
PHYSICAL REVIEW B 91, 235119 (2015)

Raman scattering as a probe of nematic correlations
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We use the symmetry-constrained low-energy effective Hamiltonian of iron-based superconductors to study
the Raman scattering in the normal state of underdoped iron-based superconductors. The incoming and scattered
Raman photons couple directly to orbital fluctuations and indirectly to the spin fluctuations. We computed
both couplings within the same low-energy model. The symmetry-constrained Hamiltonian yields the coupling
between the orbital and spin fluctuations of only the same symmetry type. Attraction in the B2g symmetry
channel was assumed for the system to develop the subleading instability towards the discrete in-plane rotational
symmetry breaking, referred to as Ising nematic transition. We find that upon approaching this instability, the
Raman spectral function develops a quasielastic peak as a function of energy transferred by photons to the
crystal. We attribute this low-energy B2g scattering to the critical slowdown associated with the buildup of
nematic correlations.
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I. INTRODUCTION

The discovery of iron-based superconductors (FeSCs)
opened new avenues in the research of strongly correlated
systems [1–5]. Despite the diversity in crystallographic struc-
ture and chemical composition, all the FeSCs share several
generic trends. FeSCs are multiband and multipocket materi-
als. According to angle-resolved photoemission spectroscopy
(ARPES) the Fermi surface (FS) contains two or three hole
pockets at the center of the Brillouin zone, the � point, and
two electron pockets centered at (π,π ), the M point in two-
iron-atom unit-cell notations. The underdoped compounds
undergo structural tetragonal to orthorhombic transition at the
temperature Ts followed by or coincident with the spin density
wave (SDW) transition at TSDW. The superconductivity sets
in when the magnetism is suppressed by doping [6–10] or
pressure [11,12].

The interplay between the magnetism and superconductiv-
ity is manifest in the weak-coupling renormalization-group
analysis of competing instabilities [13–15]. The interaction
amplitude in the spin-density-wave channel is renormalized
in a way similar to that for the usual renormalization in
the particle-particle channel that normally leads to Cooper
instability. Above the Fermi energy EF the two channels affect
each other. As a result, the interpocket pairing interaction is
enhanced by the spin fluctuations, which were suggested to
drive the unconventional s± superconductivity with the order
parameter changing sign between the electron and hole FSs.
In this picture low (high) doping makes the magnetic (Cooper)
instability a winner in a competition at energies below EF .
It follows that the proximity of the magnetic and supercon-
ducting phases on a phase diagram is not accidental. Hence,
the understanding of magnetic and structural transitions is
instrumental for the description of the superconductivity.

Most commonly, at the magnetic transition the continuous
O(3) symmetry and the discrete time-reversal symmetry are
broken. In the FeSCs the spin alignment is magnetic along one
direction and antiferromagnetic in the orthogonal direction.

Such stripe magnetization lowers, therefore, the discrete C4

rotational symmetry of the lattice down to C2. The possibility
of breaking the C4 symmetry without breaking the spin O(3)
and time-reversal symmetry was studied in the context of
the structural transition, and the corresponding transition was
referred to as being Ising nematic [16]. In this picture, below
Ts the spin-correlation length increases in one of the symmetry
directions and decreases in the other, and the magnetism sets
in with little or no delay.

The prevailing scenario of the structural transition is
electronic. Specific to FeSCs is a rather high degree of
ab anisotropy in the electronic properties. The resistivity
anisotropy ρb/ρa in cobalt-doped BaFe2As2 is reported [17]
to reach values as high as 2 for cobalt concentration x ≈ 0.03,
whereas the maximal orthorhombic distortion for the parent
material, x = 0, is only about 0.36%. Moreover, in strain-
controlled samples the derivative of (ρb − ρa)/(ρb + ρa) with
respect to the strain shows a divergence at the interpolated
mean-field temperature T ∗ = 116 K for the parent compound.
[18] The T ∗ so obtained is only 22 K lower than the
actual transition temperature, Ts = 138 K. The relatively small
difference Ts − T ∗ is due to the lattice fluctuations being
suppressed under the conditions of fixed strain. Likewise, the
optical reflectivity is nearly divergent at the nematic transition
[19]. All these findings are indicative of the dominance of the
electronic degrees of freedom in the nematic transition.

