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Atomically thin two-dimensional layer of honeycomb crystalline carbon known as graphene is a promising
system for electronics. At charge neutrality it has a pointlike Fermi surface, which is very sensitive to external
potentials and can be easily doped with either electrons or holes. Zeeman magnetic field parallel to the
graphene layer splits electron bands according to spin polarization and creates geometrically congruent circular
Fermi surfaces of particle and hole type for spins down and up, respectively. Hence, a fully spin-polarized
transport in both electron and hole channels could be realized, presenting an opportunity for developing
graphene-based spintronic devices. In particular, if spin polarization is achieved by virtue of the proximity
effect in graphene in contact with magnetic layer, a domain wall �DW� separating regions with opposite spin
polarizations could act either as a spin flipper allowing controllable rotation of spin polarization of electric
currents or as a spin filter �spin rectifier�. Here we consider ballistic passage of spin-polarized charge carriers
in magnetized graphene through such a DW and analyze different regimes of spin-dependent refraction and
reflection as a function of chemical potential and the thickness of the DW.
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I. INTRODUCTION

Although graphene forms the most common carbon
allotrope—graphitic carbon—which is used in countless in-
dustrial applications ranging from pencils and lubricants to
aerospace composites and nuclear reactors, only recently
were purely two-dimensional �2D� graphene samples iso-
lated and studied in experiments.1–3 Their remarkable elec-
tronic properties immediately attracted attention of broad sci-
entific community, and now graphene research has rapidly
grown into a large and diverse field.4,5 In spite of the well-
known Peierls-Landau argument proving the thermodynami-
cal instability of isolated 2D crystals,6 the honeycomb 2D
crystalline order of graphene appears extremely robust.
While graphene layers in natural and synthetic graphite ma-
terials are not isolated but are supported by three-
dimensional structures or substrates,7,8 binding between
monolayers in many cases is so weak that they can be easily
exfoliated and appear approximately isolated from the
substrate.8–11 At present, high-quality graphene samples are
obtained by using graphite exfoliation, which results in
graphene pieces with 1–100 �m linear dimensions,4 by ep-
itaxial growth on SiC via silicon sublimation, which yields
macroscopic mosaic layers with micron-size crystalline
domains12,13 or by chemical vapor deposition, yielding
millimeter-size graphene films.14 Recent advances in
graphene manufacturing show real potential for industrial ap-
plications.

High charge-carrier mobility, long mean-free path and co-
herence length, and ability to support high current densities,
exceeding 108 A /cm2, make graphene promising candidate
for nanoscale electronics.4 Its pointlike Fermi surface is ex-
tremely sensitive to external potentials. Carefully prepared
graphene samples show ambipolar electric field effect with
carrier mobilities exceeding 104 cm2 /V /s for electron/hole
concentrations up to �1013 cm−2.1,12 The type of the field-
induced carriers is revealed by the sign of the Hall effect and

depends on the polarity of the gate voltage. This can be
visualized by considering electronic spectrum of graphene
depicted in Fig. 1�a�. The gate voltage shifts Fermi level up
or down, thus inducing a circular Fermi surface of particle or
hole type, respectively.

High electron mobility in graphene, which is comparable
with high-quality semiconductor heterostructures tradition-
ally used for studies of the quantum Hall effect �QHE�,15

implies ballistic charge transport and electronic phase coher-
ence on the micron length scale. Moreover, charge mobility
in graphene is only weakly temperature dependent, being
probably limited by sample imperfections and size effects
even at room temperature.4 QHE in graphene2,3 was indeed
found to persist up to 300 K,16 indicating that even at room
temperature electrons form quantum gas. These experiments
reported mobility ��10 000 cm2 /V /s, scattering time of
�s�10−13 s, and the mean-free path ��0.1 �m at 300 K.
Transport on the length scales smaller than the disorder
mean-free path could be treated as ballistic, which justifies
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FIG. 1. �Color online� �a� Electronic band structure resulting
from the sp2 C-C bonding in the hexagonal carbon layer of
graphene. In zero magnetic field the filled � and the empty ��

bands meet at a single point, resulting in a linear 2D dispersion,
��k�=vF�k, characteristic of 2D relativistic Dirac fermions �vF is
Fermi velocity�. a and b define triangular lattice of a honeycomb
graphene layer containing two C atoms. Fermi “surface” consists of
two inequivalent points K and K� �valleys�. �b� Magnetic field H
parallel to graphene layer introduces Zeeman splitting g�BH be-
tween the bands with parallel �P� and antiparallel �AP� spin. P and
AP bands acquire congruent Fermi surfaces of hole and electron
type, respectively, whose radius is �kF=g�BH / �2vF�.
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ballistic approximation employed in theoretical analysis of
Klein tunneling,17 Veselago lensing,18 and other phenomena
of passage through short-range potential inhomogeneities in
graphene. Here we adopt similar treatment, assuming ballis-
tic transport through magnetic inhomogeneity associated
with the DW in magnetized graphene, whose characteristic
width is smaller than the electronic mean-free path �.

