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Vertical loop nodes in iron-based superconductors
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We consider Fe-based superconductors with s+− gap with accidental nodes on electron pockets. We analyze
how the gap structure changes if we include into the consideration the hybridization between the two electron
pockets [the interpocket hopping term with momentum (π,π,π )]. We derive the hybridization term and relate
it to the absence of inversion symmetry in the Fe plane because of two nonequivalent locations of pnictogen
(chalcogen) above and below the plane. We find that the hybridization tends to eliminate the nodes—as it
increases, the pairs of neighboring nodes approach each other, merge, and disappear once the hybridization
exceeds a certain threshold. The nodes disappear first around kz = π/2, and vertical line nodes split into two
vertical loops centered at kz = 0 and kz = π . We also show that the hybridization moves the nodes along the
loops away from the normal-state Fermi surfaces. This creates a subset of k points at which the peak in the
spectral function does not shift as the system enters into a superconducting state (“no-shift” lines). These no-shift
lines evolve with increasing hybridization in a highly nontrivial manner and eventually form horizontal loops in
the (kx,ky) plane, surrounding the nodes. Both vertical line nodes and horizontal no-shift loops surrounding them
should be detectable in photoemission experiments.
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I. INTRODUCTION

Understanding high-temperature superconductivity in
doped Fe pnictides and Fe chalcogenides remains the top
priority for the condensed-matter community.1–4 Supercon-
ductivity in weakly/moderately doped systems is generally
believed to be the consequence of the complex geometry of
the Fermi surface (FS), which consists of hole and electron
pockets located in different regions of the Brillouin zone. The
prevailing scenario is that the superconducting gap has an
s-wave symmetry, but changes sign between hole and electron
pockets,5,6 and may even have accidental nodes.1,7

Previous studies of the pairing mechanism and the gap
structure in Fe-based superconductors mostly focused on a
two-dimensional (2D) model of a single Fe plane with adjacent
pnictogen/chalcogen atoms located immediately above and
below it.1,6,8–13 Electrons from 3d orbitals of Fe hop mostly
indirectly, via 4p pnictogen/chalcogen sites. The low-energy
structure around EF obtained from a 3d-4p hopping has
been fitted1,6,8,11–13 to an effective “Fe only” 2D five-orbital
tight-binding Hamiltonian with interorbital and intraorbital
hopping terms. The band structure and location of the
electron and hole FSs have been deduced by evaluating the
eigenvalues of the five-orbital tight-binding Hamiltonian and
analyzing the energy profile. The pairing problem can be most
straightforwardly analyzed in the band basis, by associating the
operators corresponding to eigenfunctions with band operators
and rewriting the interaction in the band basis.1 The band
operators are linear combinations of orbital operators, and
the interactions in the band basis are the ones in the orbital
basis, dressed by “coherence factors” associated with the fact
that each eigenfunction is a linear combination of Fe orbitals.
The dressed interactions inherit angular dependencies from
the coherence factors. Solving for gaps on different FSs, one
then generally obtains angular-dependent gaps, even in the
s-wave case. By generic reasoning, the s-wave gaps on hole
pockets contain cos 4nφ harmonics (n = 0,1,2 . . .), where φ

is the angle along the hole pocket, while the gaps on electron
pockets contain both cos 4nθ and cos 2θ (2n + 1) harmonics,
with the angle θ counted relative to, e.g., the x axis for one
pocket and the y axis for the other.7,14,15 Numerical analysis
shows1,14 that cos 2θ harmonic of the gap is the strongest one,
and in some materials it is large enough to induce accidental
nodes on electron FSs.

The actual Brillouin zone (BZ), however, contains two
Fe atoms because pnictogen/chalcogen is located below and
above the Fe plane in checkerboard order (see Fig. 1). The
positions of pnictogen/chalcogen atoms are shifted by half
of lattice spacing in both x and y directions relative to
the positions of Fe. Half of pnictogen/chalcogen atoms are
located above the Fe plane and half are located below the Fe
plane. As a consequence, for half of the Fe atoms hopping
to pnictogen/chalcogen means hopping down along z and for
the other half it means hopping up along z. Therefore, the
symmetry of the original lattice is lower than the symmetry
of the Fe lattice, and the effective tight-binding Hamiltonian
should generally contain two type of terms—the ones with
zero momentum transfer, and the ones with momentum
transfer Q = (π,π ) (Refs. 16 and 17) (here and below we
set interatomic spacing to 1).

The tight-binding Hamiltonian considered in earlier
studies1 includes only the terms with zero-momentum transfer.
For such a Hamiltonian, the transformation from the 1-Fe
BZ to the 2-Fe BZ is just a rotation in a momentum space:
momenta kx and ky from the 1-Fe zone are transformed into
k̃a = kx + ky and k̃b = kx − ky in the 2-Fe zone. The gap
structure is obviously not affected by this transformation, up
to a change of variables. In particular, if the gap has accidental
nodes in the 1-Fe zone, it will have accidental nodes in the
2-Fe zone as well.

In this paper we demonstrate that the effective tight-binding
Hamiltonian also contains hopping terms with momentum
transfer Q, and that these terms affect the physics in a
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FIG. 1. (a) Schematic representation of a single layer of pnic-
tide/chalcogenide. The solid square designates a Fe (solid circles)
only lattice unit cell. The As/Se atoms form two inequivalent subsets.
The atoms denoted by a cross and empty circles are shifted off
the Fe plane in opposite directions. (b) The hopping amplitudes
to a neighboring pnictogen/chalcogen site are generally different
for pnictigen/chalcogen above and below Fe plane, i.e., in general
A1 �= A2.

quantitative way, and, in particular, substantially modify the
gap structure. The (π,π ) term vanishes if one approximates
a 2D five-orbital model by just dxz and dyz orbitals, as has
been done in some earlier studies11,18 but is present once one
adds a dxy orbital (the (π,π ) term describes the hopping from
dxy orbital to dxz or dyz orbital). Because the low-energy hole
and electron states in the full 2D tight-binding Hamiltonian
have contributions from dxz,dyz, and dxy orbitals,1,6,8–10,12,13,19

the (π,π ) hopping term survives the transformation to band
formalism and becomes ψ

†
kψk+ Q , where ψ are band operators.

As the two electron FSs are separated exactly by Q, such
term gives rise to a hybridization between the two electron
pockets. The new band operators for low-energy fermions
then become a linear combination of the original ψk, and
the pairing interaction, re-expressed in terms of the new band
operators, acquires additional coherence factors, which modify
its angular dependence. The modification of the angular
dependence of the interaction in turn modifies the angular
dependence of the gaps on electron FSs. This physics must
be present in ten-orbital studies,9,10,19 which treat orbital
excitations with momentum k and k + Q as separate degrees
of freedom, but we are not aware of the attempt to fit the results
of ten-orbital numerical studies by an effective tight-binding
Hamiltonian with an additional (π,π ) term.

In the previous work20 we demonstrated that hybridization
plays a crucial role in systems with only electron pockets,
like KFe2Se2. Several groups analyzed the pairing problem in
KFe2Se2 in the absence of hybridization. If the interaction
between the two electron pockets is repulsive, the pairing
is possible if interpocket interaction exceeds intrapocket
repulsion, but the gaps on the two electron pockets should have
opposite signs.14,21,22 Such a state has a d-wave symmetry
because the gap changes sign under rotation by 90◦. The
hybridization mixes the two original electron pockets into two
new electron pockets; each contains states from both original
pockets. The two new pockets split upon hybridization, and the
solution of the pairing problem for strong enough hybridization
shows that the system prefers to form an s-wave gap with
opposite sign on the two hybridized FSs.17,20 In terms of
original fermions the condensate wave function for such an
s-wave state is made out of fermions from different electron
FSs, i.e., a pair has a momentum Q. In terms of new, hybridized
fermions, such a state is a conventional one, with zero total
momentum of a pair. The microscopic analysis of the pairing
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FIG. 2. (Color online) Evolution of the FS and gap nodes shown
by (red) dots for circular pockets and constant (angle independent)
hybridization amplitude. Without hybridization, the two electron FSs
are identical, and each has four nodes (a). Once the hybridization
parameter λ becomes nonzero, the two electron FSs split, but the
nodes remain on the original (nonhybridized) FS (b),(c). As λ

increases, the pairs of neighboring nodes come closer to each other
and eventually merge at λc (d) and disappear at larger λ. We set
α = 1.3.

in the presence of hybridization shows20 that, with increasing
hybridization, the system undergoes a two-step transition from
a d-wave state to a d ± is state and then to an s+− state.