It is, in general, hard to disentangle different electronic
fluctuation channels breaking the same symmetry. At present
the dominance of either charge or spin degrees of freedom in
driving the structural transition is not settled. There are two
schools of thought as to the origin of electronic nematicity
[20]. In the orbital nematicity scenario the difference in
populations nXz − nYz of the dXz and dYz iron orbitals is
believed to be the primary cause of the nematic transition
[21–25]. In another scenario it is the spin that drives the
nematic transition [20,26]. Let m1,2 be the two staggered
(antiferromagnetic) magnetizations on the even and odd iron
sublattices, respectively. The nematic transition occurs when
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the two spin sublattices lock, 〈m1 · m2〉 �= 0 [27]. The two
alternatives are the positive and negative 〈m1 · m2〉, resulting
in two orthogonal stripe magnetizations, �X,Y = m1 ± m2.
These are the spin arrangements ferromagnetic in the X (Y )
direction and antiferromagnetic in the Y (X) direction in an
Fe-only lattice. The magnetic perspective is supported by the
NMR data showing a low-T Curie-Weiss-like upturn of a
spin-lattice relaxation rate 1/T1T [28,29] and by the scaling
between the magnetic fluctuations and softening of the elastic
shear modulus at the structural transition [30].

In this paper we do not attempt to resolve the above
controversy, but rather explore the consequences of the nematic
fluctuations as observed in recent Raman experiments [31–33].
Even though the region of the phase diagram contained be-
tween Ts and TSDW is either absent or quite tiny, the dynamical
nematic fluctuations revealed by Raman spectroscopy kick
in far into the paramagnetic phase up to room temperatures.
The Raman spectroscopy is essentially a dynamic probe
of electronic correlations of prescribed symmetry [34,35].
The photon scattered inelastically leaves some of its energy
with the crystal. Selection rules fix the symmetry of the
excitation, while the energy difference between the incoming
and scattered photons, the so-called Raman shift, determines
the energy of the electronic excitations.

II. RAMAN RESPONSE IN THE FOUR-BAND MODEL

A. Band structure model

In this section we discuss the phenomenological four-band
model based on the work of Cvetkovic and Vafek [36]. In
this model constructed using the method of invariants due to
Luttinger [37], the interaction of electrons with light is easily
obtained using the standard gauge-invariant minimal-coupling
procedure [35]. Here we neglect the coupling between the
different layers and consider the crystal structure to be
quasi-two-dimensional [see Fig. 1(a)]. Generically, in FeSCs
each layer contains the iron atoms forming a simple square
lattice with the basis unit vectors X̂ and Ŷ . The pnictogen or

Fe

X̂Ŷ

As
x̂

ŷ

As

Γ

M

eS

eI
(a) (b)

FIG. 1. (Color online) (a) The unit cell of a quasi-two-
dimensional FeSC contains two iron atoms and two pnictogen atoms
such as As (or a chalcogen atom such as Se). The atoms above
and below the iron layer are denoted by crosses and by circles,
respectively. The basis vectors of the iron-only lattice are denoted
by X̂ and Ŷ . The vectors x̂ and ŷ are chosen as the basis vectors of
the two-iron-atom unit-cell lattice. (b) The two-iron-atom Brillouin
zone. The � point hosts two hole pockets, and the M point hosts
two electron pockets. The solid black and dashed blue lines denote
the dXz and dYz orbital contents, respectively. The admixture of the
dXY orbital at the outer parts of the crossed Fermi pockets at M is
neglected. The polarization vectors eI and eS for the B2g Raman
configuration are shown.

chalcogen atoms form the checkerboard with even and odd
sublattices above and below the iron layer. Above the SDW
transition the unit cell contains two iron atoms with the basis
denoted by x̂ and ŷ.

It is sufficient to consider a slightly simplified version
of the model [36] in which the four-dimensional effective
Hamiltonian describing the M point is replaced with the
two-dimensional one and the remaining electronic bands that
are not crossing the Fermi level are discarded. We write, for
the quadratic part of the Hamiltonian,

H =
∑
k,α

∑
i,j=1,2

c
†
i,kαH�

k;i,j cj,kα + f
†
i,kαHM

k;i,j fj,kα , (1)

where c
†
i,kα (f †

i,kα) creates a hole (an electron) in a state with
spin index α and momentum k counted from the � (M) point.
The index i = 1 (i = 2) refers to the dXz (dYz) orbital content.
For that reason the Hamiltonian (1) refers to the orbital basis
and reads

H�
k =

[
ε� + k2

2m�
+ akxky

c
2

(
k2
x − k2

y

)
c
2

(
k2
x − k2

y

)
ε� + k2

2m�
− akxky

]
(2)

for holes and

HM
k =

[
εM + k2

2mM
+ bkxky 0

0 εM + k2

2mM
− bkxky

]
(3)

for electrons. The parameters entering Eqs. (2) and (3) obtained
from the fits to the tight-binding calculations [38,39] are
tabulated in Ref. [36]. Below we set a = c, which corresponds
to circular hole FSs. In this work we neglect the spin-orbit
coupling, and at �, k = 0, the two Bloch states are degenerate.
Equation (3) neglects the admixture of dXY orbitals, and the
parameter b is the pocket ellipticity.

