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Decay of the Kohn mode in hydrodynamic regime
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We develop a hydrodynamic description of the collective modes of interacting liquids in a quasi-one-
dimensional confining potential. By solving Navier-Stokes equation we determine analytically the excitation
spectrum of sloshing oscillations. For parabolic confinement, the lowest frequency eigenmode is not renormalized
by interactions and is protected from decay by the Kohn theorem, which states that center of mass motion
decouples from internal dynamics. We find that the combined effect of potential anharmonicity and interactions
results in a frequency shift and final lifetime of the Kohn mode. All other excited modes of sloshing oscillations
thermalize with the parametrically faster rate. Our results are significant for the interpretation of recent
experiments with trapped Fermi gases that observed a weak violation of the Kohn theorem.
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I. INTRODUCTION

Properties of quantum liquids in one dimension (1D), as
realized experimentally in nanoscale semiconducting wires,
carbon nanotubes, laser traps of cold atoms, and edge channels
of the quantum Hall systems, continue to attract tremendous
attention in physics research (see Refs. [1–3] for recent
reviews and references herein). With increasing sophistication
of high precision measurements and techniques, these systems
provide serious tests of existing theoretical models, such as
the Luttinger liquid theory [4–7], and ultimately challenge
their completeness. For example, the powerful approach of the
Luttinger liquid formalism allows one to nonperturbatively
account for interaction effects. However, this model does not
adequately describe relaxation phenomena due to a built-
in approximation of the linearized quasiparticle dispersion,
which, by virtue of the kinematic constraints, effectively
closes the phase space available for inelastic scattering. In
certain special cases, the lack of relaxation may be a generic
property of the many-body system because of its complete
integrability [8,9]. Alternatively, vanishing relaxation rates
may happen because of the reasons prescribed by the Kohn
theorem [10,11].

Motivated by recent experiments [12–15], we study
the relaxation of collective excitations in interacting two-
dimensional (2D) systems confined along one of the two
spatial dimensions. These systems interpolate between the
strictly one-dimensional limit of Luttinger liquids and the
two-dimensional Fermi liquids. The geometrical confinement
in such systems splits the single band spectrum into multiple
one-dimensional subbands. The convenient and practically
justified model idealization is interacting particles confined
by a harmonic potential. In this case the 1D subbands are
equidistantly separated by a frequency of oscillations ω⊥
across the channel. Similar to the spectrum linearization in
strictly 1D liquids, harmonic approximation in the quasi-1D
case on one hand simplifies the dynamics, and at the same time
does not allow for a proper description of the thermalization
processes. One necessarily has to account for the confinement
anharmonicity, which thermalizes the motion across the
channel in much the same way as the spectrum nonlinearity

causes the relaxation of charge and spin excitations in 1D
quantum wires [16–20].

Despite the similarity with 1D, the relaxation of transversal
excitations has a few distinct features that set these two
problems apart. The kinematical constraints of momentum
and energy conservations that are operational in 1D are less
restrictive in quasi-1D. In contrast to the 1D case, which
requires three-particle scattering processes, the two-body
collisions do cause relaxation via intersubband transitions.
Thermalization in quasi-1D may nevertheless be prohibited
due to the Kohn theorem rather than to kinematical restrictions.

This theorem states that the motion of the system as a
whole is unaffected by interactions. Classically, it follows as
the translationally invariant interaction energy is insensitive
to the system displacement as a whole. For the same reason,
quantum mechanically, the interaction drops out of the center
of mass Heisenberg equation of motion [11,21]. In a quantum
Fermi liquid the Kohn theorem is obtained as the solution of
the kinetic equation on the quasiparticle distribution function
in conjunction with Landau Galilean invariance relation [22].

In all of the above cases the Kohn theorem states that if
the confining potential is harmonic, the collective sloshing
oscillations proceed without decay. The frequency of the Kohn,
or the so-called sloshing mode ω⊥, is insensitive to interaction,
temperature, and particle statistics [11,21,22].

