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Spin resonance in AFe2Se2 with s-wave pairing symmetry
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We study spin resonance in the superconducting state of recently discovered alkali-intercalated iron selenide
materials AxFe2−ySe2 (A = K, Rb, Cs) in which the Fermi surface has only electron pockets. Recent angle-
resolved photoemission spectroscopy (ARPES) studies [M. Xu et al., Phys. Rev. B 85, 220504(R) (2012)] were
interpreted as strong evidence for s-wave gap in these materials, while the observation of the resonance peak
in neutron scattering measurements [G. Friemel et al., Phys. Rev. B 85, 140511 (2012)] suggests that the gap
must have different signs at Fermi surface points connected by the momentum at which the resonance has
been observed. We consider recently proposed unconventional s+− superconducting state of AxFe2−ySe2 with
superconducting gap changing sign between the hybridized electron pockets. We argue that such a state supports
a spin resonance. We compute the dynamical structure factor and show that it is consistent with the results of
inelastic neutron scattering.
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I. INTRODUCTION

Since its discovery,1 the superconductivity in iron-based
compounds remains one of the most active research fron-
tiers for the past few years.2–6 Of particular importance
is the understanding of the microscopic mechanisms of
superconductivity in these materials. The iron-based SCs are
multiband materials with conduction bands derived from iron
d orbitals and pnictide p orbitals.7,8 The Fe sublattice has a
simple tetragonal form with one atom per unit cell, and the
corresponding Fe-only Brillouin zone (BZ) is a rectangular
parallelepiped. Throughout the paper, we will refer to Fe-only
BZ as 1FeBZ or, equivalently, unfolded BZ. According to both
angle resolved photoemission spectroscopy (ARPES)9,10 and
density functional theory (DFT), most of Fe pnictides have a
quasi-two-dimensional band structure with two hole pockets
centered at the � point and two electron pockets at (0,π ) and
(π,0) in 1FeBZ. In some systems, there is an additional 3D
hole FS near pz = π and (px,py) = (π,π ).

It is widely believed that in most Fe pnictides, the
superconducting order parameter (OP) has s+− symmetry.11–14

Such an OP changes sign between the hole and electron
pockets and has a full lattice symmetry. The inelastic neutron
scattering experiments done on these systems revealed a
spin resonance peak with the largest intensity at the neutron
scattering momentum close to (0,π ) in 1FeBZ.15–17 The spin
resonance in FeSCs can be explained naturally within the s+−
scenario, because (0,π ) and (π,0) are momenta separating
electron and hole pockets at which the s+− gap has opposite
signs.18–20

This paper focuses on the superconductivity in the recently
discovered iron selenides AxFe2−ySe2 (AFe2Se2) intercalated
by an alkali metal, A = K, Rb, Cs.21 These superconductors
with Tc � 30 K22–24 are isostructural with the 122 family of
Fe pnictides.

Selenides differ from pnictides by a pronounced normal
state transport anomalies and the presence of iron vacancies.
Superconductivity in AFe2Se2 is present simultaneously with
local spin magnetism,25 but the two are very likely separated
into spatially distinct domains. Several studies suggest that

the superconductivity exists in stoichiometric domains without
magnetic moments,26–28 while iron vacancies are concentrated
in magnetic domains where they order.29–31 Although the exact
relationship between the magnetism and superconductivity
is not yet settled, we believe there is enough evidence to
separate superconductivity from local magnetism and consider
superconductivity within an effective itinerant low-energy
model, without Fe vacancies.

Unlike in pnictides, where the Fermi surface has both
electron and hole pockets, in selenides, only electron pockets
are present, according to ARPES.32–36 The two largest Fermi
pockets are centered at (0,π ) and (π,0) in XY plane, and
evolve as functions of pz [see Fig. 1(a)]. Hole pockets are
lifted by about 60 meV from the FS.33 ARPES studies33,36

found an additional 3D electron pocket centered at pz = π

and at px = py = 0.
Because hole pockets are absent, the conventional scenario

for s+− superconductivity due to interaction between low-
energy fermions near electron and hole pockets is questionable.
It has been listed as a possible explanation of the data13 (and
termed as the “incipient” s+− order), however, because hole
states are gapped, Tc for such a model comes out noticeably
lower than in Fe pnictides,13 in disagreement with the data.

Several alternative scenarios have been proposed, with
the emphasis on the interaction between electron pockets,
potentially enhanced by magnetic fluctuations at the momen-
tum separating the two electron pockets [i.e., at momentum
(π,π ) in 1FeBZ]. Strong interpocket interaction is necessary
to overcome intrapocket repulsion. Two scenarios propose a
conventional pairing of fermions with momenta p and − p
on one electron pocket due to interaction with fermions near
the other pocket. One proposal29,37–41 is that the interpocket
interaction is strong and repulsive. In this case, the system de-
velops a superconducting order in which the gap changes sign
between the two electron pockets. Such a gap necessarily has
d-wave symmetry because it changes sign under the rotation
from X to Y axis. Another proposal42,43 is that interpocket
interaction is strong and attractive. This happens when, e.g.,
the underlying microscopic model is taken as the itinerant
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FIG. 1. (Color online) (a) Schematic representation of the two
electron pockets in unfolded 1FeBZ. One pocket (blue) is centered
along the (0,π,pz) vertical line and the other (black) is centered
along the (π,0,pz) line. Both Fermi surfaces are bounded from
top and bottom by pz = ±π . The 1FeBZ boundary crosses the
pz = 0 along the thick solid (black) line. (b) The three-dimensional
folding specific to 122 systems with tetragonal body-centered crystal
structure.22,53,55,56 The thick solid (red) arrow denotes the folding
vector Q = (π,π,π ). This vector connects, in particular, the points
(π,0,0) and (0,π,π ). The folding by Q can be understood as if one
pocket is cut in two along the pz = 0 plane, and the two halves are
displaced by a vector Q in such a way that the upper(lower) half is
clipped underneath (above) the pz = 0 plane.

version of J1 − J2 model with spin-spin interaction. Then a
superconducting gap does not change sign between electron
pockets, i.e., the superconducting state is a conventional s

wave.
Each of the two scenarios agrees with some experiments and

disagrees with other. A near-constant gap has been observed
on a small 3D electron pocket centered at Z point (pz = π ,
px = py = 0). Taken at a face value (i.e., assuming that this
is not a surface effect), this result is consistent with an s-
wave gap and rules out a d wave. On the other hand, a spin
resonance has been observed below Tc in inelastic neutron
scattering experiments.44–48 If the resonance mode is a spin
exciton, as it is believed to be the case in Fe pnictides and other
unconventional superconductors,49 it requires a sign change
of the gap. The observation of the resonance then rules out a
conventional sign-preserving s wave and was interpreted as an
argument for a d-wave gap.37,50

There exists, however, another problem with the d-wave
state, even if we forget momentarily about the ARPES
measurements on the Z pocket, namely, specific heat and
other data on AFe2Se2 show32,51 that there are no nodes
in the superconducting gap. In a given 2D cross-section,
d-wave state due to repulsion between electron pockets yields
a “plus-minus” gap, which is seemingly nodeless. However,
the size and orientation of the two electron pockets in 122-type
structures vary with pz, (see Figs. 2 and 3) and one can verify
[see Fig. 4(a)] that the “plus” and “minus” gaps necessarily
cross at some pz. Around this pz, the hybridization between the
two pockets, caused by the presence of a pnictogen/chalcogen
either above or below the Fe plane, splits the two pockets into
bonding and antibonding states. One can show quite generally
[see Refs. 52–54 and Figs. 4(a) and 4(c)] that the gap on each
hybridized Fermi surface evolves from “plus” to “minus” and
must necessarily have nodes, in disagreement with the data.