The Hamiltonians (2) and (3) describe the band structure
shown in Fig. 1(b). The band structure obtained by diagonal-
ization of these Hamiltonians contains two hole pockets at
� with orbital content alternating between dXz and dYz with
π periodicity and two electron pockets at M . The electron
pockets cross, and their outer parts contain an admixture of
the dXY orbital. Here we neglect such an admixture while
preserving the overall symmetry of the Hamiltonian.

B. Raman coupling

Raman scattering is a two-photon process. Its amplitude
contains one part which is second order in the dipolar
interaction and the first order in the coupling via the effective
mass tensor. Assuming that the base frequency is detuned
off the dipole transitions, it is customary to ignore the
dipolar coupling. Under these circumstances the inelastic
Raman scattering cross section as a function of the Raman
shift ω is proportional to the imaginary part of the retarded
Raman susceptibility [κR(q,ω)]′′. We compute it from the
corresponding Matsubara correlation function of the Raman
vertices,

κ(q) = 〈r̂ r̂〉q , (4)

where the vector q = (q,iωm) includes the spatial wave vector
q and Matsubara frequency ωm and we denote 〈ÂB̂〉q =∫ T −1

0 dτ exp(iωmτ )〈Aq(τ )B−q(0)〉. The experimental situation
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corresponds to q = 0 in Eq. (4), and the Raman susceptibility
κR(0,ω) is obtained from κ(q) by setting q = 0 and performing
the analytical continuation, iωm → ω. Below in writing the
Matsubara frequency ωm, we omit the subscript m for brevity.

The expression for the Raman vertices

r̂ =
∑
k,α

∑
i,j=1,2

c
†
i,kαr�

i,j cj,kα + f
†
i,kαrM

i,j fj,kα (5)

is fixed by the Hamiltonian, as formulated by Eqs. (1)–(3),
as well as the polarization vectors of incoming and scattered
photons, eI and eS ,

r
�(M)
i,j =

∑
λλ′

eI
λe

S
λ′

∂2H�(M)
ij

∂kλ∂kλ′
. (6)

In this work we focus on the B2g Raman configuration
such that polarization vectors of incoming and scattered
photons are eI = (X̂ + Ŷ )/

√
2 = x̂ and eS = (Ŷ − X̂)/

√
2 =

ŷ, respectively (see Fig. 1). The reason for this is twofold.
First, the buildup of the low-energy B2g Raman intensity upon
cooling is the dominant feature observed experimentally above
Ts [31–33]. Second, both orbital and the nematic fluctuations
have B2g symmetry. Indeed, Eq. (6) in combination with
Eqs. (2) and (3) gives

r� = a

[
1 0
0 −1

]
, rM = b

[
1 0
0 −1

]
. (7)

Equation (7) shows that photons in the B2g Raman configura-
tion couple directly to orbital fluctuations.

III. EFFECTIVE ACTION AND RAMAN SUSCEPTIBILITY

We compute the Raman susceptibility as given by Eq. (4)
with the Raman vertex specified by Eqs. (5) and (7). In doing
so we follow closely the derivation of Ref. [16]. To compute
the Raman susceptibility we add to the quantum action the
source term,

SJ = Jωr̂−ω + J−ωr̂ω, (8)

and the Raman susceptibility [Eq. (4)] is obtained by a
functional derivative of a free-energy functional,

κ(ω) = δ2F[J ]

δJωδJ−ω

, (9)

computed at Jω = J−ω = 0.
Here we focus on the spin interactions for definiteness

and comment on the role of the orbital fluctuations. In the
purely magnetic scenario of the nematic transition we write
the interaction in the form