This fact makes the observation of the Kohn mode possible
in a wide variety of systems. In semiconductor quantum wires
the Kohn mode is observed in optical transmission at the far
infrared [23,24]. In a trapped ultracold Fermi gas of 6Li, the
Kohn mode of a half kHz frequency was excited by a sudden
displacement of the trap and detected by absorption imaging
of the released cloud [14,25].

The weak violation of the Kohn theorem due to anhar-
monicity observed in the above three classes of systems plays
a key role in data interpretation. In the case of semiconductor
quantum wires it controls the line broadening and the higher
harmonics of light transmission [23]. The observed sloshing
frequency of an atomic cloud in the optical trap shows
systematic deviations from the Kohn theorem prediction [26].
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Such deviations grow with heating as the expanding atomic
cloud senses a progressively less parabolic confining potential.
Here we concentrate on two fundamental aspects of Kohn
theorem violation: (i) the frequency shift of the sloshing
frequency, and (ii) the final lifetime of sloshing oscillations.
We approach this problem based on the very general grounds of
hydrodynamic theory, which accurately describes most liquids
at length scales that are long compared to the particle-particle
mean free path.

II. HYDRODYNAMIC THEORY

A hydrodynamic description is based on the existence of
slow variables associated with locally conserved quantities,
such as the number of particles, momentum, and energy. The
motion of the liquid is described by the Navier-Stokes equation
which in Eulerian continuous field coordinates can be put in
the form [27]

∂t (ρvj ) = −∂i�ij − ρ∂jU, (1)

guaranteeing momentum conservation, which holds in ideal
and nonideal liquids alike in the absence of a confining
potential divided by particle mass, U . The stress tensor of
a two-dimensional fluid giving rise to the Navier-Stokes
equation is [27]

�ij = δijP + ρvivj − ζ δij ∂kvk − η(∂ivj + ∂jvi − δij ∂kvk).

(2)

Here, η,ζ are the first (shear) and second (bulk) viscosities,
and P is the pressure. In the following we focus on a 1D flow
in the z direction of a two-dimensional liquid occupying the
strip |z| < a, so that the velocity vector field can be taken in
the form v = v(z,t)ez and Eq. (1) simplifies to

ρ(∂tv + v∂zv) = −∂zP − ρ∂zU + ∂z(η∂zv). (3)

When writing this equation we made use of the continuity
equation ∂tρ + ∂z(ρv) = 0 and employed the standard as-
sumption η � ζ . For the purpose of our study it will be conve-
nient to use a particle description of the Navier-Stokes equa-
tion. In this approach the coordinate z labels an equilibrium
position of a fluid particle, and its location at a later time t is the
z + φ(z,t) such that φ is the displacement field. By definition,
the density is ρ[z + φ(z,t),t] = ρ0(z)/[1 + ∂zφ(z,t)], and the
velocity v[z + φ(z,t)] = ∂tφ(z,t). The linearization of Eq. (3)
is equivalent to the linearization in φ. To leading order,

ρ = ρ0 + δρ, δρ = −(ρ0φ)′, v = φ̇, (4)

where ρ0 is a stationary equilibrium density distribution, the
notations f ′ = ∂f/∂z and ḟ = ∂f/∂t are introduced, and the
pair of arguments (z,t) common to all the functions is omitted.
The parametrization (4) of δρ and v by a single displacement
field automatically satisfies the linearized continuity equation
δρ̇ + (ρ0φ̇)

′ = 0. The concept of the displacement field is
further illustrated in Fig. 1. For solutions of the form φ(z,t) =
eiωtχ ′(z), Eq. (3) in the parametrization (4) reads (see the
Appendix)