In this paper we analyze the role of hybridization in
systems in which both hole and electron pockets are present
and the gap has s+− form. We take the gap structure from
the 2D tight-binding Hamiltonian without Q terms as an
input and analyze how it changes once we add additional
hopping with momentum transfer Q. At first glance, the
hybridization between the two electron pockets should not
lead to qualitative changes in the s+− gap because the gaps’
order parameter on these pockets on average have the same
sign. We show, however, that the actual situation is more tricky
and hybridization does give rise to qualitative changes in the
gap structure in systems like BaFe2(As1−xPx)2,23 LaOFeP,24

and LiFeP,25 in which the s+− gap has accidental nodes,
which most likely reside on electron pockets. By symmetry,
there are four nodes on each electron pocket (eight nodes in
total). We show that the hybridization brings the neighboring
nodes close to each other. When the hybridization reaches a
certain threshold, the nodes coalesce and disappear (see Figs. 2
and 4). The importance of hybridization between electron
pockets was recognized in Ref. 10. The authors of that work
conjectured that it may affect the location of the gap nodes.
Our explicit calculations do show that the nodal structure is
indeed affected by hybridization.

We follow the evolution of the nodes before the hy-
bridization reaches a threshold. We show that at any nonzero
hybridization the nodes do not reside on the normal-state
FSs but are shifted into the k region between the hybridized
FSs, where the angle-resolved photoemission spectroscopy
(ARPES) intensity above Tc is peaked at a finite negative
frequency. As a result, the peak in the ARPES spectra at
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FIG. 3. (Color online) Location of the NSL, defined as locus of
points for which fermion does not change its energy between the
normal and the superconducting states. Thick (blue) lines are NSLs
which are detectable by ARPES (the peaks above and below Tc are
located at the same negative energy), thin (blue) lines are NSLs for
which the peak above Tc is at a positive energy. The hybridization
parameter λ increases from (a) to (d). Dots (red) are nodal points at
which quasiparticle energy is zero in a superconductor (but not in
the normal state). The initial evolution of NSLs is quite involved. We
consider it in Appendix B.

the nodal point does not stay intact, as in a “conventional”
superconductor with gap nodes, but shifts towards a smaller
frequency below Tc. We further show that each nodal point
is surrounded by no-shift lines (NSLs), at which quasiparticle
energies in the normal and superconducting states are equal,
i.e., the peak in the ARPES spectrum does not shift when the
system becomes a superconductor (Figs. 3 and 4). Without
hybridization, these NSLs are radial beams transverse to
the FS, in the direction along which the gap vanishes.
Upon hybridization, NSLs rapidly evolve, rotate by 90◦, and
transform into loops directed along the FSs. Inside the loop,
the ARPES peak moves to a lower negative frequency below
Tc, outside the loop it moves to a higher negative frequency.
We propose to search for such NSLs in ARPES measurements
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FIG. 4. (Color online) Hybridization of 2D elliptical FSs. (a) FSs
and the location of nodes (red dots). Solid and dashed black lines
are the actual, hybridized FSs, and the original FSs, respectively.
Similarly to the case of circular FSs, the pairs of nodal points come
closer to each other as λ increases, and merge and disappear at a
critical λc. (b), (c) Evolution of the NSL with increasing λ. Solid
black lines show the hybridized FSs. Thick and thin solid blue lines are
NSLs detectable and undetectable by ARPES, respectively. The 2D
analysis is applicable to 1111 materials with simple tetragonal lattice
structure. For 122 materials with body-centered lattice structure, the
situation is somewhat different; see Fig. 5.

on BaFe2(As1−xPx)2 and other s+− superconductors with gap
nodes, like LaOFeP (Ref. 24) and LiFeP.25

We next consider the effect of hybridization in 3D sys-
tems. For 1111 systems with a simple tetragonal lattice, the
hybridization term has 3D momentum (π,π,0), 3D effects are
secondary, and the consideration is qualitatively the same as
in 2D systems. In 122 systems with body-centered-tetragonal
lattice, the situation is more interesting. We show that in these
systems the hybridization between electron pockets is three
dimensional, with hybridization vector (π,π,π ), even if we
neglect the kz dependence of the gap along the third direction
within the 1-Fe tight-binding Hamiltonian.26 This is due to the
fact that in 122 materials pnictogen/chalcogen atoms alternate
in checkerboard order between neighboring Fe planes, i.e., if
for a given Fe plane a pnictogen/chalcogen atom at a given
(x,y) is located above the Fe plane, then in the neighboring Fe
plane a pnictogen/chalcogen atom at the same (x,y) is located
below the Fe plane.27 We show that, for such a structure, the
hybridization term has 3D momentum Q = (π,π,π ), and is
the largest at kz = π/2 (it actually does not vanish, except
for kz = 0 and kz = π , even if we consider only dxz and
dyz Fe orbitals). We show that, at the same time, the critical
value of the hybridization, at which the nodes disappear, is
the smallest at kz = π/2 and is much larger for kz = 0 and
kz = π . The combination of the facts that at π/2 the value of
the hybridization is the highest and the threshold value is the
lowest implies that there must be a wide range of hybridizations
when the nodes are eliminated near π/2 but are still present
near kz = 0 and kz = π . In this range vertical line nodes close
up into vertical loop nodes centered at kz = 0 and kz = π

(see Fig. 5). The gap structure with such loop nodes has
been proposed phenomenologically23 as the best candidate
to fit the thermal conductivity data in BaFe2(As1−xPx)2, for
which penetration depth, thermal conductivity, specific heat,
and NMR data all show28 that the gap must have nodes, and
at least some ARPES results29 indicate that the nodes must

kz =0 kz =π kz =π/2

(a)

(b)

FIG. 5. (Color online) (a) 3D FSs of 122 systems, like
BaFe2(As1−xPx)2, and the location of vertical loop nodes shown
by white lines. Two warped cylinders are shown separately, but the
smaller one is actually inside the larger one, as the arrow indicates.
(b) Cross section of the actual FSs at various kz. Red dots mark the
location of the nodes.
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be on the electron FSs. Our result provides a microscopic
explanation of vertical loop nodes.

The paper is organized as follows. In the next section we
present the model of a s+− superconductor with nodes on
electron pockets and introduce the hybridization amplitude.
In Sec. III we discuss how the hybridization affects the
nodes of the superconducting gap in systems with a simple
tetragonal lattice structure. We consider first a toy model
with circular electron pockets and then consider a more
realistic model of elliptical pockets. We show that in both
cases the neighboring nodes move towards each other as
hybridization amplitude increases. In Sec. IV we extend the
analysis to a 3D body-centered-tetragonal lattice and show
that hybridization splits vertical line nodes into vertical loop
nodes centered at kz = 0 and kz = π . In Sec. V we discuss the
experimental situation and comment on recent ARPES studies
of the superconducting gap structure in BaFe2(As1−xPx)2. We
present our conclusions in Sec. VI. We discuss technical issues
in detail in three Appendixes. In Appendix A, we discuss in
detail the microscopic mechanism of hybridization in 2D and
3D lattices and obtain explicit expressions for the hybridization
amplitude for a simple tetragonal lattice structure and for
a body-centered-tetragonal lattice structure. In Appendix B
we discuss the evolution of NSLs from radial beams in the
direction transverse to the FS along which the gap vanishes to
closed loops directed along the FSs. In Appendix C we discuss
subtleties in extracting the positions of gap nodes from ARPES
data.

