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We study the spectral function of a two-dimensional superconductor in a regime of strong phase fluctuations.
Although the developed approach is valid for any symmetry, we concentrate on d-wave superconductors. We
obtain analytical expressions for the single electron Green’s function below the transition temperature and have
worked out a way to extrapolate it for a finite temperatures above Tc. The suggested approach is easily
generalizable for other models with critical fluctuations.
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I. INTRODUCTION

According to a popular viewpoint the cuprate supercon-
ductors in their underdoped regime are fundamentally differ-
ent from the BCS ones due to the existence of wide tempera-
ture range around Tc dominated by phase fluctuations. In this
range the order parameter amplitude is well defined but the
global order has not yet emerged. The quantitative measure
of this difference is the ratio Q=2Tc /��s�0� where �s�0� is
zero temperature phase stiffness. This ratio determines how
close the transition is to being mean-field-like. In BCS su-
perconductors Q�1, in the underdoped cuprates Q�1.1 Ex-
perimental evidence in favor of strong phase fluctuations
comes from measurements of diamagnetic susceptibility and
Nernst effect above Tc �Ref. 2� and from temperature depen-
dence of the thermal expansion coefficient.3 The analysis of
temperature dependence of magnetization and London pen-
etration depth for the high quality underdoped BiSCO crys-
tals show that the superconducting transition itself becomes
closer to two-dimensional Berezinskii-Kosterlitz-Thouless
�BKT� one.4 At last, there is a material �x=1 /8 LSCO� where
the coupling between the CuO planes is so weak that the
transition is real BKT.5

The problem of influence of the phase fluctuations on the
spectral function is a long standing one; its importance being
substantiated by the fact that the spectral function measured
by angle resolved photoemission �ARPES� serves as one of
the main probes of the strong correlations in the cuprates.
The experiments show that in the underdoped regime many
features of the spectral function below Tc survive above Tc
though in somewhat modified form. According to ARPES,
the excitation spectrum above Tc gradually softens and loses
its characteristic node-centered conical shape so that the
nodal points gradually broaden into arcs.6,7,9 The question is
whether the appearance of these arcs �or even of the Fermi
pockets� is due to superconducting fluctuations, as suggested,
for instance, in Ref. 8. To have a consistent understanding of
the underdoped regime it is vital to obtain a correct detailed
picture of the quasiparticle spectral function and establish its
temperature dependence. The first step in this direction is to
take into account superconducting fluctuations.10,11 This is
possible to do even without full microscopic theory. The
problem has been studied by a number of authors,13–15 but, as
we argue in this paper, the approach taken is unreliable being
based on uncontrolled approximations.

II. FORMULATION OF THE MODEL

We consider a two-dimensional metal with a strong super-
conducting pairing in the state where the order parameter
amplitude is fixed, but the phase fluctuations are strong. Our
calculations allow for the SC �superconducting� gap to have
nodes on the Fermi surface. For instance, for d-wave SC the
mean-field quasiparticle spectrum is given by

E2 = �2�k� + �2�cos�akx� − cos�aky��2. �1�

We will assume that v /a�� �v is the Fermi velocity� and
approximate the spectrum close to the node as

E2 � v2k2 + 2�2 sin2�qa/2� , �2�

where k is the wave vector component perpendicular to the
Fermi surface and q is the one parallel to it. We take the
Fermi surface at the node for a flat one.

In the mean-field approximation fluctuations of the order
parameter � are ignored, and the resulting Green’s function
takes a familiar BSC form, Gk���= ��+�k� / ��2−�k

2−�2�k��.
Following our original assumption we will neglect the am-
plitude fluctuations of the order parameter taking into ac-
count only phase fluctuations, ��x , t�=�ei	�x,t�. At finite tem-
perature T the long wavelength fluctuations are essentially
classical �time independent�. It is crucial for our consider-
ation that the superconducting fluctuations are space isotro-
pic and the one-particle Green’s function close to the node is
strongly anisotropic with the parameter of anisotropy � /�F,
where � is maximal gap and �F is the Fermi energy. Then
when one considers a propagating quasiparticle, the fluctua-
tions affect mostly its wave vector component perpendicular
to the Fermi surface. The parallel component can be consid-
ered as conserved. The above considerations allow us to con-
sider one-dimensional fermions at a given Matsubara fre-
quency �n described by the Lagrangian

L = 
̄��− i�n1̂2 − iv�x�
z + ��+ + ���−�
� + F	. �3�

In the last equation the first term is a standard pairing
Lagrangian written in terms of Nambu spinors, 
�

= ��↑,�n
, �̄↓,−�n

�T, and �i are Pauli matrices. The second term
gives the action for the classical phase fluctuations in the
form
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F	

T
=

�s

2T
� dxdy���x	�2 + ��y	�2� . �4�

Here the inverse temperature prefactor T−1 results from the
integration over imaginary time. The discrete symmetry of
the lattice which includes C4, the group of in-plane rotations
by � /2 radians guarantees that the quadratic action, Eq. �4�
is isotropic.