Hint = −1

2
us

∑
q

∑
i=1,2

si,q si,−q , (10)

where the spin operator is diagonal in orbital index i,

si,q =
∑

k

∑
i=1,2

c
†
k+q,iασ αβfk,iβ , (11)

where σ αβ are the Pauli matrices. The standard Hubbard-
Stratonovich transformation amounts to the decoupling of

the interaction term [Eq. (10)] via the stripe magnetiza-
tions, �X(Y ) ∝ ∑

k c
†
k+q,1(2)ασ αβfk,1(2)β . The integration over

fermion operators results in an effective action that closely
resembles that of Ref. [16],

S[�X,Y ,J±ω] =
∫

q ′
χ−1

q ′
(∣∣�X

q ′
∣∣2 + ∣∣�Y

q ′
∣∣2)

− g

2
[|�XY (0)|2 + |�XY (ω)|2]

+ [λALJω�XY (ω) + c.c.] , (12)

where we introduced the notation

�XY (ω) =
∑
�,q

[
�X

q,ω+��X
−q,−� − �Y

q,ω+��Y
−q,−�

]
. (13)

For ω = 0, Eq. (13) describes the classical contribution of
the nematic fluctuations to the Ginzburg-Landau free energy,
while �XY (ω) describes the quantum nematic fluctuation
driven by the external source at the same frequency.

We now comment on Eq. (12). First, we omitted the term
∝[(�X)2 + (�Y )2]2 responsible for the renormalization of the
spin susceptibility χq that is crucially important for the nature
of the magnetic and structural phase transition. Here we are
not concerned with either the feedback of nematic fluctuations
on magnetism or mapping out the phase diagram, and for that
reason we do not include this term in the action keeping the
spin susceptibility unrenormalized.

Second, the last term in Eq. (12) describes the coupling
of the Raman vertex to the spin-nematic order parameter
∝(�X)2 − (�Y )2 via the triangular Aslamazov-Larkin-like
vertex λAL evaluated in the Appendix. We have shown this
vertex can be approximated by a frequency- and momentum-
independent function. Most relevant for the present analysis is
the weak temperature dependence of λAL for temperatures not
exceeding the mismatch between the electron and hole Fermi
surfaces. Because the latter can be a few tens of meV, the above
statements hold for most of the relevant temperatures.

We further perform the second Hubbard-Stratonovich trans-
formation by introducing the nematic field φ. We introduce
the static nematic field φ0 and the quantum time-dependent
nematic field φ(τ ) = φωeiωτ , which correspond to the two
terms quartic in �X(Y ) in Eq. (12). The resulting quadratic
action reads

S =
∑

q

(
χ−1

q + φ0
)∣∣�X

q

∣∣2 + (
χ−1

q − φ0
)∣∣�Y

q

∣∣2

+ [(φ−ω + λALJ−ω)�XY (ω) + c.c.]

+ φ2
0

2g
+ |φω|2

g
. (14)

The action (14) is quadratic with respect to the stripe order
parameters, which thus can be integrated out explicitly. This
procedure results in the effective action

exp(−F) =
∫

d�Xd�Y exp(−S)

= exp

(
−φ2

0

2g
− |φω|2

g

)
Det(D̂3

+)Det(D̂3
−), (15)
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g g g(a) (b)λAL λAL λALλAL

χ(q,Ω)

χ(q, ω+Ω)

FIG. 2. (Color online) Feynman graphs illustrating results (18)
and (19). The pair of thick blue wavy lines at the left and right ends
of both graphs represents incoming and scattered photons. The black
triangles represent the Aslamazov-Larkin triangular vertex giving
rise to the coupling constant λAL of light to the spin-nematic order
parameter, (�X)2 − (�Y )2, computed in the Appendix. The double
wavy red lines denote the spin susceptibilities χ (q,�). While the
graph in (a) is not specific to the XY geometry, the attraction in
the nematic channel g > 0 makes it necessary to include the ladder
diagrams shown in (b), giving rise to the quasielastic peak in B2g

geometry.

where we have defined matrices in the Fourier space

D̂± = χ̂−1
± ± (φ−ω + λscJ−ω)M̂+ ± (φω + λscJω)M̂−, (16)

with χ̂−1
± = δq1,q2

δω1,ω2 (χ−1
q1

± φ0) and M̂± = δq1,q2
δω1,ω2±ω.