Outstanding electronic transport properties combined with
high sensitivity to external potentials make graphene prom-
ising candidate for spintronic applications, which require
controlled manipulation with spin polarization of electric
currents. A number of experiments on spin-valve-type
graphene devices, where spin-polarized currents are injected
and detected using magnetic �cobalt, permalloy, etc.� elec-
trodes, were recently reported.19–27 Measurements show high
spin-polarized injection efficiency and spin coherence length
in graphene exceeding 1 �m, supporting its potential for
spintronics. Theoretical analysis of spin-dependent transport
in graphene so far was mainly focused on spin-orbit �SO�
effects28–32 and quantum spin-Hall effect.33,34 While the SO
coupling in an ideal flat graphene is generally recognized to
be small, it has recently been argued that it could be strongly
enhanced by structural distortions induced by molecular hy-
bridization of sp2 bonded graphene layer with the substrate
or impurity adatoms.31,32

Strong hybridization potential of carbon pz orbitals
in graphene, which was also confirmed by recent
experiments,35,36 opens another interesting possibility for
manipulating with electronic spins, which we consider in the
present study. It can be envisioned that a spin-dependent
splitting of the electronic levels could be induced by an
effective magnetic field resulting from magnetic proximity
effect in graphene in contact with a ferromagnetic/
antiferromagnetic substrate.37,38 Such “exchange” field is
similar to the parallel magnetic field, as it acts only in the
spin sector but can be much stronger than magnetic fields
available in the laboratory, inducing Zeeman level splitting
sufficient for room-temperature device applications. Due to
its semimetallic nature �pointlike Fermi surface�, moderate
Zeeman magnetic field significantly modifies the low-energy
band structure of graphene. It splits electron bands according
to spin polarization and creates geometrically congruent and
fully polarized circular Fermi surfaces of particle and hole
type for spins down and up, respectively, as shown in Fig.
1�b�. This contrasts with the situation in common metals,
where the polarization of the Fermi surface is usually small
�g�BH /�F�1 �g�2 is the spectroscopic Lande factor for
electrons in graphene and �B is Bohr magneton� since
g�BH��F�104 K.

When spin splitting in graphene is induced by the prox-
imity effect in graphene-magnet heterostructure �GMH�, a
controlled pattern of spin polarization could be obtained by
writing an appropriate domain structure in the magnetic
layer. This could open a door to configurable graphene-based
devices allowing manipulation with spin polarization of elec-
tric currents. The simplest such pattern is a single DW sepa-
rating two regions with opposite spin polarizations shown in
Fig. 2. Charge transport through such a DW is coupled to
spin polarization and depends on a number of parameters
such as the strength of the effective Zeeman magnetic field,

the DW width, and the overall charge-carrier concentration.
In certain regimes of slow passage, electronic spins follow
the magnetization in the DW, which would therefore act as a
spin flipper. Such device has been established as a funda-
mental basic element in experiments with spin-polarized
neutron currents, which demonstrated Berry phase and spin-
dependent quantum interference.39

Here we consider charge transport in graphene in the pres-
ence of a Zeeman magnetic field and ballistic carrier passage
through a boundary between two regions with different field
orientations, as a function of the Fermi energy, which is de-
termined by the gate potential and the strength of the mag-
netic field. The latter might be associated with a DW in the
magnetic layer of graphene-magnet heterostructure and pre-
sents a basic element for spintronic applications. We calcu-
late electron transmission with and without spin flip through
thick and thin �compared to the de Broglie wavelength �dB�
DW in graphene and the corresponding partial conductances,
G	
, �	 ,
�= �↑ ,↓�.

II. EFFECTIVE HAMILTONIAN AND THE EFFECT OF
PARALLEL MAGNETIC FIELD

In this section we review the low-energy Hamiltonian de-
scribing electrons in graphene in the presence of Zeeman
field. Unique electronic structure of graphene provides a use-
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FIG. 2. �Color online� Two regimes of spin-polarized electron
transport through a domain wall between the regions with opposite
spin polarizations in magnetized graphene. �a� Spin carriers passing
through narrow ��10 nm� domain wall maintain their polarization
while the passage with the spin flip is blocked. �b� Transport
through thick ��100 nm� domain wall allows electron’s magnetic
moment to follow the magnetic field direction.
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ful playground for studies of �2+1�-dimensional �space
+time� quantum electrodynamics. The crossing of the energy
bands associated with two different sublattices A and B of
the graphene’s honeycomb crystal lattice results in the en-
ergy spectrum of electron and hole quasiparticles, which is
linear in momentum �k �see Fig. 1�a��, �k�=vF�k, where
vF	106 m /s is the Fermi velocity. This has been observed
experimentally in transport measurements2,3 and in angle-
resolved photoemission.11 A gapless linear 2D spectrum of
electron and hole quasiparticles belonging to two sublattices
implies that charge carriers in graphene can be formally de-
scribed as two-dimensional relativistic chiral fermions with
spin and with pseudospin accounting for the two-sublattice
band structure. A straightforward consequence is the conser-
vation of the pseudospin chirality, defined as the pseudospin
projection on the momentum, p ·�. The orbital motion
in magnetotransport and QHE experiments can be described
by the “truncated” 2D Dirac equation for massless
fermions,2,3,16


p +
e

c
A����� = ����, �1�

where �i= ��x ,�y�T are Pauli matrices acting in the pseu-
dospin space. They account for the two-sublattice nature of
graphene’s honeycomb lattice and the resulting composite
structure of the dispersion cone around each of the Fermi
points. ��� is a rank two spinor wave function and p is the
2D momentum operator.40–44