ω2χ = −v2
s χ

′′ + U ′χ ′ − iω

∫ z

z0

dz

ρ0
(νρ0χ

′′)′, (5)

z

z

a−a
z z+dz

z+φ(z, t) z+dz+φ(z+dz, t)
t

0

FIG. 1. (Color online) The definition of the displacement field
φ(z,t) in a Lagrangian formulation. At the time, shown as the vertical
axis, t = 0, the fluid is contained in the interval |z| < a. As time
progresses, the particles of a fluid move, as indicated by the narrow
arrows pointing upward. The particle located at z at t = 0 is shifted
to the new position z + φ(z,t). A fluid volume shown as a narrow
(red) horizontal rectangle occupies a segment [z,z + dz] at time
t = 0. At a later time t > 0 this volume is displaced and occupies
the segment [z + φ(z,t),z + dz + φ(z + dz,t)]. The fluid volume
expands (shrinks) if ∂φ(z,t)/∂z > (<)0. The expansion (shrinkage)
translates in the decrease (increase) in the density, respectively.

where ν(z) = η(z)/ρ0(z) is the kinematic viscosity, and

vs =
√

∂P/∂ρ0 (6)

has a meaning of a local speed of sound that depends on z only
through the equilibrium density ρ0. We show that the results
are independent on arbitrary z0.

The spectrum of collective excitations and their decay rates
as given by Eq. (5) depend on the details of the confining
potential and dependence of the viscosity on density. Here, for
definiteness, we consider the confining potential per unit mass
with a weak quartic anharmonicity,

U = ω2
⊥z2

2
+ εz4

4m
+ δU, (7)

where m is the mass of an individual particle, and the constant
δU ∝ ε is added in such a way that the spatial extent of the
liquid stays the same as for ε = 0. In other words, δU +
εa4/4m = 0. This choice is not obligatory, yet convenient in
the following calculations. The anharmonic part ∝ε of U not
only modifies the second term in the right-hand side of Eq. (5),
but also the first one. Indeed, in the parabolic confinement
the sound velocity is v2

s (z) = 2πρ(z)/m3 = ω2
⊥(a2 − z2)/2,

which now acquires a correction δv2
s (z) = −ε(z4 − a4)/4m.

With these observations in mind, we multiply Eq. (5) by 2/ω2
⊥,

rescale coordinates z → z/a, and introduce λ2
ω = 2ω2/ω2

⊥ to
find

λ2
ωχ + (1 − z2)χ ′′ − 2zχ ′ + Vε + Vν = 0. (8)

The perturbation term due to anharmonicity can be cast in the
form

Vε = − εa2

2mω2
⊥

[(z4 − 1)χ ′]′. (9)

This formula can be generalized to any confining potential
after the change [(z4 − 1)χ ′]′ → {[U (z) − U (a)]χ ′}′. Conse-
quently, our results for the frequency shift are straightforward
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to apply for arbitrary confinements. We emphasize that Vε is
Hermitian. This property guarantees that the anharmonicity
alone causes only the frequency shift but no dissipation. We
argue below that only a combination of anharmonicity and
viscosity leads to the dissipation of the Kohn mode. The exact
z dependence of the viscosity ν(z) is specific to the model. This,
however, only influences the numerical prefactors in the final
results, and we take the expression for the viscosity from the
theory of Fermi liquids, η ∝ vF ρ�, where the mean free path
is � ∝ vF EF /T 2, with vF and EF being the Fermi velocity
and energy, respectively. For this case ν(z) = Cρ2(z)/m5T 2,
where C is the numerical factor of the order of unity [28]. In
the above specified dimensionless notations, this results in

Vν = −iλωB

∫ z

z0

dz

1 − z2
[(1 − z2)3χ ′′]′, (10)

where we have introduced B = √
2ν0/a

2ω⊥, with
ν0 = ν(z = 0). We proceed with the analysis of Eq. (8).