With the help of the standard formula we convert the deter-
minant into the trace of the logarithm, DetD̂ = exp(Tr ln D̂),
and expand the resulting effective action up to second order in
the nematic fields and the source strength. Such an expansion
amounts to the mean-field approximation that can be justified
in the large-N limit. In Ref. [16] the thermodynamic properties
of the same model were shown to be reasonably well captured
in this approximation for N = 3, and we employ it here as
well and write

F = φ2
0

2g
+ |φω|2

g
− 3φ2

0ϒ(0) − 3 |(φω + λALJω)|2 ϒ(ω) ,

(17)

where the dynamical spin-nematic susceptibility

ϒ(ω) =
∑
q,�

χ (q,�)χ (q,ω + �) (18)

has been introduced.
The action (17) is quadratic, and the functional derivative

in Eq. (9) gives, for the Raman susceptibility,

κ(ω) = 3|λAL|2 ϒ(ω)

1 − 3gϒ(ω)
; (19)

see Fig. 2 for diagrammatic representation. To compute ϒ(ω)
we use the standard finite-temperature Matsubara summation
technique over the discrete frequencies followed by an analytic
continuation to the real axis, iωn → ω + i0, to obtain the
retarded spin-nematic correlation function ϒ(iωn) → ϒR(ω).

To this end, we evaluate the bare susceptibility (18) by
converting the Matsubara sum over � into the complex integral

ϒ(iωn) =
∑

q

∮
dz

4πi
coth

z

2T
χ (−iz + ωm,q)χ (−iz,q) .

(20)

The integrand has two branch cuts at Im(z + iωn) = 0 and
Im(z) = 0, where the product of two χ functions has breaks

of analyticity. As a result of the analytic continuation process,
we get

ϒ(ω) =
∑

q

∫
d�

2π
coth

�

2T

× [χR(q,� + ω)ImχR(q,�)

+ ImχR(q,�)χA(q,� − ω)] (21)

To make further progress we use the standard expression for
the spin-correlation function [40,41],

χ (q,�m) = c

ξ−2 + ( Q − q)2 + |�m|/γ , (22)

where the important scale is

1

τs

= γ

ξ 2
(23)

c is a constant, γ is the Landau damping coefficient, and
Q = (π,π ). Separating the real and imaginary components,
one finds

ImχR(q + Q,�) = χ ′′ = cξ 2 �τs

(1 + q2ξ 2)2 + �2τ 2
s

, (24)

ReχR(q + Q,�) = χ ′ = cξ 2 1 + q2ξ 2

(1 + q2ξ 2)2 + �2τ 2
s

. (25)

The symmetry between the two stripelike spin-ordering
arrangements is broken at the Ising-nematic-type transition.
Here we assume the mean-field critical exponent ν = 1/2,
i.e.,

ξ (T ) ≈ l
√

TN/(T − TN ), (26)

with TN being the mean-field SDW transition temperature and
l being a microscopic length scale. We emphasize that the
mean-field transition temperature can be substantially lower
than the observed SDW transition temperature, TN < TSDW.
Equation (22) also shows that the critical behavior of the
static susceptibility χ (�m = 0, Q) = cξ 2 ∝ (T − TN )−1 is as
prescribed by the mean field.

We proceed by substituting (24) and (25) into the general
relation (21) to get, for the imaginary part of the susceptibility,

ϒ ′′(ω) = γ

∫ ∞

0

dx

2π

∫ ∞

−∞

dy

2π

y coth(y/2t)

(1 + x)2 + y2

×
[

y + w

(1 + x)2 + (y + w)2
− y − w

(1 + x)2 + (y − w)2

]
.

(27)

Here we introduced dimensionless variables x = (qξ )2, y =
�τs , t = T τs , and w = ωτs . The above expression is general.
In a view of Raman experiments, below we consider in
detail the limiting case of high temperatures, T τs � 1, that
corresponds to the regime of essentially classical fluctuations.

In the classical region when t � 1, assuming not too
high frequencies, T > ω, one can approximate coth(y/2t) ≈
2t/y. The double integral in Eq. (27) can be then evaluated
analytically,

ϒ ′′(ω) = 4T γ

ω
ln

[
1 +

(
ωξ 2

2γ

)2]
. (28)
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Since the integral decays at a scale ∼4τs , the approximation
made should be reasonable for all frequencies. Similarly, we
evaluate the real part of the susceptibility,

ϒ ′(ω) = 2τ−1
s ξ 2

∫ ∞

0

dx

4π

∫ ∞

−∞

dy

2π
coth(y/2t)

× y

(1 + x)2 + y2

1 + x

(1 + x)2 + (y + w)2
. (29)

The integral in Eq. (29) is logarithmically divergent at
ultraviolet. We therefore isolate the divergence in Eq. (29)
by focusing first on a static limit ω = 0. Then the difference is
convergent and can be easily evaluated as