Equation �1� assumes degeneracy with respect to spin and
valley indices, which are usually taken into account simply
by multiplying the number of states by four. Spin degeneracy
is usually justified by the fact that typical Zeeman electronic
level splitting induced by the laboratory magnetic field is
indeed very small. When external magnetic field is applied to
graphene, its parallel component acts only on the spin degree
of freedom, inducing Zeeman splitting, while the perpen-
dicular component couples both to spin and to the orbital
motion as described by Eq. �1�, producing quantum Landau
levels. When magnetic field is applied parallel to the plane of
graphene, orbital motion and Landau quantization are irrel-
evant and it is the lifting of spin and valley degeneracies that
becomes important.45,46 The action of the parallel field is
equivalent to band splitting by the “exchange field” arising
from magnetic proximity effect induced by the magnetic sub-
strate in GMH. Such proximity-induced field, regardless of
its direction, does not couple to the orbital motion and is of
immediate interest for possible spintronic applications which
employ the spin degree of freedom of Dirac fermions in
graphene.

Zeeman magnetic field H splits electronic bands in
graphene according to spin. Chemical potential for one spin
polarization is increased by the amount equal to Zeeman
energy g�BH /2 while for the other it is decreased by the
same amount, Fig. 1�b�. As a result, there appear identical
circular Fermi surfaces, of particle type for spin antiparallel
to magnetic field and of hole type for spin parallel to it. The
radius of these Fermi surfaces, �kH, is proportional to the
magnetic field,

�kH = g�BH/�2vF� . �2�

The difference in filling of the two spin states results in small
Pauli paramagnetic moment and total charge-carrier density
at the Fermi level,

n�H� = �g�BH�2/�2��2vF
2� . �3�

In order to achieve non-negligible carrier densities, magnetic
fields yielding Zeeman splitting of hundreds of Kelvins or
more are required. While such fields cannot be produced by
solenoids, they might be induced by magnetic proximity ef-
fect in graphene-magnet heterostructures.37,38

Recall that the Fermi surface of undoped graphene con-
tains two nonequivalent points, K and K�, giving rise to a
valley degeneracy. At each of these points the wave function
is a pseudospinor in the two-dimensional space of A and B
sublattices and a spinor in the spin angular momentum space.
We use Pauli matrices �x,y,z and �x,y,z to refer to the sublattice
pseudospin and the “usual” spin, respectively. With these no-
tations, the effective Hamiltonian takes the form

Ĥ = vFp · � + B�x�� , �4�

where B=g�BH�x� /2 and spatially varying magnetic field
H�x� couples to spin degree of freedom. As it was discussed
above, we envision that this magnetic field can be induced by
the proximity effect in graphene due to the superexchange
interaction with the magnetic layer contacting the graphene
sheet.37,38 As a consequence, magnetic field considered in
Eq. �4�, irrespective of its direction, acts only on spin degree
of freedom of quasiparticles in graphene. For the case of
spatially homogeneous magnetization of graphene-magnet
heterostructure, the spin component directed along the effec-
tive field is conserved. Hence, spin-polarized carriers main-
tain their polarization. Such structure can be used to trans-
port spin-polarized currents. The basic element allowing
manipulation of spin-polarized currents in graphene-magnet
heterostructures is the region where magnetic field changes
its direction, namely, the DW. In the next section we analyze
transmission of the spin-polarized carriers through the do-
main wall.

III. PASSAGE OF SPIN-POLARIZED DIRAC FERMIONS
THROUGH A DOMAIN WALL

In order to understand transport properties of an inhomo-
geneously magnetized graphene heterostructure, we analyze
ballistic passage of spin-polarized carrier through the lateral
domain wall separating two regions of opposite magnetiza-
tion, Fig. 2. The transmission through the domain wall is
characterized by the amplitudes of spin-flip and nonspin-flip
processes. These amplitudes determine spin-polarized trans-
port through DW and their knowledge is important for de-
vising spintronics applications of the considered heterostruc-
ture.

For definiteness, let us consider electrons in the presence
of the magnetic field B pointing along and opposite to z axis
on different sides of the domain wall located in the stripe
region x0�x�x0+L. We further assume it to rotate uni-
formly within the DW �see Fig. 2�. Specifically, we represent
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the magnetic field B=Bn�x� with the unit vector

n�x� = �− nz x� x0

− nz cos ��x� + ny sin ��x� x0� x� x0 + L

nz x� x0 + L


�5�

describing its rotation within the DW. In Eq. �5�, ni stands
for the unit vector pointing in the ith direction, and the rota-
tion angle is taken to be linear in the lateral coordinate x,
��x�=��x−x0� /L. We notice that our conclusions do not de-
pend on the orientation of the plane containing the magnetic
field vector. This follows from the fact that the orbital and
spin parts of the Hamiltonian, Eq. �4�, are decoupled.