Remarkably, it is possible to rewrite the model, Eqs. �3�
and �4� as an effective quantum impurity model of Caldeira-
Leggett type.12 To this end, we introduce new variables as
follows, ��↑ ,�↓

†�= �↑ ,−i↓
†�, and ��↑

† ,�↓�= �i↑ ,↓
†�.

Then, the Lagrangian Eqs. �3� and �4� after the analytic con-
tinuation, i�n→�+i0 is equivalent to the Hamiltonian

Hef f = v−1i�� + i0��3 + v−1��q���+ei	�0� + �−e−i	�0��

+ Hbulk�	� , �5�

where �a is the short hand notation for the fermionic bilin-
ears: �a�+�a. In this setting coordinate x plays the role
of Matsubara time. It is dual to the momentum component k	

parallel to the Fermi velocity at the point of observation.
Since at � /�F→0 the electron momentum parallel to the
Fermi surface is conserved, the fermionic field ↑ ,↓

† de-
pends only on one coordinate x, though the phase field 	
depends on both. For convenience we assign  to coordinate
y=0. Since the propagators of 	 fields are not supposed to be
modified by insertions of fermionic loops, which would lead
to overcounting, the fermionic number must be treated as
conserved ��

+��=1. Then the � operators become compo-
nents of spin S=1 /2. The Hamiltonian Hbulk describes the
phase fluctuations. Their two point correlation function is


ei	�x1�e−i	�x2�� = � a

��T�
�2d

F x12

��T�
� , �6�

where d=T /8TBKT is the order parameter scaling dimension,
��T� is the correlation length and TBKT=��s /2 is the
Berezinskii-Kosterlitz-Thouless transition temperature.
The function F�y� is such that F�y�1�=y−2d and
F�y�1��K0�y� �more detailed information about this func-
tion can be extracted from Ref. 16�. Hence below the transi-
tion where �=� the function �6� decays as a power law and
above the transition it has the exponential asymptotics. The
length scale a��v /�F� is the short distance cutoff. Below the
BKT transition the bulk Hamiltonian is Gaussian,

Hbulk�	;T � TBKT� =
1

8�d
�

−�

�

dy��4�d�2�2 + ��y	�2� ,

�7�

where � is the momentum density conjugated to the field 	,
with an equal time commutator

���y1�,	�y2��− = − i��y1 − y2� . �8�

By construction integration over the momentum in the quan-
tum action of our one-dimensional model, Eqs. �7� and �8�
produces the free energy of classical two-dimensional ther-
mal fluctuations, Eq. �4�. Above the transition the Hamil-
tonian Eq. �7� must include effects of vortices which gener-

ate nonlinear terms. The rigorous discussion is possible in
the case T�TBKT; later we will present some extrapolation
for temperatures above TBKT. We note in passing that at
T�TBKT model �5� and �7� is equivalent to the anisotropic
Kondo model in the imaginary magnetic field h= i�−0. We
notice this equivalency though we have not been able to
make use of it in our calculations.

The setting of the problem as given by Eqs. �3� and �4� is
not different from the one in Refs. 13–15. However, in these
previous attempts to solve the problem the authors used the
gauge transformation method which we claim is inadequate.
The bosonic exponent present in Eqs. �3� and �5� has been
absorbed into the definition of the fermionic field. As a result
the term ��

+���x	�0� appeared in the Hamiltonian. The prob-
lem with this approach is that the path integral expression for
the electron Green’s function is dominated by the field con-
figurations with large 	 gradients. The same effect appears
when one attempts to develop a perturbation theory in �x	:
each diagram diverges at small distances. This fact has been
overlooked. Here the equivalence of the current problem to
the Kondo model is helpful since as is well known the latter
cannot be treated by the methods employed in Refs. 14 and
15.

III. SOLUTION BY PERTURBATION THEORY IN �

In the present section we calculate the Green’s function
by the perturbative expansion in � for the model Eqs. �3� and
�4�. It has a crucial advantage of being free of ultraviolet
divergencies. The infrared divergencies are removed at finite
external frequency and momentum �as we will show below,
the integrals diverge only at �+vk=0�. The infrared behav-
ior is controlled by the long wavelength fluctuations of the
order parameter which justifies the use of the effective low
energy action for the phase fluctuations Eq. �4�. The above
arguments indicate that we can study the model Eqs. �3� and
�4� in perturbation theory expanding the Green’s function in
powers of � by accounting for most infrared singular contri-
butions at each order.