III. RESULTS

As a first step, let us discuss the eigenmodes of an ideal
fluid confined to a harmonic trap. For that purpose we
neglect anharmonicity and interaction effects implicit in the
viscosity term of Eq. (8), i.e., we set Vε = Vν = 0. What
remains is the familiar Legendre equation, and we therefore
immediately read off its solutions λ2

ωn
= 2ω2

n/ω⊥ = n(n + 1)
with n = 0,1,2, . . . so that the eigenfrequencies are

ωn = ω⊥

√
n(n + 1)

2
. (11)

The n = 0 gives an equilibrium since for χn=0 = const the
velocity is identically zero. The n = 1 is a Kohn mode ω1 =
ω⊥. We thus found the whole hierarchy of eigenoscillations—
they are Legendre polynomials

χn(z) =
√

2n + 1

2
Pn(z), (12)

and the related velocity fields are vn(z) = ∂zPn. Remarkably,
the same spectrum of collective modes as (11) was obtained
recently for the longitudinal oscillations of 1D Coulomb
chains [29]. In this system the collective behavior sets in due
to the long range Coulomb forces rather than collisions.

Next, we discuss the significance of perturbation terms on
the spectrum of the collective modes. Let us first consider
anharmonicity alone, i.e., we set Vν = 0 and Vε �= 0 in
Eq. (8). As Vε is Hermitian, the spectrum remains real. As
a result, all the eigenmodes remain undamped, as expected
in the absence of collisions. To find the frequency shift of
the Kohn mode, δ(1)ω1 to the leading order in ε, we write
λ2

ω1
= 2 + δ(1)λ2

ω1
, where the correction term is found from

the first-order perturbation theory

δ(1)λ2
ω1

= 3εa2

4mω2
⊥

〈P1(z)|(z4 − 1)∂2
z + 4z3∂z|P1(z)〉. (13)

The matrix element gives a factor of 8/5 which eventually
translates into the correction to the Kohn mode frequency,

δ(1)ω1 = 3εa2

10mω⊥
. (14)

We have checked that the result (14) agrees with the result
obtained by the method of moments suggested in Ref. [25].
We note, however, that the result for the depolarization shift in
the collisionless regime differs from Eq. (14) by a nonuniversal
numerical prefactor. For instance, for the contact interaction,
we obtain by direct perturbation theory in fermions, δ(1)ω1 =
3εa2/5mω⊥ [30]. Corrections to all other eigenfrequencies
can be computed in the same fashion, which will have the
same form as above but with different numerical coefficients.

Before considering the generic case, it is instructive to
verify the Kohn theorem within our hydrodynamic approach. It
amounts to the statement that χ1(z) ∝ z remains the solution of
Eq. (8) with the frequency ω1 = ω⊥ even for Vν �= 0 provided
only Vε = 0. This in turn will be proven once we show that for
any non-negative n, 〈P1|Vν |Pn〉 = 〈Pn|Vν |P1〉 = 0. Clearly,
Vν |P1〉 = 0 as [P1(z)]′′ = 0. On the other hand, from Eq. (5)
it follows that

〈P1|Vν |Pn〉 ∝
∫ 1

−1
dz̄P1(z̄)

∫ z̄

z0

dz

ρ0(z)
{ν(z)ρ0(z)[Pn(z)]′′}′.

(15)

Realizing that P1(z̄) = −∂zρ0(z̄)/2 and integrating by parts,
one concludes that 〈P1|Vν |Pn〉 = 0 for all n, thus proving the
Kohn theorem in the present context.

It follows that the Kohn mode may acquire a finite lifetime
only when the anharmonicity is included. Yet the perturbation
Vε is Hermitian and by itself is insufficient. We therefore
consider both perturbations, and look for corrections that are
first order in each of the two. In the second-order perturbation
theory such a correction is of the form

δ(2)λ2
ω1

= −iλωB

∞∑
n=1

√
3/2

√
(2n + 1)/2

2 − n(n + 1)

× [〈P1|Vν |Pn〉〈Pn|Vε |P1〉 + 〈P1|Vε |Pn〉〈Pn|Vν |P1〉].
(16)

As we saw above, both terms in this equation are zero as the
Kohn mode does not couple to any other mode by a viscosity
term Vν , and δ(2)λ2

ω1
= 0.