We begin with the qualitative discussion of the carrier
passage in the case of normal incidence. Due to the conser-
vation of �pseudospin� chirality in the Klein tunneling
phenomenon2 the backscattering is absent in this case. The
carrier passes the DW during the passage time tP=L /vF,
where L is the characteristic width of the DW. Within the
DW region the spin of the carrier experiences the time-
dependent torque and undergoes the Larmor precession. The
parameter controlling the spin dynamics is the ratio of the
passage time to the spin precession period,

� = 2BL/�vF. �6�

For thin DW, ��1, and in the absence of the intervalley
scattering, �dB /L�1, where �dB is the carrier’s de Broglie
wavelength, the spin-flip probability is small, corresponding
to a small precession angle. In the opposite limit of thick
DW, ��1, the spin follows the varying Zeeman field inside
the DW adiabatically and the nonspin-flip probability is
small. As a result, the carrier preserves its alignment with the
field and reverses its polarization upon passing through the
DW. Although the scattering for the arbitrary angle is com-
plicated by the finite backscattering amplitude, the basic
physical picture presented above still holds and allows us to
construct a scattering theory in the general case.

To solve the scattering problem we construct the scatter-
ing state,

��x,z� =��	i �x,z� + r		��	�
r �x,z� , x� x0

t		��	�
t �x,z� , x� x0 + L

� , �7�

where �	
s �x ,z� with s= i ,r , t denotes incoming, reflected, and

transmitted waves, and the subscript 	=� refers to the
spin-up �down� polarizations, respectively. Due to the trans-
lational symmetry in the z direction, the scattering state in
Eq. �7� is the eigenstate of the z component of the momen-
tum and can be labeled by its eigenvalue pz, making our
problem effectively one dimensional. We present wave func-
tions entering Eq. �7� in the following form

�	
s �x,z� = eipzz+ipx

s�	,pz�x�	,pz

s
� �	, s = i,r,l . �8�

Here �	 is the spin wave function, i.e., the spinor satisfying
�z�	=	�	, and �	,pz

s is a pseudospinor in the sublattice
space.

Capitalizing on the particle-hole symmetry of the prob-
lem, in what follows we only consider the case of incident
quasiparticles with E�0. The incoming wave is an eigen-
state of Hamiltonian �4� for x�x0. At a fixed energy, the
majority �spin-down� and minority �spin-up� carriers have
Fermi momenta p+= �E+B� /vF and p−= ��E� /vF, respec-
tively. Here �E=E−B can be both positive and negative, the
latter case corresponds to the holelike quasiparticles. The
kinematic constraint for the incoming spin-up �down� elec-
trons reads �pz��p�. Introducing the notation

u��pz� = ��1 + pz/p��/2, �9a�

v��pz� = ��1 − pz/p��/2 �9b�

for the pseudospinor �pz
= �cos ��pz� /2,sin ��pz� /2�T form-

ing angle ��pz� with z axis, we write the pseudospinor of the
incoming electron as

�−,pz

i = �u+�pz�
v+�pz�

� ,

�+,pz

i = ��E�u−�pz�
v−�pz�

� + �−�E�v−�pz�
u−�pz�

� , �10a�

where ��E and �−�E are step functions distinguishing cases of
particlelike and holelike carriers, respectively. In a similar
fashion we write for the reflected wave

�+,pz

r = ��E� u−�pz�
− v−�pz�

� + �−�E� v−
��pz�

− u−
��pz�

� ,

�−,pz

r = ��E� u+�pz�
− v+�pz�

� + �−�E� u+
��pz�

− v+
��pz�

� . �10b�

The square roots in Eq. �9� are defined as having positive
imaginary part for negative argument. This choice, together
with the sign and conjugation convention in Eq. �10b�, en-
sures that for p−� �pz��p+ the wave function of the minority
�spin-up� carriers decays exponentially away from the DW,
namely, it is an evanescent wave. The transmitted waves are
given by

�+,pz

t = �u+�pz�
v+�pz�

� ,

�−,pz

t = ��E�u−�pz�
v−�pz�

� + �−�E�v−
��pz�

u−
��pz�

� . �10c�

Equations �10� when substituted in Eq. �8� give the explicit
expressions for the incoming, reflected, and transmitted
spinors in the most general scattering state of Eq. �7�.

In order to find the transmission and reflection ampli-

tudes, the transfer matrix T̂ matching the wave function at
the two boundaries of the DW

��x0� = T̂��x0 + L� �11�

has to be found. To this end, we solve the Dirac equation
inside the wall,
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�− ivF�x�x + B�z cos ��x� − B�y sin ��x��� = �E − vFpz�z�� ,

�12�

with the initial condition specifying the wave function at x
=x0. The Eq. �12� is formally equivalent to Rabi problem of
spin coupled to the oscillating magnetic field47 with coordi-
nate x playing the role of the time. The field is turned on at
the “time” x=x0 and turned off at time x=x0+L. Exploiting
this analogy we solve Eq. �12� by the transformation to the
rotating reference frame,

��x� = exp�− i��x�
�x

2
��̃�x� �13�

such that the field seen by the transformed spin is stationary.
Substitution of Eq. �13� into Eq. �12� gives


− ivF�x�x −
�vF

2L
�x�x + B�z��̃�x� = �E − vFpz�z��̃�x� .