II. MODEL

We consider an s+− superconductor with two electron
pockets at (0,π ) and (π,0) in the 1-Fe BZ at any given kz,
and the appropriate number (2 or 3) of hole pockets centered at
(0,0). The actual pocket structure in Fe-based superconductors
is somewhat more involved, i.e., low-energy states near (0,π )
and (π,0) likely contain not only electron pockets centered at
these points, but also hole barrels, centered somewhat away
from (0,π ) and (π,0).30 These hole barrels will not play a role
in our consideration and we neglect them.

In the absence of hybridization, the quadratic part of the
Hamiltonian for electron pockets is

H2 =
∑

k

ξ1,kψ
†
1,kψ1,k + ξ2,k+ Qψ

†
2,k+ Qψ2,k+ Q, (1)

where ψ1,2 describe two electron bands, one with low-energy
excitations near k1 = (0,π ), and another with low-energy
excitations near k2 = (π,0) = k1 + Q (modulo 2π ), ξ1,k

and ξ2,k+ Q are the corresponding electron dispersions, and
Q = (π,π ). We approximate fermion excitations near the
pockets by ξ1,k = vF (θ )[|k − k1| − kF (θ )],ξ2,k+ Q = vF (θ +
π/2)[|k − k2| − kF (θ + π/2)], where θ is the angle along
each of the FSs counted from the x axis.1–3,20 By virtue of
tetragonal symmetry, vF (θ ) = vF (1 + a cos 2θ ) and kF (θ ) =
kF (1 + b cos 2θ ). The parameter b accounts for the eccentricity
(ellipticity) of the FSs. For 1111 systems, parameters a and
b are essentially independent on kz, and one can reduce the
analysis to the 2D model. For 122 systems a and b do depend
on kz and change sign and magnitude between kz = 0 and
kz = π .

We assume, following earlier works,1–4,6 that the dominant
pairing interaction is between electrons and holes, and that its
dependence on kz is weak and can be neglected. We follow
Refs. 7, 14, and 15 and approximate electron-hole interaction
by a constant term and by a cos 2θ term, which changes sign
between the two electron pockets. Within this approximation,
the gaps on hole FSs are angle independent, while the gaps on
the two electron FSs are 	(1 ± α cos 2θk). The corresponding
effective BCS Hamiltonian is

HBCS = 	
∑

k

[(1 − α cos 2θk)ψ1,kψ1,−k + H.c.]

+ [(1 + α cos 2θk)ψ2,k+Qψ2,−k−Q + H.c.]. (2)

We consider the case α > 1, when the gaps have accidental
nodes in the absence of hybridization between the two electron
pockets. The hybridization term in the 1-Fe BZ has the form

HQ =
∑

k

λ(k)ψ†
1kψ2,k+ Q + H.c. (3)

We present the derivation of Eq. (3) in Appendix A for both
2D and 3D systems. We show there that the prefactor λ(k) is
generally a complex number, which depends on both kz and
k⊥. When only the dxz and dyz orbitals of Fe are considered,
the hybridization vanishes completely in the 2D case and
along particular directions in the 3D case. The k dependence
becomes less strong once one adds into consideration the dxy

orbital along with spin-orbit interaction. In the latter case,
|λ(k)| does not vanish for any k, although it is smaller at
kz = 0 and along kx = ±ky measured from the center of one
of the electron pockets. The nonsingular k dependence of λ(k)
is not essential to our analysis, and to simplify the presentation
we approximate λ(k) by a constant λ for the rest of the paper.
Our goal is to analyze what happens with the nodes, and, more
generally, with the fermion dispersion, when we solve for the
pairing in the presence of the hybridization term.

III. EFFECT OF HYBRIDIZATION ON NODES, 2D CASE

In this section we consider the case of a simple tetragonal
lattice for which the pairing problem can be analyzed within
a single 2D cross section (we recall that we treat interactions
as independent on kz). In the presence of HQ , Eq. (3), the
quadratic part of the Hamiltonian for fermions near the two
electron FSs becomes, instead of (1),

H2 =
∑

k

ξ1,kf
†
1,kf1,k + ξ1,k+ Qf

†
2,k+ Qf2,k+ Q

+
∑

k

λ[f †
1,kf2,k+ Q + H.c.]. (4)

For convenience, we redefine k and count it relative to
k1 = (0,π ) for f1 fermions and relative to k2 = (π,0) for f2

fermions, i.e., absorb Q into new k. In these new notations,
the quadratic Hamiltonian becomes

H2 =
∑
j=1,2

∑
k

ξj,kf
†
j,kfj,k +

∑
k

λ[f †
1,kf2,k + H.c.]. (5)

To analyze the pairing, we now have to introduce new
fermions which diagonalize the quadratic form in Eq. (5), re-
express the pairing interaction in terms of these new fermions,
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and solve for the gaps on electron FSs and quasiparticle
dispersion. We start with the case of circular electron pockets,
and then extend the analysis to elliptical pockets.

A. Circular electron pockets

For circular pockets, ξ1,k = ξ2,k = ξk = vF (k − kF ) is in-
dependent on the angle along the FS. The quadratic part of
the Hamiltonian is diagonalized by the transformation to new
operators a and b via f1,2 = (a ∓ b)/

√
2 and becomes

H2 =
∑

k

ξ+
k a

†
kak +

∑
k

ξ−
k b

†
kbk (6)

with ξ±
k = ξk ± λ. For angle-independent λ, the new FSs

remain concentric circles with different radii.
The BCS Hamiltonian takes the form

HBCS = 	
∑

k

{(aka−k + bkb−k)

+ (akb−k + akb−k)α cos 2θk} + H.c. (7)

We see that, in terms of a and b operators, the cos 2θ term
measures the strength of interband pairing. As λ increases and
the two hybridized FSs become more separated, interpocket
pairing becomes less important, and one expects that the
angular dependence of the pairing interaction will play a lesser
role. This is what calculations show, as we demonstrate below.

The quasiparticle dispersion is obtained from zeros of the
inverse propagator G−1

ω,k = ωI − M with matrix M and a unit

matrix I operating in Nambu space ψk = [ak,a
†
−k,bk,b

†
−k]tr .

We have

M =

⎡
⎢⎢⎣

ξ+ 	 0 	y

	 −ξ+ 	y 0
0 	y ξ− 	

	y 0 	 −ξ−

⎤
⎥⎥⎦ , (8)

where y = α cos 2θk. The nodal points are located at kn for
which det M(k) = 0. Equation (8) gives

det M = 4	2ξ 2
k + [

ξ 2
k − λ2 + 	2(y2 − 1)

]2
. (9)

We see that the nodes reside on the “bare” FS, ξk = 0, and
their angular position θk is set by

cos θk = ±
√

λ2 + 	2

α	
. (10)

Equation (10) has eight solutions along a circle (four pairs
of nodes near θ = 0 and other symmetry-related points θ =
π/2, θ = π , and θ = 3π/2). As λ increases, the two nodes
located, e.g., near θ = 0 move toward each other, and at a
critical λc given by

λc = 	
√

α2 − 1 (11)

the neighboring nodes merge along symmetry lines. At larger λ

the nodes disappear. We show this behavior in Fig. 2. Observe
that the critical λc is of order 	, i.e., is rather small. We will
see below that λc is much larger when electron FSs are not
circular.