There exists a third scenario,53,54 which alleviates the
contradiction between ARPES and neutron scattering data and

(a) (b)

(c) (d)

FIG. 2. (Color online) Fermi pockets in the folded representation.
(a) and (c) show the result of the folding without actual hybridization
for the cases of strong and weak pz dispersion, respectively. In each
figure, one pair of Fermi surfaces is centered at (π,π ) in the XY plane,
the other at (π, − π ). The folding without hybridization results in the
two Fermi pockets in the corners of folded BZ, which overlap either
only at a particular |pz| = π/2, in the case of strong dispersion (a),
or along vertical lines in the case of weak dispersion (c). For strong
dispersion, the two Fermi surfaces in each cross-section at a given
pz are elliptical, except for |pz| = π/2, where they are near-circular
(more precisely, C4 symmetric). The long axis of a cylinder rotates by
90◦ between pz = 0 and pz = π , see Fig. 3. For weak dispersion, the
crossed ellipses in each cross-section are the same for all pz. (b) and
(d) show the Fermi surfaces in the presence of a finite hybridization,
again for strong and weak pz dispersion. A finite hybridization lifts
the degeneracy, and the crossing lines are eliminated. For strong
dispersion (b) the hybridization affects mostly the regions framed by
(blue) rectangles. The actual hybridized Fermi surfaces are shown
in Fig. 3. For weak pz dispersion (d), the hybridization affects the
region where the two pockets in (c) cross. The hybridized Fermi
surfaces are again two cylinders, one inside the other, but now each
is C4 symmetric in every cross-section. The smaller one is nearly a
circular cylinder, the larger one has a substantial anisotropy in the
XY plane.

is consistent with the measurements that show a non-nodal
gap. Namely, the same interaction which gives rise to a
“plus-minus” d-wave state in which Cooper pairs are made
out of fermions on the same pocket also gives rise to an
s-wave state in which pairing at least partly involves pairing
between fermions belonging to different pockets. This “other”
s-wave state is best understood once one converts to the actual
(physical) BZ with two Fe atoms in the unit cell (2FeBZ) and
includes the hybridization between the pockets, which splits
them into bonding and antibonding Fermi pockets, which we
will label as a and b. The “other” s-wave gap remains roughly
constant along each pocket after hybridization, but changes
sign between them, sgn(�a) = −sgn(�b).

We recall that the hybridization in 122 compounds
can be traced to the checkerboard arrangement of pnicto-
gen/chalcogene atoms staggered above and below the iron
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FIG. 3. (Color online) The 3D hybridization in 122 systems with
tetragonal body-centered crystal structure in the limit of strong pz

dispersion. The two warped Fermi surfaces are shown separately,
but the smaller one is actually inside the larger one, as the arrow
indicates. Each Fermi surface is a corrugated elliptical cylinder
with a near-circular cross-section at pz ≈ ±π/2 (more precisely, C4

symmetric cross-section). The long axis of each cylinder is rotated
by 90◦ between pz = 0 and pz = π .

planes.57–60 The iron lattice sites at iax̂ + jaŷ + kcẑ, with
integer i,j,k, then belong to even and odd sublattices, defined
by an even and odd i + j + k, respectively. Because sublattices

(a) (b)

(c) (d)

FIG. 4. (Color online) Superconducting gap on the folded Fermi
surfaces. (a) and (c) d-wave state. For strong pz dispersion (a), the gap
has opposite sign on the two Fermi surfaces in each cross-section and
changes sign along each Fermi surface upon varying pz. As a result,
the magnitude of the gap vanishes for a particular pz (horizontal
nodes). For weak pz dispersion (c), the gap has cos 2φ structure with
nodes on each of the two Fermi surfaces in every cross-section. In
this limit, nodal lines are vertical. (b) and (d) s+− state. For both
weak and strong pz dispersions, the gap changes sign between the
bonding (inner, red) and antibonding (outer, blue) Fermi surfaces, but
preserves its sign along each Fermi surface in every cross-section and
does not change sign as a function of pz.

are inequivalent, the correct BZ is the folded 2FeBZ, and in the
folded zone the momenta p and p + Q, where Q is the folding
vector, are equivalent. The folding vector is Q = (π,π,0) in
simple tetragonal systems such as 11 and 1111 materials, and
Q = (π,π,π ) in 122 materials with body-centered tetragonal
crystal structure, like in AFe2Se2.

This “other” s+− state is nodeless and in this respect is
consistent with ARPES and other measurements, which show
that, most likely, the gap has no nodes. A seemingly similar
state can be obtained if one still assumes that the pairing is
solely between p and − p from the same pocket in the unfolded
BZ, but the gap is a higher-angular momentum s-wave state
with �(φ) = ±� cos 2φ, where � is the angle along the FS
counted from, say, x axis, and the plus and minus are for one
or the other electron pocket. After folding and hybridization,
this state also becomes s+−, with the sign change of the gap
between bonding and antibonding Fermi surfaces. However,
the gap still vanishes along the directions φ = ±π/4, at which
cos 2φ = 0. This, again, is in contradiction with the data. The
goal of this paper is to demonstrate that the “other” s+− state,
proposed for AFe2Se2 is not only a nodeless s-wave state, but
is also consistent with the observation of a spin resonance in
the inelastic neutron scattering.

The paper is organized as follows. In the next section, we
present qualitative reasoning and summarize our results for
a reader not interested in technical details. In Sec. III A, we
introduce the low-energy model, set up the formalism for the
analysis of the spin susceptibility, and discuss the “other” s+−
superconducting state. In Sec. IV, we present the results for
the spin structure factor of this s+− superconductor. We first
discuss, as a warm-up, the artificial limit of zero hybridization
and then discuss the actual case when the hybridization is finite
(and strong enough to favor the s+− state over the d-wave
state). We present our conclusions in Sec. V.

II. QUALITATIVE CONSIDERATION AND A BRIEF
SUMMARY OF THE RESULTS

A. Qualitative consideration

Naively, the spin resonance is inevitable in the presence of
the sign-changing OP. The reasoning is that for sign-changing
OP, superconductivity simultaneously gives rise to two fea-
tures in the spin response: (i) it gives rise to a gap 2� in the spin
excitations spectrum and (ii) the spin component of the residual
interaction between fermions is attractive. The combination of
these two conditions gives rise to an excitonic resonance below
2�. The residue of the resonance peak at a momentum between
bonding and antibonding Fermi surfaces is proportional to the
spin coherence factor, (1 − �a�b/|�a||�b|), and the latter is
nonzero if the OP has the opposite sign on bonding (a) and an-
tibonding (b) bands. However, this condition is necessary but
not sufficient. To see this, neglect momentarily the ellipticity of
electron pockets and the pz dispersion, i.e., approximate each
pocket by a circular cylinder. The bonding and antibonding
states are then the sum and the difference of the original
states (nonhybridized fermions). In operator notations, a p =
(β1, p + β2, p+ Q)/

√
2 and b p = (β1, p − β2, p+ Q)/

√
2, where

p ≈ (0,π,pz) and p + Q ≈ (π,0,pz + π ), and subindices 1
and 2 label electron pockets. One can easily verify52 that in
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real space bonding and antibonding states reside on even and
odd Fe-sublattices, respectively, and do not overlap. For that
reason, the spin operator has zero matrix elements between
them, hence the residue of the resonance vanishes. Another
way to understand this argument is to note that the spin operator
does not discriminate between the two original pockets before
the hybridization, i.e., it is symmetric under the exchange
β1 ↔ β2. Since bonding and antibonding states have opposite
parity under this operation, the symmetric spin operator cannot
induce transitions between them.