Inevitably we have to consider the third-order corrections
to λω1 . The third-order correction to the energy El of a state
|l〉 is

δ(3)El =
∑

k,m�=l

〈l|V |m〉〈m|V |k〉〈k|V |l〉
(Em − El)(Ek − El)

−〈l|V |l〉
∑
m�=l

〈l|V |m〉〈m|V |l〉
(Em − El)2

. (17)

To apply this expression to our problem we identify |l〉 =
P1 as a Kohn mode and V = Vε + Vν . We observe that
for the perturbation terms given by Eqs. (9) and (10) the
following properties of matrix elements hold, 〈P1|Vν |Pn〉 =
〈Pn|Vν |P1〉 = 〈P1|Vε |P1〉 = 0 for all n. Furthermore, for the
quartic anharmonicity under consideration, the only nonzero
off-diagonal matrix elements are 〈P1|Vε |P3〉 = 〈P3|Vε |P1〉,
with the rest of the matrix elements 〈Pn|Vε |P1〉 = 0 for
n �= 1,3. We thus have, accounting for all the normalization
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factors of eigenoscillation modes (12),

δ(3)λ2
1 = 147

8
(
λ2

1 − λ2
3

)2 〈P1|Vε |P3〉〈P3|Vν |P3〉〈P3|Vε |P1〉. (18)

Using the explicit expressions (9) and (10), we find for the
matrix elements

∫ 1

−1
dz̄P3(z̄)

∫ z̄

z0

dz

1 − z2
∂z

[
(1 − z2)3∂2

z P3
] = −40

21
, (19)

∫ 1

−1
dzP1(z)∂z[(z

4 − 1)∂zP3(z)] = 8

5
, (20)

and eventually

δ(3)λ2
1 = iλω

28
√

2

125

ν0

a2ω⊥

(
εa2

mω2
⊥

)2

. (21)

This result enables us to find the imaginary part of the
Kohn mode ω1 = ω⊥ + δω1 + iτ−1

1 , which corresponds to its
attenuation with the rate

τ−1
1 � ν0ε

2a2

m2ω4
⊥

�
(

δω1

ω⊥

)2
ν0

a2
, (22)

where we omitted numerical factors of order unity for brevity.
This expression constitutes the main result of our work and has
a straightforward interpretation. The higher excitation modes
not protected by the Kohn theorem decay with the rate ∼ν0/a

2.
As ν0 has dimensions of the diffusion coefficient, this is the
typical rate of momentum relaxation. The ratio (δω1/ω⊥)2 is
the probability of finding the system in higher modes.

IV. DISCUSSIONS

Hydrodynamic description requires a short equilibration
length �. Thus, the validity of our theory is limited by the condi-
tion � � a, which imposes a certain restriction on temperature.
Specifically, for the Fermi liquids, � = vF τee is determined by
collisions with a typical rate τ−1

ee ∼ T 2/EF . Since ω⊥ ∼ vF /a,
the hydrodynamic regime is realized at temperatures T > Th

above the crossover scale Th ∼ √
ω⊥EF ∼ EF /

√
N , where

N is the number of occupied subbands of the transversal
quantization. It also follows that by necessity hydrodynamics
requires T � ω⊥. While this inequality is reasonably satisfied
for the cold gases that are confined by a very shallow
potential, it obviously breaks in the ultracold limit where a
collisionless regime prevails. In the latter case the attenuation
coefficient of the Kohn mode is expected to follow a quadratic
temperature dependence τ−1

1 ∝ αT 2/EF based on the Pauli
principle and the phase space restriction argument, whereas
in the hydrodynamic regime, τ−1

1 ∝ 1/T 2, in accordance with
Eq. (22). The nonmonotonic temperature dependence of the
decay rate has been observed experimentally [26].