ϒ ′(ω) = ϒ ′(0) − γ

16π
arctan(ωτs/2). (30)

To evaluate the static susceptibility ϒ ′(0) we split the y-
integration range in Eq. (29) into two regions, y < t and t <

y < �τs , where the scale � is the ultraviolet cutoff. Making
approximations coth(y/2t) ≈ 2t/y and coth(y/2t) ≈ sgn(y)
in the two respective intervals, the resulting integrals can be
easily evaluated with the result

ϒ ′(0) ≈ T ξ 2

2π2
arctan(T τs) + τ−1

s ξ 2

4π2
ln

�

T
, (31)

where the arctangent can be further safely approximated by
π/2. With these results at hand we find from Eq. (19) for the
imaginary part of the Raman susceptibility

κ ′′(ω) = 3λ2
scγ

I (�,τ )

R2(�,τ ) + (4π2ḡγ̄ )2I 2(�,τ )
. (32)

Here we have introduced dimensionless frequency � = ω/TN

and temperature τ = T/TN and also two dimensionless
functions,

I (�,τ ) = τ

�
ln

[
1 +

(
�

2πγ̄ (τ − 1)

)2]
, (33)

R(�,τ ) = 1 − ḡ

[
τ

τ − 1
+ γ̄ L

− πγ̄

4
arctan

(
�

2πγ̄ (τ − 1)

) ]
, (34)

where renormalized coupling ḡ = 3gTNl2/4π , decay rate
γ̄ = γ /πTNl2, and cutoff L = ln(�/T ) should be used as
fitting parameters; see Fig. 3 for results. The most prominent
feature of our results is the critical enhancement of the Raman
susceptibility upon approaching the structural transition with
the characteristic buildup of the quasielastic scattering.

IV. CONCLUSIONS

In this paper we investigated theoretically the low-energy
Raman scattering in underdoped FeSCs. The gross feature
of the data is the quasielastic peak that gains in intensity
and softens down at cooling above the structural transition.
The phenomenon is observed exclusively in B2g Raman
geometry. The Lorentzian-like frequency dependence of the
B2g Raman susceptibility describes the relaxation dynamics
with the relaxation rate given by the position of the maximum.
The temperature dependence of the susceptibility indicates

FIG. 3. (Color online) The modeling of the quasielastic peak in
the Raman response function in accordance with Eq. (32), where
κ ′′ is plotted in units of 3λ2

ALγ for the following choice of fitting
parameters from the bottom curve to the top one: τ = 2 (red dashed
line), τ = 1.5 (black thin solid line), and τ = 1.25 (blue thick solid
line); ḡ = 0.2, γ̄ = 5, L = 10. The peak grows when the structural
transition is approached upon cooling.

the freezing of the electronic B2g fluctuations at cooling.
Such behavior is naturally associated with the tendency to
long-range order which breaks the B2g symmetry. That is,
the broad relaxation-like feature can be attributed to the
critical slowdown associated with the approach to the discrete
symmetry-breaking transition. Upon cooling, the system ex-
periences locking in one of the two degenerate configurations
related to the C4 rotation for increasingly longer time intervals.

To understand the origin of the quasielastic peak as it
appears in Eq. (19), note first that in the static limit the real
part of the Raman susceptibility scales as ∼(T − θ )−1. The
temperature scale θ < Ts , which can be explained in terms
of the coupling of the electron nematic fluctuations and the
orthorhombic lattice vibrations studied recently in Ref. [42].
These fluctuations add to the static nematic coupling constant,
gst = g + γ̄ 2/C0

s [43,44]. Here γ̄ is a nemato-elastic coupling
constant and C0

s is the bare value of the orthorhombic elastic
constant. The static coupling gst determines Ts . Crucially,
however, it is the dynamic rather than static nematic coupling
constant g < gst that defines θ since the lattice response
function has different static and dynamic limits [45]. Corre-
spondingly, the difference Ts − θ is expected to correlate with
the reduction of Ts in strain-controlled samples [18]. This is
indeed reported to be the case in the recent measurements [46].

Distinguishing between different contributions to nematic
correlations remains a challenge. Nevertheless, we can de-
duce the low-energy scattering by making the reasonable
assumption on the imaginary part of the bare response.
Assume that at low frequencies it scales as ∼ω/�, with
� being noncritical at T = θ and hence being a weakly
temperature-dependent relaxation rate. Then it follows from
the denominator structure of Eq. (19) that at low frequencies
κ ′′(ω) ∼ (T − θ + iω/�)−1. We thus see that the relaxation
rate is suppressed by a factor of T − θ compared to the bare
rate �. We conclude that the quasielastic scattering is the case
of critical slowing down.