The above argument, however, applies only to Fermi
pockets in the form of circular cylinders. In reality, the original
pockets are not circular for a generic pz, and, moreover, the
hybridization and folding in 122 materials is a complex process
in a three-dimensional BZ, see Figs. 2 and 3. We show that the
proper folding procedure by a vector, Q = (π,π,π ) combined
with the full three-dimensional band dispersion leads to a s+−
state on the bonding and antibonding Fermi surfaces, for which
the residue of the spin resonance is nonzero. One particular
reason for the existence of the resonance is that the structure
of the two Fermi surfaces in 2FeBZ is such that they strongly
overlap only in a subset of points along pz axis. Inside this
range [framed by rectangles in Fig. 4(b)], the hybridization
separates bonding and antibonding states into even and odd
sublattice states with near-zero overlap and hence near-zero
contribution to the resonance. However, in other regions of
pz, the two pockets appear split already before hybridization.
For these pz, the effect of hybridization is minimal (if, as we
assume, hybridization is not too strong to exceed the energy
difference between two split bands), and in real space each
state resides on even and odd sublattices. The overlapping
between the two states is then strong and the condition that the
gap changes sign between the two Fermi surfaces becomes not
only necessary but also sufficient for the resonance. The same
reasoning also holds for the case of cylindrical FSs in 1FeBZ
(no pz dependence), but with ellipses rather than circles in the
cross-section. Then again, the two electron pockets overlap
only near particular (px,py), and in this p range, hybridization
generates bonding and antibonding states residing on different
sublattices. However, away from the overlapping region, the
original states from two electron pockets are already well
separated, and hybridization does not constrain the states to
either even or odd sublattices. In this situation, again, the sign
change of the gap between the two Fermi surfaces becomes not
only necessary but also sufficient condition for the resonance.

B. A brief summary of the results

In the next two sections, we present a detailed account of
our calculation of the dynamical structure factor S(q,ω) ∝
χ

′′
(q,ω). Here we give a brief summary of our result for a

reader not interested in technical details.

1. Weak dispersion

We verified that in the limit of weak dispersion, the
ellipticity of electron pockets in 1FeBZ is necessary for the
existence of resonance, as the cylindrical pockets are strongly
hybridized into bonding and antibonding states, which are not
connected by the spin operator. As a result, the residue of
the resonance peak vanishes. In contrast, for finite ellipticity,
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FIG. 5. (Color online) The color plot of the dynamic structure
factor S(q,ω) of an s+− superconductor for weak out-of-plane pz

dispersion, see Fig. 4(d). To represent the weak dispersion limit, we
set 	 = 0.1 in Eqs. (1) and (2). The S(q,ω) is shown as a function
of qy (horizontal axis) and frequency ω (vertical axis) for a fixed
qx = π at three different values of qz: (a) π , (b) π/2, and (c) 0. The
hybridization is set to λ = 5 meV and the gap is � = 10 meV. The
in-plane ellipticity is ε = 0.1. A small imaginary part, � = 1 meV,
was added to the frequency ω for regularization of the numerical
computation.

a finite portion of the Fermi surface remains unaffected by
hybridization. The transitions between such states contribute to
the spin resonance, as indicated by the arrows in Fig. 4(d). Our
numerical results in the weak dispersion limit are presented
in Fig. 5. We have found that the resonance mode becomes
stronger with increasing pocket ellipticity. The intensity of
the resonance is maximized for neutron momenta q such that
the two Fermi pockets touch each other when one of them
is shifted by a vector q in a BZ. The two distinct minima in
Fig. 5 refer to the external and internal touching conditions.
The large intensity at the minima is due to the increased phase
space for the two particle excitation at these particular wave
vectors.20,37,50 The out-of-plane dispersion of the resonance

224505-4



SPIN RESONANCE IN AFe2Se2 WITH s- . . . PHYSICAL REVIEW B 88, 224505 (2013)

 0.55  0.65  0.75  0.85  0.95
qy / 

 0

 1

 2

 3
/

 0

 5

 10

 15

 20

 25

=0

(a)

 0.55  0.65  0.75  0.85  0.95
qy / 

 0

 1

 2

 3

/

 0

 2

 4

 6

 8

 10

 12

= 5 meV

(b)

FIG. 6. (Color online) The color plot of the dynamic structure
factor S(q,ω) of an s+− superconductor for strong out-of-plane pz

dispersion, see Fig. 4(b). In contrast to Fig. 5, the ellipticity now
changes sign at |pz| = π/2. The S(q,ω) is shown as a function of
qy (horizontal axis) and frequency ω (vertical axis) for fixed qx = π ,
qz = π/2 for (a) no hybridization, (λ = 0) and (b) λ = 5 meV. The
superconducting gap is � = 10 meV. A small imaginary part, � =
0.5 meV, was added to the frequency ω for regularization.

mode is weak because pockets are weakly dispersive in the
out-of-plane momentum pz.

2. Strong dispersion

The representative plots of spin structure factor for the case
of strong dispersion [see Fig. 4(b)] are presented in Fig. 6. In
this case, the phase space for the transitions that contribute
to the spin structural factor is suppressed for qz = 0 and
is maximized for qz ≈ π . The minima at the two touching
momenta in Fig. 6 are less pronounced than in Fig. 5. It
is natural since the touching condition can be satisfied only
approximately in the presence of strong pz-dispersion of the
two Fermi surfaces. For the FS’s as observed by ARPES in
AFe2Se2 materials, the in-plane component of the external
touching momentum is close to (π,π/2). This is consistent
with the momenta at which the maximum intensity of neutron
scattering has been observed in RbxFe2−ySe2.45

III. SPIN SUSCEPTIBILITY IN THE PRESENCE OF
INTRA- AND INTERPOCKET PAIRING

A. Low-energy model with interband hybridization. 1FeBZ
formulation.

We model the electronic structure of AFe2Se2 by a two-
band model with two electronlike Fermi pockets around
(0,π,pz) and (π,0,pz) in the 1FeBZ. The quadratic part of

the Hamiltonian is

H2 =
∑
p,σ

(
εβ1

p β
†
1 p,σ β1 p,σ + ε

β2

p+ Qβ
†
2 p+ Q,σ β2 p+ Q,σ

)
, (1)

where β1 and β2 refer to the two electron bands and Q =
(π,π,π ). We model in-plane and out-of-plane dispersions by

εβ1
p = −t(pz){[1 + ε(pz)][cos(px) − 1]

+ [1 − ε(pz)][cos(py + π ) − 1]} − μ ,

εβ2
p = −t(pz){[1 − ε(pz)][cos(px + π ) − 1]

+ [1 + ε(pz)][cos(py) − 1]} − μ , (2)

where ε(pz) is the in-plane pocket ellipticity and t(pz) =
t [1 − 	 cos(pz)]. The parameters 	 and ε(pz) control the
pz dependence of the size and shape of the Fermi surfaces,
respectively. We choose them to reproduce the ellipticity and
pz dispersion obtained for systems with AFe2Se2 composition
(122-type structure) in DFT calculations.53

We describe the hybridization between the two pockets by

Hhyb = λ(β†
1 p,σ β2 p+ Q,σ + H.c.). (3)

The hybridization term emerges because there are two
nonequivalent positions of a chalcogen (Se for AFe2Se2) above
and below the Fe plane, and the correct unit cell contains two
Fe atoms (2FeBZ). Because of the doubling, there exist, in
1FeBZ, processes with momentum transfer Q = (π,π,π ), i.e.,
the scattering processes in which a fermion near one electron
pocket is annihilated, and a fermion near the other pocket is
created. The hybridization parameter λ has to be evaluated
using a microscopic model for electron hopping and generally
depends on the magnitude of the Fermi momentum (it vanishes
for pointlike Fermi surfaces) and on the angle φ along the
pockets.53,58–60 In the absence of spin-orbit coupling, λ(φ)
vanishes along the diagonal directions φ = ±π/4, but λ(π/4)
remains finite when spin-orbit interaction is included. Our
consideration and results do not depend qualitatively on the
form of λ(φ) and on whether or not it vanishes at ±π/4. To
simplify the discussion, we just set λ(φ) to be a constant λ.

Below, we separately analyze the two limiting cases of
the weak and strong pz dispersion [the cases presented in
Figs. 4(b) and 4(d), respectively]. The two limits are modeled
in Eq. (2) by a constant and a sign-changing ellipticity, ε(pz) =
ε and ε(pz) = ε cos(pz), respectively. Explicitly, ε(pz) = ε

(ε(pz) = ε cos(pz)) describes the weak (strong) out-of-plane
dispersion. The constant pz cross-sections of the Fermi
pockets for the case of the strong dispersion are shown on
Fig. 7. In numerical calculations, we used t = 0.7 eV, μ =
0.14 eV, 	 = 0.1, and ε = 0.1 (unless specified otherwise).