�14�

We notice that static magnetic field now appears effectively
as an operator in the pseudospin space. We can rewrite Eq.
�14� in the form

i���̃ =
�

2
Â�̃��� , �15�

where �= �x−x0� /L. The four-by-four matrix on the right-
hand side of Eq. �15� reads

Â = − �x + ��x�z − ��x� − z�z� �16�

with dimensionless energies =E /B and z=vFpz /B and the
parameter � defined in Eq. �6�. The formal solution of Eq.
�15� is

�̃�x0 + L� = exp
− i
�

2
Â��̃�x0� . �17�

Combining Eqs. �11�, �13�, and �17� we obtain

T̂ = exp
i
�

2
Â�i�x. �18�

The exponentiation in Eq. �18� can be performed explicitly
as follows:

exp
i
�

2
Â� = �

�

P̂� � �cos
�
2

�c� ��

− iÂ

sin
�
2

�c� ��
�c� �

� , �19�

where notations

c = 1 + �2 + �2�2 − z
2� ,

� = 2��2�1 + �2� − z
2 �20�

have been introduced and

P̂� =
� � M̂

2�
�21�

are projection operators onto the subspaces of the eigenval-
ues �� of the matrix

M̂ = Â2 −
1

4
Tr Â2,

1

4
Tr Â2 = c . �22�

Equations �18�, �19�, �21�, and �22� give the transfer matrix T̂
introduced in Eq. �11� as a third degree polynomial in matrix

Â. For an arbitrary angle of incidence the transmission and
reflection coefficients are found by imposing the matching
condition in Eq. �11� on the scattering state of Eq. �7�. The
resulting system of four linear equations determining four
coefficients r		�, t		� can be easily solved. For the incoming
�spin-up� minority carriers the probabilities of the passage
with and without spin flip are given by

T−+ = �t−+�2,

T++ = �t++�2�1 − �pz/p+�2

1 − �pz/p−�2 . �23�

Although the solution of linear matching equations is
straightforward, the final expressions are somewhat cumber-
some and below we present the results graphically. The
transmission probabilities for the incoming minority �spin-
up� and majority �spin-down� species, respectively, are
shown in Figs. 3 and 4. In both figures, panels �b� and �d�
present the transmission with the spin flip, and panels �a� and
�c� the transmission without the spin flip. Panels in the upper
row show the case of the thin DW, L=5, ��1, and panels
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FIG. 3. Transmission probabilities for the incoming minority
�spin-up� carriers for two different DW thicknesses, L. The prob-
ability is shown on a linear gray scale from 0 �dark� to 1 �white�.
The parameters used are B=0.05 and vF=1. Panels present the
probability of transmission �a� without the spin flip, L=5; �b� with
the spin flip, L=5; �c� without the spin flip, L=50; �d� with the spin
flip, L=50. The parameter � defined by Eq. �6� is �=0.16 for the
thin DW, ��a� and �b��, and �=1.6 for the thick DW, ��c� and �d��.
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in the lower row the case of the thick DW, L=50, ��1.
Unlike the case of the normal incidence, for the incidence

at an arbitrary angle the chirality is not conserved, leading to
a finite backscattering probability. Hence, particles passing
the DW experience spin-dependent reflection and refraction.
The Snell’s law relating the angles of propagation of the
incoming and the outgoing particles to the refraction indices
of the two media reads

n��x� x0�
n��x� x0 + L�

=
sin ���x� x0 + L�

sin ���x� x0�
. �24�

The conservation of the z component of the momentum gives
for the ratio of the refractive indexes,

n��x� x0�
n��x� x0 + L�

=
E� B

E� B
. �25�

The behavior of this ratio for two spin polarizations as a
function of energy is shown in Fig. 5.

It follows from Eq. �25� that the DW has a different effect
on the spin minority and the spin majority carriers. The mi-
nority carriers passing the DW experience the increase in the

optical density while the majority carriers experience the de-
crease in it. An interesting regime occurs when the energy of
incoming particles E�B. In this case the ratio in Eq. �25�
becomes negative and results in the spin-dependent Veselago
lens effect, similar to that discussed in Ref. 18.

The above spin-optics arguments are useful in understand-
ing the results shown in Figs. 3 and 4. For the incidence at a
shallow angle the probability of nonspin-flip passage is sup-
pressed as particle trajectory even in the narrow DW be-
comes long. The difference between the incoming minority
and majority species in Figs. 3�a�, 3�b�, 4�a�, and 4�b� results
from the different refraction coefficients for the two species
imposed by the kinematical constraints. The refraction coef-
ficient ratio for minority carriers is n+�1 and their trajecto-
ries bend so that the path inside the DW shortens. For the
majority carriers, on the other hand, n−�1, and the trajectory
bending leads to the longer path inside the DW. Therefore,
the effect of magnetic field inside the DW and the probability
of transition without the spin flip are enhanced for the mi-
nority carriers, Fig. 3�a�, and suppressed for the majority
carriers, Fig. 4�a�.