In the presence of impurities, the nodes disappear already
at λ smaller than λc, once the distance between the nodes
becomes smaller than some minimum value set by impurity

scattering.31,32 Consider the range λ < λc in more detail. That
the nodes are not located on the actual (hybridized) FSs has
a profound effect on the ARPES spectrum. In the normal
state, the quasiparticle energies are ξk ± λ, i.e., one energy
is positive along ξk = 0 and the other is negative. Because
ARPES intensity is proportional to the Fermi function, ARPES
will only detect a negative mode at ω = −λ. That the nodes
in the superconducting state are located along ξk = 0 then
implies that around these k, the position of the maximum
in the ARPES spectra shifts towards a smaller frequency as
the temperature drops below Tc, instead of staying intact, as
at a nodal point of a “conventional” superconductor with gap
nodes. At the same time, one can easily make sure that near the
larger FS, the ARPES peak shifts to a larger negative frequency
below Tc. As a result, there exist lines in k space along which
ARPES intensity does not shift upon cooling through Tc (in the
Introduction we termed these lines as no-shift lines, or NSLs).

In the absence of hybridization, the NSLs are radial
beams along y = α cos 2θk = ±1 for which superconducting
dispersion ω(k) = −[ξ 2 + 	2(1 ± y)2]1/2 coincides with the
normal state dispersion −ξ . Once λ becomes nonzero, ω(k)
splits into two branches,

ω2
1,2 = (	2 + y2	2 + ξ 2 + λ2) ∓ 2

√
S, (12)

where S = ξ 2λ2 + y2	2(	2 + λ2). We analyzed (12) and
found that the NSLs rapidly undergo a series of bifurcations
(see Appendix B) and for λ � λc evolve into bananalike loops
located in between the two hybridized FSs and surrounding
the actual nodal points (see Fig. 3). The NSLs persist even
above λc, when the actual nodes disappear, and should be
easily detectable by ARPES (at least, in theory).

B. Noncircular Fermi pockets

For noncircular electron pockets the quadratic Hamiltonian
(5) is diagonalized by the angle-dependent transforma-
tion f1 = ua + vb, f2 = −va + ub, with (u,v) = (cos φ,

− sin φ), and cos 2φ = (ξ1 − ξ2)/
√

(ξ1 − ξ2)2 + 4λ2, sin 2φ =
2λ/

√
(ξ1 − ξ2)2 + 4λ2. The diagonalization yields

H2 =
∑

k

ξaa
†
kak +

∑
k

ξbb
†
kbk, (13)

with

ξa,b = 1
2 (ξ1 + ξ2) ± [λ2 + (ξ1 − ξ2)2/4]1/2. (14)

The Nambu matrix M becomes, instead of Eq. (8),⎡
⎢⎣

ξa 	(1 + α2) 0 	α1

	(1 + α2) −ξa 	α1 0
0 	α1 ξb 	(1 − α2)

	α1 0 	(1 − α2) −ξb

⎤
⎥⎦ , (15)

where α1 = y sin 2φ, α2 = y cos 2φ. The location of the nodes
is again specified by det M = 0. We have

det M = 	2[(ξa + ξb) + α2(ξb − ξa)]2

+ [ξaξb + 	2(y2 − 1)]2. (16)

Both terms in Eq. (16) are non-negative and must vanish
simultaneously at the locations of the nodes. This sets two
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conditions, one on ξa,b and one on the angle θk . Solving
the coupled set we find the same behavior as for circular
pockets—the eight nodes are located in between the hybridized
electron FSs, and the pairs of neighboring nodes move towards
each other as λ increases, merge along symmetry directions at
a critical λc, and disappear at larger λ (Fig. 4). The critical λc

is given by

λc = (α2 − 1)1/2{[(ξ̄1 − ξ̄2)/2]2 + 	2}1/2 , (17)

where ξ̄1 and ξ̄2 are dispersions ξ1,k , ξ2,k along one of four sym-
metric directions θk = 0, π/2, π, or 3π/2, and the value of k

is fixed by the condition ξ̄1 = ξ̄2(α − 1)/(α + 1). For elliptical
pockets, with ξ1,2 = k2

x/2m1,2 + k2
y/2m2,1 − μ, (ξ̄1 − ξ̄2)/2 =

μe/(1 − α|e|), where e = (m1 − m2)/(m1 + m2) is the eccen-
tricity. If the two FSs were nearly circular but of different radii
before the hybridization (as in body-centered-tetragonal 122
systems), i.e., ξ1,k = k2/(2m1) − μ, ξ2,k = k2/(2m2) − μ, and
m1 = m(1 + ε),m2 = m(1 − ε), then ξ̄1 − ξ̄2 = −k2

F ε/(m2),
where kF ≈ √

2mμ. In both cases, λc obviously increases
when electron pockets becomes nonidentical.

We computed the dispersion by solving det[ω(k) − M] = 0
and again found that NSL form banana-shaped closed loops
around the true nodes. We show the results in Fig. 4. In
similarity to the case of circular pockets, NSLs survive even
when the actual nodes disappear.

IV. EFFECT OF HYBRIDIZATION ON NODES, 3D
BODY-CENTERED-TETRAGONAL LATTICE

In 122 systems with body-centered-tetragonal lattice, two
electron pockets coupled by λ are separated by (π,π,π ), where
the third component is along the kz direction.26 The pairs of
pockets at (0,π,0) and (π,0,π ) and at (π,0,0) and (0,π,π )
are co-axial ellipses, which are well separated even without
hybridization.17 The difference ξ̄1 − ξ̄2 is then large, and for
kz near 0 and near π the critical λc as given by Eq. (17) is
large and generally comparable to Fermi energy. On the other
hand, at kz = π/2, the two electron pockets coupled by λ

are identical, and can be well approximated by circles. For
these pockets, the critical λc is given by Eq. (11) and is quite
small, of order 	. For λc(π/2) < λ < λc(0,π ), the nodes near
kz = π/2 are eliminated, and nodal lines form vertical loops,
which are centered at kz = 0 and kz = π and close before
reaching kz = π/2. We show this gap structure in Fig. 5.

V. APPLICATION TO P-CONTAINING PNICTIDES

The three Fe-pnictide materials with hole and electron
pockets, for which experimental data strongly suggest the
presence of gap nodes, are LaFeOP, with Tc � 5 K (Ref. 24),
the family BaFe2(As1−xPx)2 with the highest Tc around
30 K (Ref. 33), and LiFeP with Tc � 5 K (Ref. 25). All
three materials contain phosphors. kz-integrated probes like
penetration depth, thermal conductivity, specific heat, and
NMR (Ref. 28) all show the behavior consistent with line
nodes. In particular, thermal conductivity κ scales linearly
with T at low T and displays

√
H behavior in a magnetic

field, and λ(T ) − λ(0) is also linear in T down to very low T .
The results of ARPES study of the gap structure are

controversial. Laser ARPES study29 probed the gap near

the three hole pockets and found all of them almost angle
independent, at least for kz probed by laser ARPES. These
authors argued that the nodes must be on electron pockets.
Synchrotron ARPES data were, on the other hand, interpreted
as evidence for a horizontal line node at some kz on one
of hole FSs. We argue in Appendix C that another fitting
procedure of the data from Ref. 34, which, we believe, is
more appropriate, is consistent with some kz dispersion of
the gap but no nodes on hole FSs. And the most recent
synchrotron ARPES data35 show no nodes on hole pockets
and strong gap variation on electron pockets. It appears that
more work is needed to resolve the structure of the gaps on
hole and electron FSs in ARPES studies. From the theory
viewpoint, a horizontal node on a hole FS is possible,26 but
less justified than nodes on electron pockets, as the latter
appear quite naturally due to competition between interpocket
repulsion between hole and electron pockets, which favors s+−
superconductivity, and intrapocket repulsion, which is against
any superconductivity. The gap on electron pockets acquires
cos 2θ variations to reduce the effect of intrapocket repulsion
and allow superconductivity to develop.7,15 This reasoning
is consistent with the argument6 that a replacement of As
by P changes the height of a pnictide with respect to the
Fe plane, which effectively reduces interpocket electron-hole
interaction, forcing the gap to develop nodes on electron
pockets to reduce the effect of intrapocket repulsion. We
therefore believe that nodes more likely reside on electron
pockets, as we suggest in our analysis.