The interaction Hamiltonian involves both the intra- and
interpocket momentum-conserving four-fermion interactions
given by

Hint = u1

2

∑[
β
†
1 p3σ

β
†
2 p4σ

′β2 p2σ
′β1 p1σ

+ (
β1 pi

↔ β2 pi

)]
+ u2

2

∑ [
β
†
2 p3σ

β
†
1 p4σ

′β2 p2σ
′β1 p1σ

+ (
β1 pi

↔ β2 pi

)]
+ u3

2

∑ [
β
†
2 p3σ

β
†
2 p4σ

′β1 p2σ
′β1 p1σ

+ (
β1 pi

↔ β2 pi

)]
+ u4

2

∑ [
β
†
1 p3σ

β
†
1 p4σ

′β1 p2σ
′β1 p1σ

+ (
β1 pi

↔ β2 pi

)]
.

(4)
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FIG. 7. (Color online) pz variation of unhybridized Fermi sur-
faces, as shown by taking the cuts at three different pz. The
ellipticity changes sign at |pz| = π/2, at which the pockets are
C4-symmetric. The size of Fermi surfaces decreases with increasing
pz. The band parameters used are t = 0.7 eV, μ = 0.14 eV, 	 =
0.3, and ε = 0.6.

There also exist interaction terms with momentum transfer Q,
but we earlier found54 that they are not relevant for the pairing
and can be omitted.

In the superconducting state, we truncate H2 + Hhyb + Hint

to the effective mean-field Hamiltonian ĤMF in Nambu space
constructed of ψ̂ p ≡ [β1 p↑,β

†
1− p↓,β2 p+ Q↑,β

†
2− p− Q↓]T . The

Hamiltonian ĤMF is given by

ĤMF( p) =

⎡
⎢⎢⎢⎢⎢⎣

ε
β1
p �

β1β1
p λ �

β1β̄2
p

�
β1β1
p −ε

β1
p �

β1β̄2
p −λ

λ �
β̄2β1
p ε

β̄2
p �

β̄2β̄2
p

�
β̄2β1
p −λ �

β̄2β̄2
p −ε

β̄2
p

⎤
⎥⎥⎥⎥⎥⎦ . (5)

Here, the band index with a bar denotes the shift in momentum
by the hybridization vector Q, β̄i p ≡ βi p+ Q . In the mean-field
Hamiltonian, Eq. (5), the intraband gap functions, such as
�

β1β1
p , describe conventional zero-momentum pairing, while

the gap functions such as �
β1β̄2
p , describe interband pairing at

the total momentum Q of a pair.
The Matsubara Green’s function is a 4 × 4 matrix,

Ĝ( p,iωn) = −〈ψ̂ pψ̂
†
p〉ωn

=

⎡
⎢⎣

G11(p) F11(p) G12̄(p) F12̄(p)
F11(p) −G11(−p) F12̄(p) −G12̄(−p)
G2̄1(p) F2̄1(p) G2̄2̄(p) F2̄2̄(p)
F2̄1(p) −G2̄1(−p) F2̄2̄(p) −G2̄2̄(−p)

⎤
⎥⎦

= (iωnÎ − ĤMF)−1 , (6)

where we have used the notations 〈AB〉ωn
=∫ β

0 dτeiωnτ 〈TτA(τ )B(0)〉, p = ( p,iωn), and (β1,β2) = (1,2).

For example, G11(p) = −〈β1 pβ
†
1 p〉ωn

, G12̄(p) = −〈β1 pβ̄
†
2 p〉ωn

,
etc. The functions G and F represent the normal and
anomalous Green’s functions. Note that the interband
propagators such as G12̄(p), F12̄(p), etc., which connect the
two different bands with a momentum transfer Q, vanish
identically in the absence of the hybridization.

To study the spin resonance, we consider a generalized
susceptibility,

χijkl(q ′,q ′′) =
∫ β

0
dτei�mτ 〈TτS

+
ji(q

′,τ )S−
kl (−q ′′,0)〉 ,

(7)
S±

ji(q) = S
(x)
ji (q) ± iS

(y)
ji (q) ,

iωn

(p )

(p + q ) (p + q )

S+(q )
k

l

(p )

iωn + iΩm

j

i
S−(−q )

FIG. 8. Diagrammatic representation of the contribution to
χ 0

ijkl(q
′,q ′′) from two normal Green’s functions G. The fermion

momenta p and p′ are either identical or differ by Q. The contribution
from the anomalous Green’s function F has the same form, but single
arrowed lines are replaced by the double arrowed lines representing
anomalous propagators.

where S
(α)
i,j (q) = (1/2)

∑
pss ′ β

†
i psσ

(α)
s,s ′βj p+qs ′ , and σ (α) with

α = x,y,z are Pauli matrices. In Eq. (7), q ′,q ′′ = q,q + Q.
The hybridization in 1FeBZ formulation is manifested in the
off-diagonal (umklapp) susceptibilities with q ′ − q ′′ = ± Q.
The 8 × 8 susceptibility matrix61,62 reads

χ̂ =
[

χ̂(q,q) χ̂(q,q + Q)
χ̂(q + Q,q) χ̂(q + Q,q + Q)

]
. (8)

With band indices labeled as 1 = β1 and 2 = β2 each of
the four susceptibility matrices in Eq. (8) has the following
structure:

χ̂(q ′,q ′′) =

11 22 12 21
11
22
12
21

⎛
⎜⎜⎝

χ1111 χ1122 χ1112 χ1121

χ2211 χ2222 χ2212 χ2221

χ1211 χ1222 χ1212 χ1221

χ2111 χ2122 χ2112 χ2121

⎞
⎟⎟⎠ , (9)

where the momenta arguments (q ′,q ′′) were omitted on a right-
hand side for clarity. Each entry in Eq. (9) is defined by Eq. (7).
The dynamical spin structure factor, S(q,ω) is obtained by
summing over the entries of matrix (8):

S(q,ω) ∝
∑
ijkl

Im[χijkl(q,q)] . (10)

We follow earlier works on the spin resonance in unconven-
tional superconductors49 and compute S(q,ω) in the random
phase approximation (RPA). We have

χ̂ = (1̂ − χ̂0�̂)−1χ̂0. (11)

In Eq. (11), χ̂0 is the 8 × 8 bare susceptibility with the entries
χ0

ijkl(q
′,q ′′) shown schematically in Fig. 8. We express these

matrix elements in terms of normal and anomalous Green’s
functions, Eq. (6), in Appendix A. The interaction amplitude
�̂(q,q ′) = δq,q ′�ijkl follows from Eq. (4). The nonzero matrix
elements are �ijkl = u1,u2,u3,u4 for i = k �= j = l, i = j �=
k = l, i = l �= k = j , i = j = k = l, respectively. In the nu-
merical analysis of the resonance, we used u1 = u3 = 1.95 eV
and u2 = u4 = 0.1 eV. We verified that for these parameters,
the normal state remains paramagnetic.

B. The s+− ordered state

The quadratic Hamiltonian H2 + Hhyb, (1), (3) can be
diagonalized54 by transforming it to the basis of bonding and
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antibonding states (ab basis),

a p = β1 p cos θ p + β2 p+ Q sin θ p ,
(12)

b p = −β1 p sin θ p + β2 p+ Q cos θ p,

where

sin 2θ p = λ√
λ2 + (δε p)2/4

,

(13)

cos 2θ p = δε p/2√
λ2 + (δε p)2/4

,

and

δε p = εβ1
p − ε

β2
p+ Q . (14)

In the s+−-symmetric state, the SC gap changes sign be-
tween the hybridized Fermi pockets. The pairing Hamiltonian
reads

Hs = �
∑

p

(a pa− p − b pb− p) + H.c.

= �
∑

p

[cos 2θ p(β1 pβ1− p − β2 p+ Qβ2− p− Q)

+ sin 2θ p(β1 pβ2− p− Q + β2 p+ Qβ1− p)] + H.c. (15)

In principle, � can have angle dependence, consistent with
s-wave symmetry, but this dependence is not essential for our
purposes and we neglect it.