The Fabry-Pérot pattern of transmission seen in Figs. 3�d�
and 4�d� is a consequence of an interference of multiple re-
flections inside the thick DW.

Normal incidence

Our results are substantially simplified in the case of nor-
mal incidence, when the momentum component pz vanishes.
With z=0 the Eq. �19� reduces to

exp
i
�

2
Â� = �

�
�
1

2
�
�x�x − ��z

2�1 + �2 �cos
�

2
��1 + �2� ��

+
i

2
�x − ��z�x

�1 + �2
� �x�sin

�

2
��1 + �2� ��� .

�26�

The last equation gives for the transfer matrix

T̂ = i�x cos
�

2
�1 + �2 −

1 + i��x�y

�1 + �2
sin
�

2
�1 + �2, �27�

where the overall phase factor ei��/2 has been omitted. In
the present section we focus on the transmission probabili-
ties. It has to be stressed however that the phase of the tran-
sition amplitude is also of interest, especially if the magne-
tization vector B completes one or more rotation circles
inside the DW. Under the conditions of adiabatic spin trans-
fer, this phase is geometric,48 see the discussion of geometric
Berry phase for the DW passage in the Appendix.

In the case of normal incidence the chirality is a good

quantum number, �T̂ ,�x�−=0. This ensures the absence of
backscattering �Klein tunneling phenomenon�. For the in-
coming particles with E�0 we have �x=+1. Therefore, dy-
namics in the case of normal incidence occurs in the spin
sector only. The particle traveling inside the DW experiences
the action of magnetic field rotating with the frequency �
=�vF /L. The probability of passing the DW without the spin
flip is given by the diagonal element of the transfer matrix

px

p
z

(a)

0.2 0.4 0.6 0.8
−2

−1

0

1

2

px

p
z

(b)

0.2 0.4 0.6 0.8
−2

−1

0

1

2

px

p
z

(c)

0.2 0.4 0.6 0.8
−2

−1

0

1

2

px

p
z

(d)

0.2 0.4 0.6 0.8
−2

−1

0

1

2

FIG. 4. Transmission probabilities for the incoming majority
�spin-down� carriers for the set of parameters used in Fig. 3.
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FIG. 5. �Color online� Ratio of the refraction indices on the two
sides of DW for the majority �−� and the minority �+� incident
particles.
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T++ = 
 �
 tP

�2

sin2� tP/2� . �28�

Here,  tP=��1+�2 is the rotation angle accumulated
by the spin precessing at the Rabi frequency,  
=���vF /L�2+ �2B�2, during the passage time tP=L /vF. It fol-
lows from Eq. �28� that the polarization of the impinging
particle is not influenced by the DW in the case of the thin
wall, ��1. In the opposite limit of the thick DW, ��1,
electron spin adjusts adiabatically following the direction of
the magnetic field slowly varying inside the DW.

Our results for the case of normal incidence are in agree-
ment with Ref. 49, where neutron polarization change in the
course of the passage through the ferromagnetic domain wall
is analyzed. We note that in the nonrelativistic case49 the
absence of backscattering is an approximation, which is valid
for neutrons with high enough energy. This approximation
fails for low-energy particles, as inside the DW particles ex-
perience a force which results from the magnetic field gradi-
ent inside the DW. In the present, relativistic, case however
the carriers with arbitrarily low-energy cannot be reflected by
the DW because of the chirality conservation. Therefore, in
the relativistic case the thick domain wall is 100% efficient
in flipping spins of particles incident at 90°.

Until now we have discussed the case of the DW with
well-defined abrupt boundaries, where the region of mag-
netic field variation is limited to a finite interval �see Eq. �5��.
While in most cases this is a reasonable description �in par-
ticular, for patterned structures�, in some experimental real-
izations of spintronic devices the boundaries of the DW may
be smooth and not well defined. To clarify the significance of
the above distinction in the DW structure we consider the
DW with the magnetic field direction n=−nz cos ��x�
+ny sin ��x� with the angle ��x� following the Rosen-Zener
profile, �x��x�= �� /L� /cosh��x /L�. In this case the nonspin-
flip transmission amplitude can be found exactly,50,51

T++ = sech2
��
2
� . �29�

It follows from comparison of Eqs. �28� and �29� that the
DW with smooth boundaries polarizes the incoming carriers
even more efficiently than the DW with abrupt boundaries.
Hence, we argue that both for thin DW, ��1, and thick DW,
��1, cases our conclusions are valid for the DW of an
arbitrary shape.