The structure of the nodes on electron pockets has been
discussed in the context of the analysis of thermal conductivity
data in BaFe2(As1−xPx)2. Measurements of the oscillations of
thermal conductivity as a function of a direction of a magnetic
field have been reported recently,23 and the cos 4θ component
of these oscillations has been interpreted using the same form
of the gap on electron pockets as in our study: 	(kz) = 	[1 ±
α(kz) cos 2θ ]. The best fit to the data yields α(kz) > 1 for
kz near 0 and π and α(kz) < 1 for kz near π/2. This form
of α(kz) implies that nodes form vertical loops centered at
kz = 0 and kz = π . This is precisely what we found in our
calculations. We therefore argue that our calculation provides
microscopic explanation of the appearance of vertical loop
nodes in BaFe2(As1−xPx)2.

VI. CONCLUSION

To conclude, in this paper we considered how the originally
nodal s+− gap changes if we include into the effective
tight-binding model for Fe atoms an additional term with
momentum transfer (π,π,0) in 1111 systems and (π,π,π )
in 122 systems. We show that such a term is generally
present because the hopping between Fe orbitals is primarily
an indirect hopping via pnictogen (chalcogen) orbitals, and
pnictogen (chalcogen) atoms are located above and below the
Fe plane in a checkerboard order. In 122 systems this order
flips between neighboring Fe planes along the z axis. This
additional hopping term hybridizes the two electron pockets
and affects the gap structure. We found that the pairs of
neighboring nodes (points where the quasiparticle energy is
zero below Tc) approach each other as hybridization increases
and disappear once the hybridization parameter λ exceeds
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a certain threshold λc. We argued that in 122 systems, like
BaFe2(As1−xPx)2, the threshold value depends on kz and is
much smaller near kz = π/2 than near kz = 0 and π . In this
situation, at intermediate λ, the gap nodes form vertical loops
which are centered at kz = 0 and π and close up before
reaching kz = π/2.

We also found that in kz cross sections where the nodes
are present, they are located away from the hybridized FSs.
As a result, at a nodal point, the peak in the ARPES energy
distribution curve shifts, upon cooling through Tc, from a
negative frequency to a smaller frequency. We showed that
the nodes are surrounded by the no-shift lines—the subset
of k points at which the ARPES peak does not shift between
T > Tc and T < Tc. These lines initially form beams along the
directions where the s+− gap vanishes, but they rapidly evolve
as λ increases, and for λ � λc form banana-shaped loops in
the (kx,ky) plane around the nodes. We propose to search for
these no-shift lines in ARPES measurements.
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APPENDIX A: MICROSCOPIC MECHANISM
OF HYBRIDIZATION

In this Appendix we present microscopic derivation of
Eq. (3) and obtain explicit expressions for λ(k) in terms
of microscopic parameters. We assume, following earlier
works, that the hopping between Fe atoms occurs via pnic-
togen/chalcogen. Such a process gives rise to two types of
Fe-Fe hopping terms: the ones with zero momentum transfer
and the ones with momentum transfer Q. The terms with zero
momentum transfer [and the ones with momentum transfer
Q between fermion states near the center and the corners of
the 1-Fe BZ (Ref. 11)] give rise to the electronic structure
with hole and electron pockets. We assume that these terms
are already incorporated into the tight-binding Hamiltonian of
Eq. (1), and focus only on the terms with momentum transfer
Q, which involve fermions with momenta near (0,π ) or (π,0)
and give rise to Eq. (3).

Equation (3) implies that

λk = 〈ψ1,k|H |ψ2,k+ Q〉, (A1)

where H is the full hopping Hamiltonian. The band operators
ψ1,k and ψ2,k+ Q are linear combinations of atomic orbital
operators. We consider dxz, dyz, and dxy orbitals, and neglect
dz2 and dx2−y2 orbitals which do not contribute to the states
near the Fermi level.8 Let |fs,n〉 denote orbital operators
localized at site n with s = 1,2,3 standing for dxz, dyz, and dxy ,
respectively. The corresponding wave functions are shown in

yz

x

y

x
z y

xy

y

x x
y

x

dxz

dyz

dxy px1

px2

dyz

dxz

FIG. 6. Schematic representation of the three Fe orbitals dxz, dyz,
dxy , and px and py orbitals of As/Se.

Fig. 6. The band operators are

|ψ1,k〉 =
3∑

s=1

γ s
1 (θk)|fs,k〉,

(A2)

|ψ2,k+ Q〉 =
3∑

s=1

γ s
2 (θk+ Q)|fs,k+ Q〉,

where

|fs,k〉 = 1√
N

∑
n

eikn|fs,n〉. (A3)

The k-dependent coefficients γ s
1 (θk) [γ s

2 (θk)] specify orbital
contents of the pockets centered at (0,π ) or (π,0), respectively,
and are input parameters for our consideration.

Consider momentarily a single layer. We have n = (n,m)
and Q = (π,π ). Using

ei(k+ Q)n = (−1)n+meikn, (A4)

we can separate the sums over n into contributions from even
and odd sublattices, i.e., split

∑
n into

∑′
n +∑′′

n, where the
first (second) sum is limited to even (odd) values of n + m.
Equation (A2) then takes the form

|ψ1,k〉 = 1√
N

[ ′∑
n

+
′′∑
n

]
eikn

3∑
s=1

γ s
1 (θk)|fs,n〉,

(A5)

|ψ2,k+ Q〉 = 1√
N

[ ′∑
n

−
′′∑
n

]
eikn

3∑
s=1

γ s
2 (θk)|fs,n〉.

Substituting (A5) into Eq. (A1) we obtain

λk = 1

N

∑
n′

[ ′∑
n

−
′′∑
n

]
eik(n−n′)

×
∑
s,s ′

[
γ s

1 (θk)
]∗

γ s ′
2 (θk)〈fs ′,n′ |H |fs,n〉. (A6)

The sites within each sublattice are identical, hence
〈fs ′,n′ |H |fs,n〉 depends only on n′ − n. Introducing

Al
s ′s = 〈fs ′,n+l |H |fs,n〉 n + m = 2p,

(A7)
A′l

s ′s = 〈fs ′,n+l |H |fs,n〉 n + m = 2p + 1,

where p is an integer, we rewrite (A6) as

λk = 1

2

∑
l;s ′,s

(
Al

s ′s − A′l
s ′s

)
e−ikl[γ s

1 (θk)
]∗

γ s ′
2 (θk). (A8)

The summation in Eq. (A8) formally runs over all l but in
reality does not extend beyond second neighbors. The same
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dxz

− δ Vσ
−δVπ

− δ Vπ
− δ Vσ

p̄x1

px1

px1

p̄x1

− δ Vσ
− δ Vπ

− δ Vπ
− δ Vσ

dxz

px2

px2

p̄x2

p̄x2

(b)

(a)

FIG. 7. The overlap integrals between iron orbital dxz and in-
plane As/Se px and py orbitals are defined by two parameters δVπ

and δVσ . We show Fe atom from even sublattice, for which As/Se
atoms are displaced off the Fe plane by +δ along the main diagonal
(x = y), and by −δ along x = −y. The p-orbitals at +δ are labeled
as p and the ones at −δ as p̄. We assume that δ � 1, in which case
the overlap integrals are linear in δ. (a) overlap between dxz and p′

x1

orbitals, (b) overlap between dxz and p′
x2

orbitals.

expression is obtained in the 3D case, but then the sum over l
extends to neighbors in the XY plane and along the z axis.

Equation (A8) expresses λk in terms of the band-structure
parameters and hopping amplitudes. We see that the hybridiza-
tion parameter is nonzero only if the hopping amplitudes are
different for even and odd sublattices.

