between different channels. We found that the
highest-T instabilities at weak coupling are in s++ and d++
SC channels (s-wave and d-wave with no sign change of the
gap between hole and electron pockets), and in an intraorbital
CDW channel with transferred momenta (0,π ) or (π,0). The
instability temperature is the same in all three channels. The
sign-preserving SC state wins over sign-changing states (s+−
and d+−) because in our model intraorbital interaction is
attractive. The degeneracy between s++ and d++ channels is
a consequence of the absence of the Hund coupling J ′, which
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would give rise to the tunneling of Cooper pairs of electrons
on dxz orbitals into Cooper pairs on dyz orbitals and vice
versa.

There is also attractive interaction in interorbital SDW and
CDW channels. The instability temperature is the same in both
channels, but it is lower than that in the three leading channels.
In addition, there is attractive interaction in B1g , A2g , and B2g

Pomeranchuk channels, but the instability there occurs only
when the coupling exceeds a certain threshold. The threshold
value is the smallest in B1g channel.

We next studied the effect of coupling between different
channels. We applied the RG technique, we obtained and
solved the set of parquet RG equations for the interactions,
and we identified the stable fixed trajectory as the asymptotic
solution of these equations. On a fixed trajectory, the ratio
of any two interactions is just a number. We found that the
fixed trajectory in our model is notably distinct from the
one obtained for the model with intraorbital and interorbital
repulsion. In the latter case, the intrapocket interactions flip
the sign before the system reaches the fixed trajectory. This
turns intrapocket repulsion into an attraction. The interaction
describing the interpocket tunneling of Cooper pairs remains
attractive and becomes the strongest under pRG. This gives
rise to s+− superconductivity. The interplay between different
couplings is such that SC wins over intraorbital SDW, but the
SC susceptibility gets weakened by the competition and may
lose to d-wave Pomeranchuk order.

In the model that we considered here, intrapocket interac-
tions and the interpocket Cooper pair tunneling are attractive
at the bare level and remain attractive in the process of pRG
flow, while interpocket density-density interaction flips sign
under pRG from attraction to repulsion. As a consequence, four
channels are degenerate along the fixed trajectory in the sense
that the corresponding susceptibilities all diverge at the same
energy (temperature) and with the same exponent. These four
are s++ and d++ SC channels, an intraorbital CDW channel,
and an intraorbital SDW channel, all with real order parameter.
Due to the strong competition between that many channels,
the exponent for the susceptibilities is quite small, α = 0.08,
i.e., the four susceptibilities barely diverge at the critical RG
scale. Meanwhile, the d-wave Pomeranchuk channel (the one
with the C4-breaking orbital order parameter nxz-nyz) remains
attractive during pRG flow, and the exponent for the d-wave
Pomeranchuk susceptibility is α = 1. At intermediate RG
scales, Pomeranchuk susceptibility is smaller than the ones
in four other singular channels because of the absence of
a logarithm in the particle-hole polarization bubble at zero
momentum transfer. But near the critical RG scale L = L0,
Pomeranchuk susceptibility is the largest because of the larger
exponent α. Because of the large numerical difference between
α = 1 in the d-wave Pomeranchuk channel and α = 0.08 in
other channels, the susceptibility in the Pomeranchuk channels
becomes the largest already at a substantial distance from
the critical RG scale L0, when the one-loop pRG approach
is under control in the sense that two-loop corrections are
numerically small. The outcome is that in the model that
we considered in this work, the leading candidate for the
instability already at weak coupling is a spontaneous orbital
order. The verification of this result in numerical studies is
called for.

From a physics perspective, the microscopic mechanism
for the Pomeranchuk order in the model of Eq. (5) is twofold.
First, growing CDW fluctuations not only boost the attraction
in the current (imaginary) intraorbital SDW channel and in
s+- and d-wave superconducting channels, but they also boost
attractive interaction in the d-wave Pomeranchuk channel
Second, SC and SDW channels compete with the CDW chan-
nel, and this competition reduces SDW and superconducting
susceptibilities. The d-wave Pomeranchuk channel does not
compete with other channels, and the susceptibility in this
channel is not reduced. This is why the exponent in this channel
is larger than those in the other channels. We also emphasize
that pRG analysis goes beyond the RPA. In the RPA, there is an
instability in the d-wave Pomeranchuk channel in the model
of Eq. (5), but it holds only when g exceeds the critical value
gc, and it is always secondary to superconductivity. The pRG
analysis includes two effects not present in the RPA: (i) the
boost of the interaction in the Pomeranchuk channel by CDW
fluctuations, and (ii) the reduction of the susceptibility in the
superconducting channel due to competition with the CDW.

An obvious issue is how sensitive are our results to the
modification of the Hamiltonian, particularly the modification
of the interaction in Eq. (5), of the degree of nesting and the
value of the chemical potential in the electronic structure, and
of the strength of the interaction. In this regard, we make
a few observations. First, in the pRG approach, nesting (by
which we mean near equal size of hole and electron pockets)
does not play the crucial role. All that matters for pRG is
the opposite sign of the dispersion of excitations near hole
and electron pockets. Second, the pRG flow holds at energies
between the bandwidth and the Fermi energy, and as such it is
not sensitive to the details of the electronic structure at energies
smaller than EF . In this respect, variations of the chemical
potential over an energy range smaller than the Fermi energy
will not affect the pRG flow. The variation of the ratio of hole
and electron masses also does not affect the behavior of the
couplings along the fixed RG trajectory and the hierarchy of
instabilities. Third, in any one-loop RG-based study, there are
two assumptions: (i) that the channel for the leading instability
gets selected already within the applicability range of RG (i.e.,
at energies above EF ), and (ii) that the terms beyond one-loop
RG do not affect this selection. The larger the bare coupling
is [g in Eq. (5)], the more important are the terms beyond
one-loop RG. Neither we nor other groups analyzing the RG
flow in multiorbital systems went beyond one-loop RG simply
because one-loop RG equations are already complex enough.
Whether the RG results remain valid at g comparable to the
bandwidth should be addressed by comparing the RG phase
diagram with the results of numerical studies. We also note that
the huge difference between the exponents in the Pomeranchuk
channel and in other channels in our model is a guarantee that
the Pomeranchuk channel wins even in a more complex model,
where SC, SDW, and CDW susceptibilities become nonequal,
and one of the corresponding exponents become larger. Indeed,
this holds only as long as all exponents remain substantially
smaller than 1. If this is not the case, our reasoning breaks
down.

A more subtle aspect, which is not fully understood at the
moment, is whether the fact that CDW, SDW, and SC orders
all may potentially break C4 symmetry plays a role in the
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system’s selection of the C4 breaking Pomeranchuk order as
the leading instability. Indeed, the stripe CDW and SDW break
C4, and the degeneracy between s- and d-wave SC orders
opens the way to the s + id state, which also breaks C4. At
the same time, whether or not CDW or SDW order is a stripe
or a checkerboard can be determined only by analyzing the
interplay between fourth-order terms in SDW and CDW order
parameters. Such terms are of eighth-order in fermions and are
beyond the one-loop RG.
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