IV. CONDUCTANCE IN THE BALLISTIC
TRANSPORT REGIME

In the high-quality graphene devices the mean-free path is
comparable to the characteristic sample size. Under such
conditions the transport through DW structures is ballistic.
The conductance can be obtained within the Landauer ap-
proach. In spintronic devices we consider the spin-selective
transport, as they manipulate the currents of the electrons of
different polarizations independently. Two-terminal conduc-
tance is given by the sum of the transmission probabilities
over all active conductance channels. Both majority- and
minority-spin channels give rise to currents of carriers of

both polarizations. We introduce the spin-dependent conduc-
tance G	
 to denote the contribution of incoming carriers
with spin 
 in the source channels to the current of carriers
with spin 	 in the drain channels,

G	
 =
2e2

h
W�

−k	

+k	 dpz

2�
T	
�pz� , �30�

where we have taken into account the twofold valley degen-
eracy. The above definition is meaningful due to the conser-
vation of z component of spin away from the DW.

Partial conductances G	
 / �2e2W /h� obtained from Eq.
�30� are plotted in Fig. 6 as a function of the chemical po-
tential for two thicknesses of the DW, ��a� and �c�� L=5 and
��b� and �d�� L=50. The partial conductance for the positive
spin polarization in the source, 
=+, is shown in the upper
row, Figs. 6�a� and 6�b�. That for 
=− is shown in the bot-
tom row, Figs. 6�c� and 6�d�. Solid lines corresponds to the
spin-flip processes, namely, 	�
 and dashed lines represent
the diagonal conductances with 	=
.

The common feature of the curves shown in Fig. 6 is the
conductance growth when the chemical potential � exceeds
half of the spin splitting, B. This is clearly due to the increase
in the number of conducting channels. Second, the increased
thickness of the DW stimulates spin-flip processes. This is a
consequence of the adiabatic transfer of the spin inside the
thick DW discussed in Sec. IV. In addition, the only conduc-
tance not vanishing at the special point �=B in the case of
the thick DW is G+−, see Fig. 6�d�, dashed line. This is easily
understood from the following consideration. For the thin
DW the spin is approximately conserved. For that reason, the
spin minority �majority� carriers have vanishingly small
number of incoming �outgoing� channels at ��B, leading to
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FIG. 6. �Color online� The partial conductances G	
 / �2e2W /h�
per unit sample width, W, as a function of the chemical potential, �,
for DW of two different lengths L and spin-up �
=+� and spin-
down �
=−� incoming carriers, B=0.05. �a� L=5, 
=+, �b� L=50,

=+, �c� L=5, 
=−, and �d� L=50, 
=−. In all panels the off-
diagonal conductances with 	�
 corresponding to a spin-flip pro-
cesses are shown by dashed �blue� line, the diagonal conductances
are shown by solid �red� line. The thin �black� line shows the con-
ductance in the absence of the DW per one spin and one valley as a
reference line.
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a small conductance. In the case of the thick DW the spin
majority carrier can remain spin majority carrier by adiabati-
cally adjusting �reversing� its spin polarization. This yields
finite conductance at ��B. The specifics of the point �=B
described above makes heterostructures with the Dirac spec-
trum of quasiparticles promising candidates for spin manipu-
lation of the currents in spintronics.

V. SUMMARY AND DISCUSSION

In the present paper we have analyzed the passage of
spin-polarized Dirac charge carriers through the DW in
graphene-magnet heterostructure. We have calculated the
transmission and the reflection probabilities as a function of
the energy of the incoming particles, which is determined by
the average chemical potential � in the graphene sample, for
the DW of different thickness. The knowledge of the trans-
mission amplitudes has allowed us to calculate the conduc-
tances of different spin channels in two-terminal geometry.
The spin-polarized transport depends crucially on the thick-
ness of the DW. Below we discuss the main features of our
results and their potential applications in graphene-based
spintronic elements.

We have considered two limiting cases of thin and thick
DW. In the case of thin DW the spin dynamics inside the
DW only occurs for shallow incidence angles. Aside from
this special case, the spin is approximately conserved and the
transmission is governed entirely by the kinematics of the
relativistic Dirac quasiparticles in graphene, establishing di-
rect connection with the problem of Klein tunneling and chi-
ral dynamics in 2D quantum electrodynamics. A similar
problem has recently been considered in the context of p-n
junctions in graphene devices.18,52,53 In our case the DW pre-
sents a p-n junction for the majority and a n-p junction for
the minority carriers. The nonspin-flip transmission for E
�B is allowed through the particle-hole transmutation—the
Klein tunneling phenomenon.

The transmission properties of the thin DW can be nicely
understood in the context of spin optics.54 As it follows from
the ratios of the refraction indices in Fig. 5, the trajectories of
the minority �spin-up� carriers bend inward while those of
the majority carriers bend outward. This difference is most
pronounced near E=B, where the refraction index changes in
sign, becoming negative for both spin polarizations at E
�B. Near this point the transmission of the majority carriers
through narrow DW vanishes and the corresponding refrac-
tion index diverges. The index of refraction for the minority
carriers, on the other hand, is close to 0, as they can only
pass through the DW near the forward direction. Hence,
there is a giant birefringence of carriers with different spin
polarizations, which could be employed in spin-selective
transport devices. At E�B, the spin majority carriers un-
dergo the total internal reflection due to the kinematic con-
straint, which occurs in a wide angular interval correspond-
ing to dark areas in Fig. 4�a�. In the regime close to the total
reflection the length of the particle’s trajectory even inside a
narrow DW becomes increasingly large. Hence, the probabil-
ity of the spin-flip transmission becomes significant, see Fig.
4�b�. In this regime the angular aperture of the spin minority

carriers becomes small and thin DW is an efficient spin po-
larizer.