The intraband processes alone are insufficient to describe
the large frequency width of the quasielastic scattering. Indeed,
at zero momentum such transitions are forbidden, and the
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quasielastic peak is absent [47,48]. The small-momentum in-
traband transitions restricted to either � or M points are gapped
and cannot account for quasielastic scattering either. The
excitation of two electron-hole pairs at momentum close to the
antiferromagnetic wave vector enables the relaxation of zero-
momentum excitations by lifting the kinematical constraints.
It was argued, however, that the phase-space limitations make
the contributions of such processes to the relaxation rate scale
as a cubic power of the frequency difference of scattered and
incoming photons [48]. As our calculations demonstrate, this
suppression is relevant only at very low frequencies, and for
relevant temperatures and frequencies the scaling is essentially
linear. In that regard this situation is very similar to that in
cuprates [49]. Even though cuprates are single-band rather
than multiband materials, the processes that matter the most
are confined to the vicinity of hot spots, i.e., the points on a
FS connected by the antiferromagnetic wave vector.

Note added. Recently, we became aware of Ref. [50], in
which spin-nematic susceptibility was computed in a similar
model.
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APPENDIX: DERIVATION OF THE EFFECTIVE ACTION
IN TERMS OF THE STRIPE MAGNETIZATIONS

The calculations in this appendix are an extension of the
corresponding derivations in Ref. [16]. We introduce the eight-
component spinor

�
†
k = (c†1,k↑,c

†
2,k↑,f

†
1,k↑,f

†
2,k↑; c†1,k↓,c

†
2,k↓,f

†
1,k↓,f

†
2,k↓) (A1)

in the direct product of orbital and spin spaces. Upon
the introduction of the stripe magnetizations �X,Y via the
Hubbard-Stratonovich transformation the action takes the form

S[�,�X,�Y ,Jω,J−ω]

= −
∫

k

�
†
kG−1

k,k′�k′ + 2

us

∫
q

[|�X(q)|2 + |�Y (q)|2], (A2)

where we denote k = (k,iε), and the Green’s function is

G−1 = G−1
0 − V , (A3)

where

V = V� − VJω − VJ−ω . (A4)

The free Green’s function in Eq. (A3) is

G0;k,k′ = δk,k′

[
G�

k,ε 0

0 GM
k,ε

]
⊗ I , (A5)

where the two hole and electron Green’s functions are two-
dimensional matrices expressed in a standard way,

G�,M
k,ε = (

iε − H�,M
k + EF

)−1
, (A6)

through the hole and electron Hamiltonians (2) and (3) with
energies counted relative to the Fermi level. We further have

V�
k,k′

= −
∫

q

δk+q,k′

⎡
⎢⎢⎢⎢⎣

0 0 �X(q) 0

0 0 0 �Y (q)

�X(q) 0 0 0

0 �Y (q) 0 0

⎤
⎥⎥⎥⎥⎦ ⊗ σ .

(A7)

The source term according to Eqs. (5) and (8) reads

VJ±ω

k,k′ = J±ωδk,k′δε±ω,ε

[
r� 0
0 rM

]
⊗ I, (A8)

where the two-dimensional matrices r�,M are defined by
Eq. (7). In the presence of the source (A8), it is necessary
to keep the term of the third order in V in the expansion of the
free energy,

S[�X,�Y ,Jω,J−ω] = 1

2
Tr(G0V)2 + 1

3
Tr(G0V)3 + 1

4
Tr(G0V)4

+ 2

us

∫
q

[�X(q)|2 + |�Y (q)|2], (A9)

which is of prime interest for us in this work. While even-order
terms in Eq. (A9) were considered in detail in Ref. [16], here
we focus on the third-order term of Eq. (A9). We specifically
determine the contribution to the effective action that is linear
in the sources J±ω and quadratic in �X,Y . Such terms have the
form

Tr(VJ±ωG0V�G0V�G0)

= aJ±ω

∑
�

Tr

{[
1 0
0 −1

]
G�

k+q,ε±ω

[(
�X

q,�±ω

)
�

0
0

(
�Y

q,�±ω

)
�

]
GM

k,ε−�

[(
�X

q,−�

)
�

0
0

(
�Y

q,−�

)
�

]
G�

k,ε

}

+ b
∑

�

J±ωTr

{[
1 0
0 −1

]
GM

k+q,ε±ω

[(
�X

q,�±ω

)
�

0
0

(
�Y

q,�±ω

)
�

]
G�

k,ε−�

[(
�X

q,−�

)
�

0
0

(
�Y

q,−�

)
�

]
GM

k,ε

}
+ c.c. (A10)