Below for definiteness we consider positive energies,
��0. In other words we study the “particle” part of the
spectrum. For negative frequencies the spectral function can
be obtained by particle-hole transformation, �→−�, and
k→−k. Most of the spectral weight is expected to be found
close to the particle mass shell, k=�. In general, the Green’s
function G�

r �k� is peaked for wave vectors close to the
particle �hole� mass shell, k� ��. Here the superscript
r�l� designates right �left� moving particles. In the
former case the most singular contributions can be re-
summed in a usual fashion, by introducing the self-energy
���k�, and writing the Green function in the standard form,
G��k�= ��−k−���k��−1. The self-energy can be written as
�we set v=1 and drop the explicit q dependence of ��

�k��� =
�2

�� + k�1−2d

��C0�d� + �
n=1

�

Cnd,
k + �

2�
� �2

�� + k�2−2d�n� .

�9�

The coefficients Cn�d ,�� have singularities only at �=0
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which means that the self-energy is a smooth function of its
arguments in the broad vicinity of the particle mass shell,
k�� making the resummation scheme justified. The direct
calculation yields

C0�d,x� = e−i�d��1 − 2d�, C1�d,1/2� � de−2i�d. �10�

These considerations and the fact that away from
x=0��=−k� Cn�d ,�� vanish at d→0 allows one to approxi-
mate the Green’s function as

G��k� = �� − k −
�2�q�a2d

�� + k�1−2d �1 − i�d��−1

. �11�

It follows from Eq. �11� that the quasiparticle dispersion
relation, E�k� as determined by the relation
E�k�=k+Re ��E�k� ,k� differs from the mean-field BSC re-
sult. In particular, the spectral gap identical to the Kondo
scale in the magnetic impurity problem. The latter one is
given by

TK = ��q����q�a�d/�1−d�. �12�

The gap magnitude for a given q is suppressed with respect
to its mean-field value ��q�. In addition, the spectral line
acquires a finite width, proportional to the spectrum renor-
malization ��k���d�E�k�−k� at d�1.

We now turn to a discussion of the holelike region
k�−�. The self-energy is not a useful quantity in this
case as it diverges at k=−� and becomes more singular
with increasing order of the perturbation theory. We
therefore sum the most singular contributions to
the Green’s function. For the “amputated” Green’s function,

Ḡ�
r �k�= �G��k�−G0,��k���G0,�

r �k��−2, we obtain the expansion
in even powers of � similar to Eq. �9�. The coefficients of

this expansion are denoted as C̃n. The coefficients with
n�1 are non-analytic at k=−�. To find the momentum de-
pendence of the Green’s function at k�−� we have calcu-

lated the whole set of constants C̃n�d ,0� and summed over
the corresponding series. As a result of interaction with the
field created by the fluctuating order parameter the right
moving particle is scattered off as a left-moving hole, see
Fig. 1. When the order parameter is fixed these processes
give rise to a usual BCS-like quasiparticle spectrum. In our
case the order parameter has different phases at different

collision events. Our goal is to study the effect of these fluc-
tuations to the leading order in the parameter d. For ��k the
right-moving particle propagates along much longer distance
in between the consecutive scatterings than the left-moving
hole. This is shown in Fig. 1�a�. As a result the space argu-
ments in the phase factors attached to the propagator of the
hole merge. For that reason the integration over the short
distances of propagation of the hole leads to effective fusion
of its propagator. This explains why the Green’s function is
determined by the self-energy to the second order in �, i.e.,
the result of Eq. �11�. Indeed, corrections to Eq. �11� results
from the interaction between distant dipoles and are small in
parameter d�T.

The situation at ��−k is different, see Fig. 1�b�. In this
case the left-moving hole propagates much longer distances
than the right-moving particle. As a result the arguments of
the two outermost phase factors are separated by large dis-
tance which substantially modifies the infrared behavior of
the propagator. The two uncompensated phase factors lead to
a power law dependence in Eq. �17� absent in Eq. �11�. We
now derive the result of Eq. �17� analytically. To illustrate
the calculation we consider the order �6, �see Fig. 1�b��,

�Ḡ�
r �R� = �− i�6�6G0,−�

l �y1 − R�G0,�
r �y1 − x1�

�G0,−�
l �y2 − x1�G0,�

r �y2 − x2�G0,−�
l �− x2�

� 
e−i	�R�ei	�y1�e−i	�x1�ei	�y2�ei	�x2�e−i	�0�� .