To verify that the gap function defined by Eq. (15) is s-wave
symmetric, we consider how it transforms under the rota-
tion p → p′ = (py, − px,pz), β1 p → β2 p′ . The invariance of
Eq. (15) follows from the properties cos 2θ p′+ Q = − cos 2θ p

and sin 2θ p′+ Q = sin 2θ p easily derivable from Eqs. (13), (14),
and the dispersion relation (2). The gap parameters entering
Eq. (5) can be read off the Eq. (15) using Eq. (13) and have
the form

�β1,β1
p = −�β̄2,β̄2

p = �
δε p/2√

λ2 + (δε p)2/4
, (16a)

�β1,β̄2
p = �β̄2,β1

p = �
λ√

λ2 + (δε p)2/4
. (16b)

Equations (2) and (16) specify the mean-field
Hamiltonian (5).

IV. SPIN RESONANCE IN AN S+− SUPERCONDUCTOR

A. Spin resonance in s+− state at λ = 0

As a warm-up, consider first the case when the hybridization
is zero, i.e., λ = 0. This limit is artificial because the s+−
pairing is driven by hybridization and therefore requires a
finite λ. Nevertheless, it is instructive to understand how the
resonance develops at λ = 0 before considering the actual case
of a finite λ. At λ = 0, the Cooper pairs are formed by electrons
from the same band and have a zero center of mass momentum
[the term with sin 2θp in Eq. (15) vanishes]. Correspondingly,
the OP (16) is purely intraband,

�11
p = �sgn

(
δε p

)
, �22

p = −�sgn
(
δε p+ Q

)
. (17)
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FIG. 9. (Color online) Frequency dependence of the spin struc-
ture factor S(q,ω) for the weak dispersion limit. We set ε = 0.2.
The wave vector is q = (π,0.61π,qz) and the values of qz for
three different curves are qz = π , qz = 0.5π , and qz = 0. The
dispersion parameter is set at 	 = 0.1 and the gap � = 10 meV.
A small imaginary component, � = 1 meV, is added to frequency for
regularization.

To analyze the resonance, we then need to understand what
happens when we connect parts of the same Fermi surface
connected by Q = (π,π,π ). Equations (17) and (14) indicate
that the OP changes sign across the lines defined by the
condition ε1 p = ε2 p+ Q , i.e., along the lines of crossing of one
Fermi pocket with the other shifted by Q. We recall that the
sign changing of the OP is the necessary condition for spin
resonance

In the weak (strong) dispersion limit, the lines across which
the OP changes sign are approximately vertical (horizontal),
see Fig. 4. In the weak dispersion limit, the origin of the
spin resonance in our case is qualitatively similar to that in the
situation when superconducting gap has a d-wave symmetry.37

Our results for this case are presented in Fig. 9. In the case of
strong dispersion, there are new pieces of physics, which are
worth discussing before moving to the case λ �= 0.

Our numerical results for this case are shown in the
upper panel of Fig. 10. We see that the resonance weakens
progressively as qz decreases from π to 0. To understand this,
we notice that the OP on each of unhybridized Fermi surfaces
changes sign across the horizontal planes, |pz| = π/2, see
Fig. 11. As a result, at qz = π , the gaps on all points of the two
pieces of the same Fermi surface connected by Q = (π,π,π )
have opposite sign. In contrast, qz = 0 connects Fermi surface
points with the same sign of the superconducting OP. Outside
of the limit of strong pz dependence, the OP changes the sign
along a line not necessarily confined to a constant pz plane,
and the resonance in general is expected at all qz as is indeed
the case for weak pz dispersion (see Fig 9).

To justify this argumentation, we analyze below a general
expression for the spin susceptibility. In the absence of the
hybridization, the umklapp susceptibility in Eq. (8) vanishes
and the bare spin susceptibility matrix χ̂(q,q ′) in Eq. (9)
becomes diagonal:

χ0
ijkl(q,q ′; ω) = δq,q ′δikδljχ

0
ij (q,ω) . (18)

224505-7



S. PANDEY, A. V. CHUBUKOV, AND M. KHODAS PHYSICAL REVIEW B 88, 224505 (2013)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.5  1  1.5  2  2.5  3

S
(q

,
)

/

q= (1,0.61,qz) =0
=10 meV
=0.5 meVqz = 1

0.75
0.50
0.25

0

 0.4

 0.45

 0.5

 0.55

 0.6

 0  0.5  1  1.5  2  2.5  3

R
e
 

0
(q

,
)

/

q= (1,0.61,qz)
=0

=10 meV
=0.5 meVqz =1

0.75
0.50
0.25

0

 0

 0.05

 0.1

 0.15

 0  0.5  1  1.5  2  2.5  3

Im
 

0
(q

,
)

/

q= (1,0.61,qz)

=0
=10 meV
=0.5 meV

qz =1
0.75
0.50
0.25

0

FIG. 10. (Color online) (Top) Frequency dependence of the spin
structure factor S(q,ω) for the strong dispersion limit. Now the
ellipticity, ε(pz) = ε cos(pz) with ε = 0.1, changes sign at pz =
±π/2. The values of qz for five different curves are q = (π,0.61π,qz)
and qz = π , qz = 0.75π , qz = 0.5π , qz = 0.25π , and qz = 0. The
dispersion parameter 	 = 0.1 and the gap � = 10 meV. A small
imaginary component, � = 0.5 meV, is added to the frequency
for regularization. (Bottom) Frequency dependence of the real and
imaginary parts of χ 0

12 + χ 0
21 [see Eq. (18)], shown for the same set

of parameters as for the top panel.

In this case, χ0
ij (q,ω) can be expressed explicitly as

χ0
ij (q,ω) = 1

4

∑
p

[
C

(1)
ij ; p,q

f
(
E

j
p+q

) − f
(
Ei

p

)
ω + i0+ − (

E
j
p+q − Ei

p

)
+C

(2)
ij ; p,q

f
(
Ei

p

) − f
(
E

j
p+q

)
ω + i0+ − (

Ei
p − E

j
p+q

)
+C

(3)
ij ; p,q

1 − f
(
Ei

p

) − f
(
E

j
p+q

)
ω + i0+ + (

Ei
p + E

j
p+q

)
+C

(4)
ij ; p,q

f
(
Ei

p

) + f
(
E

j
p+q

) − 1

ω + i0+ − (
Ei

p + E
j
p+q

)
]
, (19)

where the f (E) is Fermi distribution function and coherence
factors are

C
(1)
ij ; p,q = 1 + εi

p

Ei
p

+ ε
j
p+q

E
j
p+q

+ εi
pε

j
p+q + �i

p�
j
p+q

Ei
pE

j
p+q

,

C
(2)
ij ; p,q = 1 − εi

p

Ei
p

− ε
j
p+q

E
j
p+q

+ εi
pε

j
p+q + �i

p�
j
p+q

Ei
pE

j
p+q

,

Q

q

pz

λ→0

(a)

(b)

FIG. 11. (Color online) The limit λ = 0. (a) Superconducting gap
for s+− pairing symmetry. (b) The unfolded Fermi pockets. The gap
changes sign at pz = ±π/2. At these momenta, the two Fermi pockets
cross in the folded BZ. The folding vector Q is shown in black. For
a given wave vector q, only states on a portion of the Fermi surface
contribute to the resonance (points connected by thick (blue) arrowed
lines). For qz = π , all states on the Fermi surface are involved. For
qz = 0, the transitions are horizontal. In this limit, the transitions only
occur between states on a Fermi surface with the same sign of the
gap and the resonance does not develop.