In obtaining Eq. (A10) we used the explicit form [Eq. (7)] of
the Raman vertices r�,M and the block-diagonal structure of all
three matrices given by Eqs. (A5), (A7), and (A8). Furthermore

the trace operation over the spin indices results in a summation
over the Cartesian coordinates of the vectors of the stripe
magnetizations �X,Y labeled by the index � = x,y,z. The trace
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operation in Eq. (A10) includes, in addition to the usual trace
of the two-dimensional matrices, the summation over fermion
frequencies and momenta (iε,k) and boson frequencies and
momenta (i�,q).

The integral of Eq. (A10) over the fermion frequencies and
momenta is convergent at the upper limit. As a result, assuming
that the Fermi energy is much larger than the typical energy
carried by the magnetic fluctuation, we can neglect the boson
momenta and frequency, q and �, in the arguments of fermion
Green’s functions. Furthermore, since the energy splitting of
electronic bands is normally smaller than the Fermi energy,
we can neglect it and approximate the hole Hamiltonian
by a scalar function. In terms of the Green’s function
we have

G�
k,ε ≈ Ḡ�

k,ε = (iε − ξh)−1 , (A11)

where ξh is the energy of the hole band relative to the Fermi
energy with splitting neglected. Similarly, by neglecting the
ellipticity-related energy that is small on the scale of the Fermi
energy we arrive at the scalar Green’s function for electrons,

GM
k,ε ≈ ḠM

k,ε = (iε − ξe)−1 , (A12)

where ξe is the energy of the electron bands relative to the Fermi
energy with ellipticity neglected. Clearly, the above approxi-
mations make the corresponding Green’s function denoted by
Ḡ�

k,ε and ḠM
k,ε scalar and allow us to rewrite Eq. (A11) as

Tr(VJ±ωG0V�G0V�G0)

≈ J±ω�XY (±ω)
∫

k

[
a

(
Ḡ�

k,ε

)2 ḠM
k,ε + b

(
ḠM

k,ε

)2 Ḡ�
k,ε

]
.

(A13)

Identifying the last term of Eq. (12) with Eq. (A13), we finally
arrive at the expression for the triangular vertex,

λAL =
∫

k

[
a

(
Ḡ�

k,ε

)2 ḠM
k,ε + b

(
ḠM

k,ε

)2 Ḡ�
k,ε

]
, (A14)

where the expression for �XY (ω) is given in Eq. (13). For
definiteness, we evaluate the first term ∝a in expression (A14).

For simplicity we assume ξh = −ξe + δhe = ξ and take the
density of states to be a constant ν0 for both electrons and
holes. Under these assumptions the substitution of the Green’s
functions in Eqs. (A11) and (A12) in Eq. (A14), followed by
the integration over ξ , yields∫

k

(
Ḡ�

k,ε

)2 ḠM
k,ε

= 2πiT ν0

∑
εn>0

[(
1

2iεn + δeh

)2

−
(

1

2iεn − δeh

)2]
.

(A15)

As the Matsubara frequencies are of the form εn = 2π (n +
1/2)T , we obtain from Eq. (A15)∫

k

(
Ḡ�

k,ε

)2 ḠM
k,ε = ν0

πT
Im

[
ψ ′

(
1

2
− i

δeh

2πT

)]
, (A16)

where ψ ′(x) is the derivative of the digamma function. An
expression similar to Eq. (A16) holds for the contribution of
the coupling of light to electrons, and we obtain

λAL = (a + b)
ν0

πT
Im

[
ψ ′

(
1

2
− i

δeh

2πT

)]
. (A17)

We note that the contributions of electrons and holes are
additive. As δeh is typically a few tens of meV, we expect
the inequality T � δeh to hold. As the asymptotic expansion
Im[ψ ′(1/2 − ix)] ≈ 1/x holds already for x � 0.25, we can
write for the Aslamazov-Larkin vertex

λAL ≈ (a + b)
2ν0

δeh

. (A18)

We conclude that λAL is insensitive to the temperature variation
in the relevant temperature range and is suppressed with
increasing mismatch between the hole and electron Fermi
surfaces. This result is in agreement with the alternative
calculation for a different model [45].
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