�13�

Here the bare retarded Green functions �iG0,��
r,l �x�

=��x�ei�x. The infrared singularity in the Fourier transforma-
tion of Eq. �13� at k�−� accumulates at large distances,
R�−��+k�−1. In terms of rescaled variables, x1,2=−R�1,2,
y1,2−x1,2=−R�1,2 it means that the leading contribution
comes from �1,2�1. Integrating over negative R’s we obtain

��6�Ḡ�
r �k� �

�6��5 − 6d�
�2��5−6d �

0

1

dx1�
0

x1

dx2

� �
0

�

d�1d�2
�1

−2d�2
−2d

�� + �1 + �2�5−6d . �14�

As the integrals over � variables are convergent allowing us
to replace the upper integration limit by infinity. The remain-
ing integration in Eq. �14� yields

��6�Ḡ�
r �k� �

�6�2�1 − 2d���3 − 2d�
2!�2��5−6d�3−2d . �15�

The arguments leading to Eq. �15� can be generalized to
obtain the most singular contribution to arbitrary order �2n

as follows:

��2n�Ḡ�
r �k� �

�2n�n−1�1 − 2d���n − 2d�
�n − 1�!�2��2n�1−d�−1�n−2d . �16�

Summing all leading singularities Eq. �16� we obtain

(a)

l

1x 2xR

l
r

01y 2y x

l
r r

r

r r r
l l

x(b)

FIG. 1. �Color online� Propagation of the right-moving particle.
�a� k�+� and �b� k�−�. Solid straight arrowed �black� lines la-
beled with letters r�l� designates propagators of the right-moving
particle �left-moving hole�. Pairs of outgoing �red� and incoming
�blue� dashed wavy lines designates the insertion of �ei	 and �e−i	

phase factors with close arguments. In the panel �b� a pair of distant
solid wavy lines depicts the two uncompensated phase factors.
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G��k� �
1

2��1 +
�2�q���1 − 2d�e−i�d

2�� + k −
�2�q���1 − 2d�e−�id

�2��1−2d �1−2d� .

�17�

At d→0 Eq. �17� reproduces the BCS Green’s function.
Equations �11� and �17� are the main results of the paper.
These results remain qualitatively correct above the BKT
transition, provided that the inverse correlation length
�−1�T� exceeds the Kondo scale TK given in Eq. �12�.
Since the BKT correlation length is exponentially large
�−1�T���0 exp�−C�T /TBKT−1�−1/2�, there is a range of tem-
peratures and q where this condition is fulfilled. In the op-
posite limit �−1���q� one can use Eq. �6� to calculate the
leading order contribution to the self-energy, the following
formula provides an interpolation between T�TBKT
and T�TBKT region:

��2��q,k,�� = �2�q����/a�−2d�1 + ���� + k��2�−1/2

��exp�− i�d + 2d sinh−1���� + k���

− �1 + ���� + k��2�−1/2� . �18�

In Fig. 2 we present graphically the spectral function
A��k�=−�1 /��Im G��k�. The quasiparticle dispersion can be
identified as the energy �max where the spectral function is at
its maximum. The dispersion relation obtained in this way is
depicted in Fig. 3 for different values of parameter d. Below
T�TBKT where �−1=0 one should use Eq. �17� instead of Eq.
�18� close to the singularity line �=−k.

IV. CONCLUSIONS

In summary, we have studied the electron Green’s func-
tion �and the related spectral function� in the regime of
strong superconducting fluctuations. As is evident from Figs.
2 and 3, these fluctuations affect the normal state dispersion
in such a way that the maximum of the spectral function is

shifted down in energy in comparison with its mean-field
value. Naturally, the effect is more pronounced for larger
temperatures. This indeed may create the impression that the
system develops a “Fermi arc.” We hope that the advances in
the experimental techniques will allow for a detailed com-
parison with the present theory. We argue that the quasiclas-
sical approximation employed in the previous
publications13–15 cannot provide a quantitative information
about the spectral density along the arcs. This approximation
is justified only if Green’s function changes on the scale
smaller than the variation scale of the pairing potential. In
general the former is set by the particle’s mass. As the qua-
siparticles become massless at the node the quasiclassics is
not justified when ��k� /v��−1�T�. More specifically the in-
verse square root singularity reported in Ref. 15 is an artifact
of the quasiclassical approximation and is in fact smeared.
The typical scale of the spectral function is temperature de-
pendent and can be estimated as �d�� /v��2�v /�� close to
the node.

Our approach is easily generalizable for other problems
where quasiparticles coexist with critical or almost critical
collective excitations such as magnetic fluctuations at the
onset of antiferromagnetic order.
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