Further analysis requires the evaluation of the orbital
hopping amplitudes and the knowledge of the orbital content of
band operators. As we said, we neglect direct hopping between
iron atoms and focus on a second-order tunneling processes
via pnictogene/chalcogene. The amplitudes (A7) are then
expressed in terms of hopping integrals from a d orbital on a Fe
site to one of three p orbitals on a neighboring As/Se site. The
pz orbital has a much smaller overlap integral compared to the
two in-plane orbitals, and we neglect it. The in-plane orbitals
are presented in Fig. 6. Their wave functions are maximized in
the direction along x ′

1 = (x + y)/
√

2 and x ′
2 = (−x + y)/

√
2,

and we denote then by px ′
1,x

′
2

and p̄x ′
1,x

′
2

pnictogen/chlacogen
above and below the iron plane, respectively.

Within the tight-binding approximation the hopping param-
eters between Fe and As/Se sites can be specified by a set of
overlap integrals δVσ and δVπ , as shown in Figs. 7 and 8.
Here δ is the the deviation of the As/Se atom in an Fe plane.
The wave functions of dxz and dyz orbitals change sign under
δ → −δ, hence the overlap integrals with pxi

and p̄xi
have

opposite signs.
In what follows we consider first the model with only dxz

and dyz orbitals. We show that the hybridization parameter
vanishes in a 2D case and in 3D systems for 1111 lattice
structure, but is generally nonzero for 3D systems with 122

− δ Vσ

− δ Vσ

− δ Vπ

− δ Vπ

p̄x1

px1

px1

p̄x1

dyz

px2

px2

p̄x2

p̄x2

δ Vπ
δ Vσ

δ Vσδ Vπ

dyz

(a)

(b)

FIG. 8. Same as in Fig. 7 but for dyz orbital of Fe. (a) Overlap
between dyz and px′

1
orbitals, (b) overlap between dyz and px′

2
orbitals.

lattice structure, except special directions in k space where λk

vanishes. We then include into consideration the dxy orbital
(i.e., consider the three-orbital model) and show that in this
case the hybridization parameter is nonzero already in two
dimensions and in 1111 systems. For 122 systems, λk in the
three-orbital model is less anisotropic than in the two-orbital
model and nonzero along all directions of k.

1. Two-orbital model

We follow earlier work18 and assume that the pocket at
(0,π ) is predominantly made out of the dxz orbital, and the
one at (π,0) is made out of the dyz orbital, i.e., in our notations
γ s

1 (θk) = δs,1 and γ s
2 (θk) = δs,2.

a. Single Fe layer

For a single iron layer, Eq. (A8) simplifies to

λk = 1

2

∑
l

(
Al

2,1 − A′l
2,1

)
e−ikl , (A9)

where, we remind, Al
2,1 and A′l

2,1 are hopping amplitudes from
the dxz orbital at site n to the dyz orbital at cite n + l starting
from n at even or odd sublattice, respectively. Each amplitude
describes a two-stage process: the electron first hops from the
dxz orbital to one of the two p orbitals of pnictogen/chalcogen,
and then hops from this p orbital to dyz orbital on either the first
or second neighbor; see Fig. 9(a). Because both dxz and dyz

orbitals are odd in z, elementary amplitudes of hopping from d

to p have different sign for hopping originating from even and
odd sites. However, taken to second order, the amplitudes Al

2,1

and A′l
2,1 turn out to be completely equivalent. We illustrate

the equivalence in Fig. 9 for l = (1,1). As a consequence,
Al

2,1 = A′l
2,1, i.e., λk vanishes.
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A (1,1)
(1,1)

(1,1)

(1,1)

A

x =
x + y
√

2

x =
x + y
√

2

z

z

√
2

δ

δ

A

A

(a)

(b)

FIG. 9. The second-order hopping processes within a single iron
layer shown as a top view (a) and a side view (b). The equality of
the two amplitudes, A(1,1) = A′(1,1), follows from the observation that
both orbitals, dxz and dyz, are odd under the reflection z → −z.

For completeness, we also computed the hybridization
amplitude between dxz and dyz orbitals for Q = 0:

H1,2 =
∑

k

h1,2(k)f †
1 (k)f2(k) . (A10)

This term has been computed before8 and is part of the bare
Hamiltonian which gives rise to hole and electron pockets.
Using our method, we reproduce earlier result for h1,2, as we
now demonstrate.

Performing the same computations that for Q = (π,π ) lead
to Eq. (A9), we obtain for Q = 0

h1,2 = 1

2

∑
l

(
Al

2,1 + A′l
2,1

)
e−ikl . (A11)

Because Al
2,1 = A′l

2,1, Eq. (A11) becomes

h1,2 =
∑

l

Al
2,1e

−ikl . (A12)

In the second order perturbation theory we have for, e.g.,
l = (±1, ±1) (see Figs. 7 and 8)

A
(1,1)
2,1 = A

(−1,−1)
2,1 = −A

(1,−1)
2,1 = −A

(−1,1)
2,1

= δ2

Eg

(
V 2

σ − V 2
π

)
, (A13)

where the energy denominator Eg is the energy separation
between 3d to 4p orbitals. Substituting Eq. (A13) into
Eq. (A12) we obtain

h1,2 = −4
δ2

Eg

(
V 2

σ − V 2
π

)
sin kx sin ky + . . . , (A14)

where dots stand for the contributions from other l . This
result is in full agreement with earlier calculations, see e.g.,
Refs. 1,8, and 11.

A1A2

(a) (b)

FIG. 10. Interlayer tunneling processes leading to a finite
hybridization, (A15), in 122 material.

b. 3D crystals, 1111 materials

For 3D systems with 1111 structure, Fe layers at different
z are all equivalent, and 3D folding vector Q = (π,π,0). The
arguments displayed in the previous section apply to this case
as well, i.e., for two orbital model λk = 0, even if we include
into consideration interlayer tunneling.

c. 3D crystals, 122 materials

In 122 materials with body-centered-tetragonal crystal
structure the situation is qualitatively different. The first obser-
vation is that the hybridization vector is Q = (π,π,π ) because
even and odd sublattices are formed by Fe atoms located at
n = (n,m,p) with n + m + p even or odd, respectively. This
can be also be understood by noticing that the Fe-only lattice
is simple cubic, but, because of As/Se, the Fe lattice has an fcc
structure with the basis, or alternatively a rocksalt structure.
The folding vector Q = (π,π,π ) appears as an additional
Bragg peak due to the transition from a simple cubic to an
fcc lattice. Without interlayer tunneling, λk is still zero, but
interlayer tunneling makes it finite as we show below.

Interlayer tunneling in real systems is a complex process
which at least partly involves Ba atoms.17 We will avoid
this complication and consider a toy model in which there
is a direct tunneling between pnictogen/chalcogen atoms
located at the same (x,y) in different layers. Because the
position of pnictogen/chalcogen atoms relative to the Fe
plane oscillates along the z direction, there are two different
tunneling amplitudes for such processes: the one between
pnictogen/chalcogen located above the nth plane and below the
(n + 1)th plane, and the other between pnictogen/chalcogen
located below the nth plane and above the (n + 1)th plane
(see Fig. 10).

Another peculiarity of 122 systems is that the eccentricity
of electron FSs in 122 systems changes sign between kz = 0
and kz = π , i.e., the FS at (0,π0) is elongated along the same
direction as the FS at (π,0,π ). In the full model, this is due
to the change of the relative weight of the dxy orbital between
kz = 0 and kz = π .17 In two-orbital approximation, we model
the change of sign of eccentricity by requiring that dxz and
dyz orbitals interchange between kz = 0 and kz = π [i.e., we
require that at kz = 0, the pocket at (0,π ) is made out of the
dxz orbital and is elongated along the y axis, and the one at
(π,0) is made out of the dyz orbital and is elongated along the
x axis, while at kz = π , the pocket at (0,π ) is made out of
the dyz orbital and is elongated along x, and the one at (π,0)
is made out of the dxz orbital and is elongated along y]. The
hybridization term with Q = (π,π,π ) then connects the (0,π )
pocket at kz = 0 and the (π,0) pocket at kz = π , which have
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the same orbital character, i.e., s and s ′ in Eq. (A8) for λk are
the same.