C
(3)
ij ; p,q = 1 + εi

p

Ei
p

− ε
j
p+q

E
j
p+q

− εi
pε

j
p+q + �i

p�
j
p+q

Ei
kE

j
p+q

,

C
(4)
ij ; p,q = 1 − εi

p

Ei
p

+ ε
j
p+q

E
j
p+q

− εi
pε

j
p+q + �i

p�
j
p+q

Ei
pE

j
p+q

. (20)

The mean-field quasiparticle energy is

E1(2)
p =

√(
ε

1(2)
p

)2 + (
�

1(2)
p

)2
. (21)

In Eqs. (20) and (21) and below, we set �ii ≡ �i , i = 1,2.
At low temperatures, the last (fourth) term in Eq. (19)

makes a dominant contribution to S(q,ω). The intraband
susceptibilities [i = j in Eq. (19)] are much smaller than
the interband ones [i �= j in Eq. (19)] at the momenta
q ≈ (π,π ). Indeed, the energy of an intraband excitations at
such momentum is of the order of the bandwidth, which is
much larger than the typical energy of interband excitations
at the same momentum. As a result, the susceptibilities χ0

ii

are suppressed by the large energy denominators. We have
verified numerically that the band diagonal susceptibilities do
not affect the spin structure factor. In this situation, the in-gap
spin collective mode is due to the singularity of interband
susceptibilities at the threshold of the particle-hole continuum
(ω = 2�). The stronger the singularity, the more pronounced
is the spin resonance, as it is clearly seen in Fig. 10. The
interband susceptibility χ0

12 is singular provided the coherence
factors C

(3,4)
12; p,q in Eq. (20) do not vanish at the Fermi surface,
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(ε1
p,ε

2
p+q → 0), i.e., provided that 1 − �1

p�
2
p+q

|�1
p||�2

p+q| �= 0. To put

it simply, the resonance appears for neutron momentum q
connecting regions of the two Fermi pockets with different
sign of �. At qz = 0, the susceptibility becomes regular, and
the resonance disappears. We will see in the next section that
at finite λ, χ0 retains the singularity even at qz = 0.

B. Spin resonance in s+− superconductor at a finite λ

As in the previous section, we discuss separately the cases
of the weak and strong band dispersions. The results for the
weak dispersion limit are shown in Fig. 12. We see that
with increasing hybridization the spin resonance weakens
and becomes more two-dimensional. This result is entirely
expected.

The effect of the hybridization on the spin resonance in
the strong dispersion limit is more nuanced. Our numerical
results for the spin structure factor in this limit and at a finite
hybridization are presented in Fig. 13. The key result is that
the resonance is clearly seen for a large subset of qz values
except for a small range near qz = 0. Below, we argue that the
suppression of the resonance near qz = 0 is nongeneric, and
for a generic dispersion relation, the resonance is expected to
be present for all qzs.
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FIG. 12. (Color online) Frequency dependence of the spin struc-
ture factor S(q,ω) in the weak dispersion limit (ε = 0.1) at a finite
hybridization λ = 5 meV (top) and λ = 10 meV (bottom). The wave
vectors for three different curves are q = (π,0.61π,qz) and qz = π ,
qz = 0.5π , and qz = 0. The dispersion parameter 	 = 0.1 and the
gap � = 10 meV. The small imaginary component, � = 1 meV, is
added to frequency for regularization.
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FIG. 13. (Color online) The spin structure factor S(q,ω) in the
strong dispersion limit [ε = 0.1 cos(pz)] at a finite hybridization λ =
5 meV (top) and for λ = 10 meV (bottom). The curves are plotted for
five wave vectors, q = π (1,0.61,qz), where qz = 1,0.75,0.50,0.25,0.
The resonance is present for all qz, but it gets weaker with decreasing
qz and with increasing hybridization.

To understand the influence of the hybridization on the
resonance, it is useful to consider the spin operator in the basis
of bonding and antibonding states [a and b states in Eq. (12)].
The singular part of the spin susceptibility is determined by the
coherence factor and by the matrix element of the spin operator
connecting bonding and antibonding states. In ab basis, the
coherence factor is a constant [see Eq. (15)]. The matrix
element is obtained by writing the interband spin operator,
S+

eff(q) = S+
12(q) + S+

21(q), defined by Eq. (7), in terms of a p

and b p operators using Eq. (12). Keeping only the off-diagonal
(ab) components, we obtain

S+
eff(q) ≈

∑
p

M p,δq(a†
p↑b p+δq↓ + b

†
p↑a p+δq↓) ,

(22)
M p,δq = (cos θ p cos θ p+δq − sin θ p sin θ p+δq) ,

where we represent the scattering momentum q in the form
q = Q + δq, such that the vector δq = δqxx̂ + δqyŷ + δqzẑ

has small xy components, δqx,δqy � π . The strength of the
resonance is determined by the matrix element for an interband
transition with the spin flip, as given by Eq. (22). For the
transition probability, we evaluate the squared matrix element
using Eqs. (13) and (14). We obtain

|M p,δq |2 = 1

2
+ 1

2

δε pδε p+δq − 4λ2√
4λ2 + (δε p)2

√
4λ2 + (δε p+δq)2

. (23)
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FIG. 14. (Color online) Effect of the hybridization on the sin-
gularity in the bare spin susceptibility at ω = 2� [the peak in
Re(χ 0

12 + χ 0
21) and the jump in Im(χ 0

12 + χ 0
21), where χ 0

12 ≡ χ 0
1212 and

χ 0
21 ≡ χ 0

2121]. (a) and (b) Real and imaginary parts of χ 0
12 + χ 0

21 for
q = π (1,0.61,1). Both the peak and the jump are suppressed when
λ increases. (c) and (d) Same for q = π (1,0.61,0). The trend with
increasing λ is the opposite—both the peak and the jump get larger.
The other interband susceptibilities, χ 0

1221 and χ 0
2112, contribute much

less to the singularity in the susceptibility, these contributions are
negative and increase with hybridization independent of the value
of qz.

We argue, based on Eq. (23), that generally the resonance
is the strongest at qz = π (δqz = 0), as it was the case
without hybridization. However, the hybridization affects the
resonance at qz = π (δqz = 0) and qz = 0 (δqz = π ) in an
opposite way—it suppresses the resonance at qz = π and
makes it nonzero at qz = 0. This trend persists as long as
λ does not exceed a certain magnitude λ � |δε p|. With further
increase of hybridization, the resonance is suppressed for all
qz because the matrix element M p,δq for λ � δε p gets smaller,
see Eq. (23).

The opposite effect of the hybridization on the intensity of
the resonance at qz = 0 and qz = π is clearly seen in our nu-
merical calculations, see Fig. 14. For qz = π , the characteristic
peak (jump) in the real (imaginary) part of the bare interband
susceptibility is suppressed by hybridization, thereby making
the resonance weaker, see Figs. 14(a) and 14(b). For qz = 0, the
spin susceptibility becomes singular at a finite hybridization,
see Figs. 14(c) and 14(d), which indicates that hybridization
induces spin resonance at this qz. When the hybridization is
increased further, the initial enhancement is reversed, and the
spin resonance gets suppressed for all qz.

To explain this nonmonotonic qz dependence of the inten-
sity of the resonance, we analyze the formula for |M p,δq |2,
Eq. (23). For q = Q, i.e., δq = 0,

|M p,δq=0|2 = (δε p)2

4λ2 + (δε p)2
, (24)

reaches the maximal value of 1 at λ = 0 and is suppressed for
nonzero λ. This obviously implies that the resonance intensity
gradually decreases when λ increases.

Consider next q = (π,π,0), i.e., δq = πẑ. We have

|M p,δq=πẑ|2 = 1

2
+ 1

2

δε p

|δε p|
δε p+πẑ

|δε p+πẑ| (25)

for λ = 0 and

|M p,δq=πẑ|2 = 1

2
+ 1

2

δε pδε p+πẑ − 4λ2√
4λ2 + (δε p)2

√
4λ2 + (δε p+πẑ)2

(26)

for λ �= 0. The energy difference δε p, Eq. (14) changes sign at
pz = π/2 and pz = −π/2, which are separated by momentum
π along pz direction. Then sgn(δε p) = −sgn(δε p+πẑ), and the
matrix element in Eq. (25) vanishes. This explains why there
is no resonance at qz = 0 in the absence of hybridization.
The same argument also makes it clear that the resonance is
expected for more generic band structure with δε p vanishing
along arbitrary line not confined to a constant pz. At a finite
λ, the matrix element Eq. (26) vanishes if and only if the
condition

δε p + δε p+πẑ = 0 (27)

is satisfied. One can readily check that this condition does not
hold for a general p. The sum in Eq. (27), evaluated using
Eqs. (2) and (14), reduces to

δε p + δε p+πẑ = 4t	ε(pz) cos pz(cos px + cos py) (28)

is, in general, nonzero, although it is small when 	 and ε are
small.