Our hydrodynamic approach has interesting parallels with
the Luttinger liquid description of collective modes in confined
inhomogeneous 1D gases [31]. The eigenvalue equation for the
normal eigenmodes in that case, analogous to our Eq. (5), is
given by

−ω2
nχn(z) = v(z)K(z)∂z

(
v(z)

K(z)
∂zχn(z)

)
, (23)

where the Luttinger liquid interaction parameter satisfies the
relation v(z)K(z) = πρ(z)/m2. This equation is supplemented
by the boundary condition χn(±a) = 0 and normalization
condition

∫ a

−a
dzχj (z)χj (z)/v(z)K(z) = δij . For the particular

choice of v(z) = v0

√
1 − z2/a2 and K(z) = K0(1 − x2/a2)γ ,

the solutions χn(z) are obtained in terms of Gegenbauer poly-
nomials with the spectrum of excitations ω2

n = (v0/a)2(n +
1)(n + 2γ + 1) [31–33]. In the model of γ = 2, the problem
simplifies to a case of Legendre polynomials [34] with the
spectrum of excitations analogous to our result (11). Another
interesting limit is γ = 0, which corresponds to the case of
a Tonks-Girardeau gas, where the Gegenbauer polynomials
reduce to Chebyshev polynomials. The inclusion of dissipative
terms into Eq. (23) requires a consideration of corrections to
the Luttinger liquid model which accounts for the inelastic
scattering of bosons and ultimately describes the equilibration
processes. As recently shown, such a generalization is possible
both in the limit of weak [35] and strong [36] interactions, and
the application of this formalism to the problem of decay of
collective modes is an interesting problem for future research.
Along this route one may hope to find a unified description,
which interpolates between the quantum [36] and classical [37]
hydrodynamic regimes of Luttinger liquids, and which is
broadly applicable for arbitrarily strong interactions.

Note added. Recently, we became aware of a related
study [38] where the decay of the Kohn mode has been
studied in the context of the famous quantum Newton’s cradle
experiment [39].
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APPENDIX: DISPLACEMENT FIELD
PARAMETRIZATION OF THE LINEARIZED

NAVIER-STOKES EQUATION

In the parametrization (4), the left-hand side of Eq. (3) takes
the form

ρ(∂tv + v∂zv) ≈ ρ0φ̈ . (A1)

To linearize the right-hand side of Eq. (3), we note that the
pressure is fixed by the density via the equation of state such
that

P (z,t) = P [ρ(z,t)] ≈ P [ρ0(z)] − v2
s [ρ0(z)](ρ0φ)′, (A2)

where the velocity vs is defined in Eq. (6). At equilibrium,
Eq. (3) yields

v2
s ρ

′
0 = −ρ0U

′. (A3)
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We have therefore

−P ′ − ρU ′ ≈ [
v2

s (ρ0φ)′
]′ + (ρ0φ)′U ′. (A4)

Writing (ρ0φ)′U ′ = [ρ0φU ′]′ − ρ0φU ′′ and using (A3), we
obtain

−P ′ − ρU ′ ≈ [
v2

s ρ0φ
′]′ − (ρ0φ)U ′′. (A5)

Writing [
v2

s ρ0φ
′]′ = ρ0

[
v2

s φ
′]′ + ρ ′

0

[
v2

s φ
′] (A6)

and using (A3) again, we obtain

−P ′ − ρU ′ ≈ ρ0
[
v2

s φ
′]′ − ρ0φ

′U ′ − ρ0φU ′′. (A7)

The third viscosity term on the right-hand side of Eq. (3) reads

∂z(η∂zv) = [ηφ̇′]′. (A8)

Substituting Eqs. (A1), (A7), and (A8) in Eq. (3), we obtain

φ̈ = [
v2

s φ
′]′ − φ′U ′ − φU ′′ + ρ−1

0 [ηφ̇′]′. (A9)

For solutions of the form φ(z,t) = eiωtχ ′(z), we obtain the
equation

− ω2χ ′ = [
v2

s χ
′′]′ − χ ′′U ′ − χ ′U ′′ + (−iω)ρ−1

0 [ηχ ′′]′.

(A10)

Integration of Eq. (A10) over z yields Eq. (5).
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