The process which gives rise to a nonzero λk is a
three-stage process in which an electron from the dxz or
dyz orbital on an even sublattice in layer n hops to one
of two p orbitals on a pnictogen/chalcogen, then hops
vertically to a pnictogen/chalcogen located near the next
Fe layer, and then hops to the same d orbital on that layer.
One can easily verify that the terms in λk in which do not
cancel out between even and odd sublattices are the ones with
l = (±1, ±1, ±1). There are two different hopping amplitudes
for these momenta (see Fig. 10): for an even sublattice we
have A(1,1,1)

ss = A(1,−1,−1)
ss = A(−1,−1,1)

ss = A(−1,1,−1)
ss = A1,

A(−1,1,1)
ss = A(1,−1,1)

ss = A(1,1,−1)
ss = A(−1,−1,−1)

ss = A2, where
s = 1,2, and for odd sublattice A

′(1,1,1)
ss = A

′(1,−1,−1)
ss =

A
′(−1,−1,1)
ss = A

′(−1,1,−1)
ss =A2, A

′(−1,1,1)
ss =A

′(1,−1,1)
ss =A

′(1,1,−1)
ss =

A
′(−1,−1,−1)
ss = A1. Substituting these amplitudes into Eq. (A8),

we see that in the real part of λk the contributions from even
and odd sublattices cancel out, but in the imaginary part of λk

they add up, such that

λk = −4i(A1 − A2) sin kx sin ky sin kz. (A15)

The expression (A15) is odd in all three momenta. This result
is expected because the three reflection symmetries have been
broken by hybridization. The overall factor of i reflects the fact
that time-reversal symmetry is not broken (i.e., λk = λ∗

−k).
For completeness, we also computed the hybridization term
between dxz and dyz orbitals and found it is also nonzero, but
this time λk is real and is an even function of k.

2. Three orbital model

We next consider how λk changes if we consider the more
realistic situation when the dxy orbital also contributes to the
states near the FS.

a. 2D case

We use as an input the results of previous calculations,1

which found that the FS at (0,π ) is constructed out of dxz and
dxy orbitals, and the one at (π,0) is constructed out of dyz and
dxy orbitals. To a reasonable approximation, γ 1

1 (θk) = sin θ ,
γ 3

1 (θk) = cos θ , and γ i
2 (θ ) = γ i

1 (π/2 − θ ), where θ is counted
from the y axis (as written, the formulas are valid in the first
quadrant, for 0 < θ < π/2). Accordingly

ψ1,k = f1,k sin θ + f3,k cos θ,
(A16)

ψ̃2,k+ Q = f2,k+ Q cos θ + f3,k+ Q sin θ.

The hybridization amplitude between f1,k and f2,k+ Q van-
ishes, as we found before, but we show in this section that
the amplitudes between f1,k and f3,k+ Q and between f3,k and
f2,k+ Q are nonzero. In our notations, we then have

λk = λ
3,1
k + λ

2,3
k , (A17)

where

λ
3,1
k = sin2 θ

∑
l

(
Al

3,1 − A′l
3,1

) e−ikl

2
(A18)

p̄x1

G

0

0

dxy

px1

px1

p̄x1

−G

G

0

0dxy

px2
p̄x2

p̄x2
px2

−G

(a)

(b)

FIG. 11. Overlaps of iron dxy orbital with As/Se orbitals px′
1

(a)
and px′

2
(b). In case (a) the tunneling is possible only along the main

diagonal direction, x = y, while in case (b) it occurs only along the
perpendicular direction x = −y.

and

λ
2,3
k = cos2 θ

∑
l

(
Al

2,3 − A′l
2,3

) e−ikl

2
. (A19)

Because the wave function for the dxy orbital is even under
the reflection z → −z and the ones for dxz and dyz orbitals are
odd, A′l

3,1 = −Al
3,1 and A′l

2,3 = −Al
2,3. Equation (A19) then

reduces to

λk =
∑

l

(
sin2 θAl

3,1 + cos2 θAl
2,3

)
e−ikl . (A20)

We now need to prove that this expression is nonzero. As
before, we consider hopping between Fe sites as a two-stage
process via neighboring p orbitals. This process gives rise to
hopping to nearest- and next-nearest neighbors on the iron
lattice, i.e., we need to consider l = (lx,ly) with lx,ly = 0,±1.
The overlap integrals with the p orbitals on As/Se have been
defined in Figs. 7 and 8. In explicit form〈

px ′
1,n+(1/2)(x̂+ŷ)

∣∣H |f1,n〉 = −δVσ ,〈
px ′

2,n+(1/2)(x̂+ŷ)

∣∣H |f1,n〉 = −δVπ ,
(A21)〈

p̄x ′
1,n+(1/2)(x̂+ŷ)

∣∣H |f1,n〉 = δVσ ,〈
p̄x ′

2,n+(1/2)(x̂+ŷ)

∣∣H |f1,n〉 = δVπ ,

where, we remind, δ is the deviation of As/Se from an Fe plane.
We define overlap integrals between dxy and p orbitals in

Fig. 11 as

〈f3,n+x̂ |H
∣∣px ′

2,n+(1/2)(x̂+ŷ)
〉 = G,

〈f3,n+x̂ |H
∣∣px ′

1,n+(1/2)(x̂−ŷ)
〉 = G,

(A22)
〈f3,n+x̂ |H

∣∣p̄x ′
2,n+(1/2)(x̂+ŷ)

〉 = G,

〈f3,n+x̂ |H
∣∣p̄x ′

1,n+(1/2)(x̂−ŷ)
〉 = G.
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Other overlap integrals between dxy and in-plane p orbitals
vanish.

Using these notations, we obtain after a simple algebra

A
(1,0)
3,1 = 〈f1,n|H

∣∣px ′
2,n+(1/2)(x̂+ŷ)

〉
× 1

Eg

〈
px ′

2,n+(1/2)(x̂+ŷ)

∣∣H |f3,n+x̂〉

+ 〈f1,n|H
∣∣px ′

1,n+(1/2)(x̂−ŷ)
〉

× 1

Eg

〈
px ′

1,n+(1/2)(x̂−ŷ)

∣∣H |f3,n+x̂〉, (A23)

A
(1,1)
3,1 = 〈f1,n|H

∣∣px ′
1,n+(1/2)(x̂+ŷ)

〉
× 1

Eg

〈
px ′

1,n+(1/2)(x̂+ŷ)

∣∣H |f3,n+x̂+ŷ〉 (A24)

and similar results for other A
(lx ,ly )
3,1 and A

(lx ,ly )
2,3 . Substituting the

expressions for the overlap integrals, Eqs. (A21) and (A22),
we obtain

A
(±1,0)
3,1 = ∓2δVπG

Eg

, A
(0,±1)
3,1 = 0, (A25)

A
(±1,±1)
3,1 = ∓δVσG

Eg

, A
(±1,∓1)
3,1 = ∓δVσ G

Eg

, (A26)

and similarly

A
(0,±1)
2,3 = ∓2δVπG

Eg

, A
(±1,0)
2,3 = 0, (A27)

A
(±1,±1)
2,3 = ±δVσG

Eg

, A
(±1,∓1)
2,3 = ∓δVσ G

Eg

. (A28)

Substituting Eqs. (A25)–(A28) in Eq. (A20) and summing
over four nearest- and four next-nearest neighbors, we
obtain

λk = 4iδG

Eg

[Vπ (sin2 θ sin kx + cos2 θ sin ky)

+Vσ (sin2 θ sin kx cos ky − cos2 θ sin ky cos kx)]. (A29)

Introducing small k̃ = k − (0,π ), using the fact that for a
small-size pocket cos θ = k̃y/|k̃|, sin θ = k̃x/|k̃|, and sin kx ≈
k̃x , sin ky ≈ −k̃y , and extending the analysis to other quadrants
(i.e., to negative k̃x and k̃y), we finally obtain