Furthermore, we show in Appendix B that for qz = 0,
Reχ0 has a logarithmic singularity at ω = 2�. This singularity
is obtained for qx,qy such that one of the Fermi surfaces
shifted by (qx,qy,qz) touches the other Fermi surface for
all qz. However, because the singularity is reduced by the
smallness of the matrix element [when 	 and ε(pz) are
small], the binding energy of the resonance is small, and in
practice the resonance can be washed out by lifetime effects.
In other words, the spin resonance does exist at all qz when
hybridization is nonzero, but its intensity is the smallest at
qz = 0.

V. CONCLUSIONS

In this paper, we have demonstrated that the observed spin
resonance in the alkali-intercalated iron selenides is consistent
with s+− superconductivity in which superconducting gap
changes sign between the hybridized bonding and antibonding
bands. We found that the existence of the gaps with different
signs does not necessarily lead to the appearance of the spin
resonance. In particular, there is no resonance for the case when
the Fermi surfaces before hybridization are circular cylinders
because in this situation all states are hybridized into bonding
and antibonding states, which are even or odd, respectively,
with respect to interchange between fermionic pockets. In s+−
state, the gap changes sign between bonding and antibonding
Fermi surfaces, however, the spin operator is symmetric with
respect to interchange between pockets and does not have
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a nonzero matrix element between bonding and antibonding
states. However, for elliptical pockets, the resonance does exist
because the splitting into bonding and antibonding states holds
only for a fraction of fermions located near the crossing lines
in 3D space between one pocket and the other one, translated
by a folding vector Q. For other fermions, hybridization is a
weak effect, and the states on the Fermi surfaces with “plus”
and “minus” gap are coupled by the spin operator.

We found that the resonance exists for both weak and
strong dispersion of fermionic excitations along the z axis
perpendicular to Fe planes. For weak dispersion, the resonance
is essentially a 2D phenomenon, and its energy and intensity
weakly depend on qz. For strong dispersion, the intensity of
the resonance is the strongest at qz = π and the weakest at
qz = 0, where for the dispersion we used, it only exists due
to a finite hybridization. Still, for realistic hybridization, the
resonance becomes quasi-two-dimensional, and the optimal
wave vector in xy plane (at which the intensity is the

largest) is close to (π,π/2), consistent with what was reported
experimentally.44–48
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APPENDIX A: CALCULATION OF THE MATRIX
ELEMENTS OF A BARE SUSCEPTIBILITY χ̂ 0(q ′,q ′′)

Figure 15 shows the diagrammatic representation of
the different matrix elements of the bare susceptibility
χ̂0(q ′,q ′′,i�m). First, we consider the diagrammatic contri-
butions (a) for χ0

ijkl(q,q; i�m), which can be expressed as

χ0
ijkl(q,q; i�m) = − 1

2β

∑
p,ωn

[(Gik( p + q,iωn + i�m)Glj ( p,iωn) + Gīk̄( p + q,iωn + i�m)Gl̄j̄ ( p,iωn)

+ Gik̄( p + q,iωn + i�m)Gl̄j ( p,iωn) + Gīk( p + q,iωn + i�m)Glj̄ ( p,iωn)) + (G ↔ F )]. (A1)

Here, one can easily notice the identical contributions of the first and second terms, which correspond to the two upper
diagrams in (a), and also that of the third and fourth terms, which correspond to the two lower diagrams in (a). Therefore the
above expression can be rewritten as

χ0
ijkl(q,q; i�m) = − 1

β

∑
p,ωn

[(Gik( p + q,iωn + i�m)Glj ( p,iωn) + Gik̄( p + q,iωn + i�m)Gl̄j ( p,iωn)) + (G ↔ F )]. (A2)

Similarly, by taking into account the identical contributions of the two upper and the two lower diagrams also in (b)–(d), the
expressions for χ0

ijkl(q,q̄; i�m) (b), χ0
ijkl(q̄,q; i�m) (c), and χ0

ijkl(q̄,q̄; i�m) (d) can be written as

χ0
ijkl(q,q̄; i�m) = − 1

β

∑
p,ωn

[(Gik̄( p + q,iωn + i�m)Glj ( p,iωn) + Gik( p + q,iωn + i�m)Gl̄j ( p,iωn)) + (G ↔ F )], (A3)

χ0
ijkl(q̄,q; i�m) = − 1

β

∑
p,ωn

[(Gīk( p + q,iωn + i�m)Glj ( p,iωn) + Gik( p + q,iωn + i�m)Glj̄ ( p,iωn)) + (G ↔ F )], (A4)

χ0
ijkl(q̄,q̄; i�m) = − 1

β

∑
p,ωn

[(Gīk̄( p + q,iωn + i�m)Glj ( p,iωn), + Gīk( p + q,iωn + i�m)Gl̄j ( p,iωn)) + (G ↔ F )]. (A5)

The matrix elements χ0
ijkl can be written in terms of

the normal and anomalous Green’s functions by identifying
the Green’s functions entering Eqs. (A2)–(A5) with matrix
elements of Ĝ in Eq. (6). It is expedient to diagonalize it to

Ĝαβ(p,iωn) =
∑

μ

aα
μaβ∗

μ

iωn − E
μ
p

, (A6)

where the indices α, β run from 1 to 4. The eigenvalues E
μ
p

and eigenvectors aα
μ are labeled by an index μ = 1,2,3,4. The

frequency summation can then be performed analytically.

For illustration, we evaluate the matrix element
χ0

1111(q,q,�m). Since, in this particular case G11̄ = G1̄1 =
F11̄ = F1̄1 = 0, the expression for χ0

1111 simplifies to

χ0
1111(q,q; i�m) = − 1

β

∑
p,ωn

[G11( p,iωn)G11( p′,iωn + i�m)

+ (G ↔ F )], (A7)

where p′ = p + q. Now identifying G11( p) = Ĝ11, F11( p) =
Ĝ12( p) in Eq. (6) and using Eq. (A6), the sum over fermion
Matsubara frequencies ωn can be carried out analytically,
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FIG. 15. Diagrammatic representation of the components of the bare particle-hole propagator. Each component of χ0
ijkl(q

′,q ′′; i�m) of both
normal (q ′ = q ′′) and umpklapp (|q ′ − q ′′| = Q) susceptibilities has four diagrammatic contributions. The diagrams (a)–(d) represent the bare
susceptibilities χ 0

ijkl(q,q; i�m), χ 0
ijkl(q,q̄; i�m), χ 0

ijkl(q̄,q; i�m), and χ 0
ijkl(q̄,q̄; i�m), respectively, where q̄ = q + Q (and p̄ = p + Q). Only

the contributions from normal Green’s functions G are shown. The contributions from the anomalous Green’s functions F have the same form,
but single arrowed lines are replaced by the double arrowed lines, representing anomalous propagators.

which yields after analytic continuation, i�m → ω + i0.

χ0
1111(q,q; ω) =

∑
p,μ,ν

[
a1

μ( p)a1∗
μ ( p)a1

ν ( p + q)a1∗
ν ( p + q)

+ a1
μ( p)a2∗

μ ( p)a1
ν ( p + q)a2∗

ν ( p + q)
]

×
[

f
(
Eν

p+q

) − f
(
E

μ
p
)

ω + i0+ − (
Eν

p+q − E
μ
p
)
]

, (A8)

where f (E) is the Fermi function. In numerical calculations,
a small imaginary part � is added to the frequency ω for
regularization, ω → ω + i�.

APPENDIX B: THRESHOLD SINGULARITIES
OF χ 0 AT ω → 2�

At low temperatures, the bare susceptibility χ0 is deter-
mined by the last term of Eq. (19),

χ0
ij (q,ω) = 1

4

∑
p

C
(pp)
ij ; p,q

f
(
Ei

p

) + f
(
E

j
p+q

) − 1

ω + i0 − (
Ei

p + E
j
p+q

) , (B1)

where the coherence factors determined by Eq. (20) are

C
(pp)
ij ; p,q = 1 − εi

p

Ei
p

+ ε
j
p+q

E
j
p+q

− εi
pε

j
p+q + �i

p�
j
p+q

Ei
pE

j
p+q

. (B2)

Here, we assume �i
p = −�

j
p+q = � > 0, and limit the

discussion to q such that the two normal-state Fermi surfaces,

εi
p = 0 and ε

j
p+q = 0, have common points in BZ, i.e., they

cross and/or touch. We focus on the singularity at ω = 2�,
which is the lower threshold of quasiparticle excitations and
obtain the most singular part of Imχ0 at ω → 2�. In this limit,
the momenta contributing to Imχ0 are close to the intersection
of the original and shifted Fermi surfaces. For the most singular
part of Imχ0, we therefore have, C

(pp)
ij ; p,q ≈ 2 and

Imχ0
ij (q,ω) ≈ π

2

∑
p

δ
(
ω − Ei

p − E
j
p+q

)
. (B3)

Furthermore, at ω → 2�, we expand

Ei
p ≈ � +

(
εi

p

)2

2�
, (B4)

and with notation ω̄ = (ω − 2�)2� we rewrite Eq. (B3) as

Imχ0
ij (q,ω) ≈ π�

∑
p

δ
[
ω̄ − (

εi
p

)2 − (
ε

j
p+q

)2]
. (B5)

We start with the case when the two Fermi surfaces, εi
p = 0

and ε
j
p+q = 0 touch. For the moment, we also neglect the

dispersion in pz direction. We choose the axis frame so that
the Fermi velocities at the two Fermi surfaces at the touching
point are v1,2 = v1,2x̂. For internal (external) touching of the
two Fermi surfaces, sgn(v1) = ±sgn(v2). Close to the touching
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point(s),

εi
p ≈ v1,2px + p2

y

2m1,2
, (B6)

where the momentum is counted from the touching(s) points.
We note that mi > (<)0 in Eq. (B6) for electron or holelike
pockets, respectively. It is convenient to change to new
variables:

ξ = ε1
p , η = ε2

p . (B7)

Relation (B7) with the dispersion relation (B6) can be inverted,
provided m1v1 �= m2v2, which is a generic situation and
sgn(v2ξ − v1η) = sgn(m2v2 − m1v1) as follows:

px = m1ξ − m2η

m1v1 − m2v2
, py =

√
v2ξ − v1η

v2/2m1 − v1/2m2
. (B8)

Then we set, without loss of generality v2m2 − v1m1 > 0,

Imχ0
ij (q,ω) ≈ π�

∫
D

dξdη

(2π )2
J (ξ,η)δ(ω̄ − ξ 2 − η2) , (B9)

where the integration domain, D is v2ξ > v1η, and the
Jacobian is easily evaluated:

J =
[

2

(
v1

m1
− v2

m2

)
(v2ξ − v1η)

]−1/2

. (B10)

We next transform to the polar coordinates:

ξ = ρ cos φ , η = ρ sin φ . (B11)

Writing v1 =
√

v2
1 + v2

2 cos φ0, v2 =
√

v2
1 + v2

2 sin φ0, we
have

v2ξ − v1η = ρ

√
v2

1 + v2
2 sin(φ0 − φ) . (B12)

Substituting Eqs. (B10)–(B12) in Eq. (B9) we obtain

Imχ0
ij (q,ω) ≈ �

4π

[
2

(
v1

m1
− v2

m2

) √
v2

1 + v2
2

]1/2

×
∫ φ0

φ0−π

dφ√
sin(φ − φ0)

∫ ∞

0
dρ

√
ρδ(ω̄ − ρ2) .

(B13)

The angular integration is convergent,∫ φ0

φ0−π

dφ√
sin(φ − φ0)

= 2
√

2K(1/2) ≈ 5.2 , (B14)

where K(x) is the complete elliptic integral of the first kind,
and the ρ integration trivially gives∫ ∞

0
dρ

√
ρδ(ω̄ − ρ2) = 1

2ω̄1/4
. (B15)

As a result, the singular part at ω − 2� � � is20

Imχ0
ij (q,ω) ≈ C

(
ω − 2�

2�

)−1/4

θ (ω − 2�) , (B16)

where the constant

C = K(1/2)

2π

⎡
⎣2

(
v1

m1
− v2

m2

) √
v2

1 + v2
2

�

⎤
⎦

−1/2

. (B17)

We now turn to the singularity in Imχ0 for a three-
dimensional dispersion relation when the two Fermi surfaces
touch. The possibility of a saddle point touching is not
considered here. We note that the stronger singularity may
be obtained in this case.

Instead of Eq. (B6), we have

ε1,2
p ≈ v1,2px + p2

y + p2
z

2m1,2
. (B18)

The dispersion anisotropy in the touching, yz plane is expected
to play no role and is neglected. By changing to the polar
coordinates in this plane,

py = p⊥ cos φ , pz = p⊥ sin φ, (B19)

we write

εi
p ≈ v1,2px + p2

⊥
2m1,2

, (B20)

and (B3) can be written after a trivial angular integration:

Imχ0
ij (q,ω) ≈ �

4π

∫ ∞

−∞
dpx

∫ ∞

0
dp⊥p⊥

× δ
[
ω̄ − (

εi
p

)2 − (
ε

j
p+q

)2]
, (B21)

with εi
p specified by Eq. (B20). Writing

∫ ∞
0 dp⊥p⊥ =

(1/2)
∫ ∞
−∞ dp⊥|p⊥| we obtain the integral very similar to the

two-dimensional case. Repeating the same steps, we arrive at
the following expression:

Imχ0
ij (q,ω) ≈ �

8π

∣∣∣∣ v1

m2
− v2

m1

∣∣∣∣
−1 ∫

D

dξdηδ(ω̄ − ξ 2 − η2) .

(B22)

The integral in Eq. (B22) gives constant∫
D

dξdηδ(ω̄ − ξ 2 − η2) = π

2
. (B23)

Therefore Imχ0
ij (q,ω) has a jump discontinuity at ω = 2�:

Imχ0
ij (q,ω) = C ′θ (ω − 2�), (B24)

with a constant

C ′ = �

16

∣∣∣∣ v1

m2
− v2

m1

∣∣∣∣
−1

. (B25)

Correspondingly, the real part of the susceptibility has a
logarithmic singularity at ω = 2�:

Reχ0
ij (q,ω) = C ′

π
ln

∣∣∣∣ EF

2� − ω

∣∣∣∣ (B26)

as follows from the Kramers-Kronig relations.
While in two dimensions the singularity is algebraic,

Eq. (B16), in three dimensions, it is only logarithmic,
Eq. (B26). For that reason, the binding energy while at
maximum close to touching condition is still exponentially
small. For the “squarish” dispersion considered in Ref. 50,
the conditions for the resonance are more favorable because
the quasi-one-dimensional dispersion yields strong inverse
square root singularity at a 2� threshold. Moreover, the
external touching gives stronger resonance. This observation is
limited to the quasi-one-dimensional dispersion. The singular
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part of a bare susceptibility is approximately the same for
both external and internal touching conditions. However, the
nonsingular part originating from the states not influenced
by the superconductivity has a large logarithm, ∼ln(EF /�),
which is a famous 2kF singularity of a Lindhard function cut
by � (here, EF and kF are Fermi energy and momentum,

respectively). Since in higher dimensions Lindhard function
is singular but finite at 2kF , we, in general, do not expect
the external touching to yield a stronger resonance than the
internal one. Nevertheless, even in a three-dimensional case
considered here, the binding energy is at a local maximum
when the touching is external.
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