λk = 4iδG

Eg|k̃|2 (Vπ − Vσ )
(|k̃|3x − |k̃|3y

)
. (A30)

We see that the hybridization parameter λk is generally
nonzero, except for diagonal directions k̃x = ±k̃y . This agrees
with the result of numerical calculations.19 The authors of
Ref. 19 found that in the presence of spin-orbit interaction |λ|
remains nonzero even along the diagonal directions.

b. 3D case

In 1111 systems the hybridization vector is Q = (π,π,0),
and for weak interlayer tunneling λk weakly depends on kz

and is nearly the same as in Eq. (A29). In 122 systems the
hybridization vector is Q = (π,π,π ), and the full expression
for λk in the 3D case is the sum of the dxz − dyz contribution,
Eq. (A15), and the contribution from the processes involving

dxy , Eq. (A29). The two-orbital contribution is strongly kz

dependent, while the three-orbital contribution is kz indepen-
dent if we neglect interlayer hopping, and weakly depends
on kz if we include it. Because the two contributions vanish
along different symmetry directions, the total hybridization
parameter is nonvanishing for all k, though it has minima at
kz = 0,π , and along kx = ±ky and kx = 0,ky = 0 in a given
cross section of kz (kx,ky are measured with respect to the
center of a pocket). The anisotropy of λk is further reduced if
we add spin-orbit interaction.17,19

APPENDIX B: EVOLUTION OF THE NODAL LINES
AT SMALL HYBRIDIZATION

In this Appendix we discuss the initial evolution of the NSL
from radial beams directed transverse to the FSs to tangential
lines, directed along the FSs. We present the results for circular
pockets. The evolution of the NSL for elliptical pockets is quite
similar.

In the normal state, the dispersions for hybridized circular
pockets are ξ+−

k = ξk ± λ, where ξk = (k2 − k2
F )/(2m) is the

dispersion in the absence of hybridization. In the supercon-
ducting state the dispersion is given by Eq. (12),

ω2
1,2(k) = (	2 + y2	2 + ξ 2 + λ2) ∓ 2

√
S, (B1)

where S = ξ 2λ2 + y2	2(	2 + λ2) and y = α cos 2θk . At
λ = 0, Eq. (B1) reduces to a conventional expression ω2

1,2(k) =
ξ 2 + 	2(1 ± y)2. The dispersions in the normal and super-
conducting state coincide along four radial lines specified by
y = ±1. Along these directions, the s± gap has accidental
nodes on one or the other electron FS.

Once λ becomes nonzero, the lines transform into banana-
type loops still elongated transverse to the FS, and “domes” at
k > kF [Fig. 12(a)] The loops close up at k = 0, and at k =
kF and y ≈ ±1. The NSL then undergo several topological
changes at λ ∼ 	2/μ, which is much smaller than critical λc ∼
	. At the first critical λ = λc,1 the bananas touch pairwise
along the directions θk = 0, ± π/2 and π [Fig. 12(b)].

At larger λ, eight bananas transform into four configura-
tions, which resemble rabbit ears [Figs. 12(c) and 12(d). The
value of λc,1 is

λc,1 ≈ 	2

4μ

(α2 − 1)2

α2 + 1
. (B2)

At the next critical

λc,2 = 	2

4μ
(B3)

the “rabbit ears” touch each other along another set of
symmetry directions, θk = ±π/4, ±3π/4 [Fig. 12(e)], and
at λ > λc,2 detach from k = 0 [Fig. 12(f)]. The evolution of
the NSL at larger λ ∼ 	 is discussed in the main text and is
shown in Fig. 4.

APPENDIX C: FITTING OF THE ARPES DATA

In this Appendix we discuss the fitting procedure used in
Ref. 34 to extract the gap structure from ARPES data. The
authors of this work symmetrized the measured photoemission
intensity to get rid of Fermi function and extract the spectral
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FIG. 12. (Color online) The initial evolution of the NSL defined
as locus of points for which the fermion does not change its energy
between the normal and the superconducting states. Dashed (black)
lines show the FS before the hybridization. Thick (blue) lines are
NSLs which are detectable by ARPES (the peaks above and below
Tc are located at the same negative energy), thin (blue) lines are
“nodal lines” for which the peak above Tc is at a positive energy. The
hybridization parameter λ increases from (a) to (f). Dots (red) are
nodal points at which quasiparticle energy is zero in a superconductor
(but not in the normal state). Panel (a) λ < λc,1, panel (b) λ = λc,1,
panels (c) and (d) λc,1 < λ < λc,2, panel (e) λ = λc,2, panel (f) λ >

λc,2. Both λc,1 and λc,2 scale as 	2/μ and are much smaller than
λc ∼ 	, at which the nodes disappear. The evolution at λ � λc is
shown in Fig. 3.

function A(k,ω) = (−1/π )G
′′
(kF ,ω), and used the convention

that the gap is finite when A(k,ω) at k = kF has two resolved
maxima at finite frequencies, and zero when the maximum in
the spectral function is at zero frequency. The same procedure
was used earlier to identify Fermi “arcs” in the cuprates.36

This fitting procedure requires care because the maximum
in A(kF ,ω) can be at zero frequency even when the gap
is nonzero. This happens when fermionic damping is finite
(as it always is at finite T , even in a conventional s-wave
superconductor) and is larger than the gap.

To extract the gap from the data, the authors of Ref. 34
related the spectral function to fermionic self-energy in a
standard way, as

A(kF ,ω) = − 1

π

�
′′
(kF ,ω)

[ω − �
′(kF ,ω)]2 + [� ′′(kF ,ω)]2

(C1)

−4 −2 0 2 4
0

0.5

1
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2

ω/Δ

A
(k

F
,
ω

)
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0

0.2
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1

ω/Δ

A
(k

F
,
ω

)

(a)

(b)

FIG. 13. (Color online) The spectral function A(kF ,ω) (a.u.),
Eq. (C1), with self-energy given by (a) Eq. (C2) and (b) Eq. (C3).
The solid black line is for γ = 0.5	. The dashed blue line is for
γ = 3.0	. In case (a), the spectral function has a dip at ω = 0 and
a peak at finite frequency for any nonzero 	. In contrast, in case
(b), the peak in the spectral function can be at ω = 0 despite that the
gap is nonzero. This happens when the broadening is large enough,
γ >

√
3	. Notice that in this situation the peak at ω = 0 is very

broad.

and modeled the self-energy at each kz as

�(kF ,ω) = −iγ + 	2

ω
. (C2)

If one uses this fit, one finds that the maximum in the spectral
function is at ω = 0 only when the superconducting gap
vanishes [see Fig. 13(a)]. Indeed, the self-energy given by
(C2) diverges at ω = 0 and therefore the spectral density has a
dip at ω = 0 for any nonzero 	. Because the measured spectral
function α hole pocket is peaked at ω = 0 near kz = π , the
authors of Ref. 34 concluded that the gap on the α pocket must
vanish for this kz.

We argue that the fermionic self-energy of a dirty BCS
superconductor contains the damping term iγ not only
as the stand-alone constant but also in the denominator
of the 	2 term, along with ω, i.e., the true self-energy
is

�t (kF ,ω) = −iγ + 	2

ω + iγ
. (C3)

This form of the self-energy has been extensively discussed in
the context of the physics of Fermi arcs in the cuprates.37–39

Using this self-energy, one obtains that the spectral function
has a maximum at ω = 0 even when the gap is finite, provided
that γ >

√
3	. We show in Fig. 13(b) that the spectral function

obtained using the self-energy from Eq. (C3) with a nonzero
	. We see that the maximum in A(kF ,ω) is either at a finite
frequency or at ω = 0, depending on the interplay between
	 and γ . Observe that, when the maximum is at ω = 0, it is
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quite broad, much like in the experimental data in Ref. 34 near
kz = π . We argue therefore that the data of the ARPES study

in Ref. 34 are in fact consistent with an anisotropic but still
no-nodal gap along the α pocket.
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