In the case of the thick DW the passage is governed by
the spin dynamics inside the domain wall and the conduc-
tance is controlled by the adiabatic nature of the spin trans-
port. Independent of their energy, both majority and minority
carriers simply flip their spins, remaining in their respective
channels, so that thick DW acts as a spin flipper for spin-
polarized currents. As in the case of the thin DW considered
above, the effect of the DW on the transport is most pro-
nounced when the chemical potential is tuned to near the
spin splitting, ��B. In this case the Fermi surface of the
minority-spin carriers in the region x�x0+L shrinks to a
point and the current is carried by the majority species. In
contrast to the case of the thin DW, the majority carriers in
the region x�x0 are transformed to the majority carriers in
the region x�x0+L by adiabatically adjusting their spin.
This gives finite conductance for ��B, which is off-
diagonal in spin, see Fig. 6�d�. Thus, a spin-transistor action
could be achieved by virtue of adjusting the chemical poten-
tial in a gated device with magnetic layer coupled to the
graphene layer.

Finally, manipulating the spin polarization of electrons in
graphene by means of Zeeman band splitting such as dis-
cussed in this paper depends crucially on the strength of the
polarizing magnetic field. In the case of the passage through
a DW, this strength also determines the relevant physical
thickness distinguishing the cases of thick and thin DW, Eq.
�6�. In the case of the laboratory magnetic field of HB�1T
created by a solenoid, the Zeeman band splitting is B
�0.1 meV. The condition ��1 requires extremely thick
DW, L��20 �m. Moreover, such field results in a negli-
gible spin splitting, which corresponds to a temperature of
only �1 K and negligible charge-carrier density, nH
�105 cm−2, Eq. �3�.

However in the case of a spin-dependent band splitting
induced by the magnetic proximity effect in graphene-
magnet heterostructure the corresponding effective spin-
polarizing field could be expected to be on the order of hun-
dreds or even a thousand Kelvins. Physically, it could be
estimated from the characteristic ordering temperature of the
magnetic layer and corresponds to 10–100 meV spin-
dependent band splitting. Then, the effective exchange field
could be as large as �103 T, resulting in nH�1011 cm−2

and L��200 nm.
We now compare the characteristic length L� with the

mean-free path � of carriers in graphene under the above
conditions using the experimental data of Ref. 55. For not
very small densities �away from the Dirac point�, n�nc
��min / �e�s��1011 cm−2, where the mobility � saturates at
�=�s�3�104 cm2 /V /s, transport properties can be de-
scribed semiclassically. The longitudinal conductivity �
=�en is given by the Einstein relation �=e2D! with the
diffusion coefficient D=vF� /2 and the density of states at
the Fermi level, !�F�=2F / ���2vF

2�. Using the relation
F�n�=vF���n we obtain ��n�= ��� /e���n. With the den-
sity nH�1011 cm−2 we get an estimate ��nH��1 �m for
the case of the magnetic proximity effect in graphene-magnet
heterostructure. As ��L� we conclude that the passage
through the DW is ballistic. We note that with Fermi momen-
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tum kF=��n the dimensionless conductivity is � / �e2 /h�
=2kF��102 allowing us to treat graphene in a Boltzmann
approach.

Effective magnetic fields needed to satisfy the condition
of ballistic passage is rather strong. Is it reasonable to expect
such large magnetic proximity effects in graphene-magnet
heterostructures? Theoretical estimates for the graphene
layer in contact with EuO, one of the few insulating Heisen-
berg ferromagnets, predict band splitting of �5 meV.38 This
agrees well with the Curie temperature TC=69.3 K for this
material. For room-temperature magnetic materials, the split-
ting could be expected to be proportionally higher. For ex-
ample, one can envision using NiO �111� film in contact with
graphene. NiO is an antiferromagnet with the Néel tempera-
ture TN�500 K, where ferromagnetically aligned Ni layers
alternate in the �111� direction. In the artificial �111� nano-
layer CoO/NiO and NiO /Fe3O4 superlattices the proximity-
effect induced increases the ordering temperature by hun-
dreds of Kelvins have been observed.56 It does not seem
unreasonable to extrapolate this effect to graphene-magnet
heterostructures. Finally, the technology of manufacturing
graphene-based heterostructures is developing quite rapidly.
The growth of the atomically smooth epitaxial MgO film on
graphene has recently been reported,57 as were nonvolatile
memory devices obtained by covering graphene with a ferro-
electric layer.58 Therefore, manufacturing graphene-magnet
heterostructures in order to achieve manipulation with spin-
polarized currents such as considered in this paper looks rea-
sonable and promising approach to be attempted experimen-
tally.
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APPENDIX: GEOMETRICAL PHASE OF CARRIERS
PASSING THE DW

The purpose of this appendix is to illustrate the general
concept of geometrical phases48 for the spin carriers passing
the DW described by the Hamiltonian of Eq. �4�. We con-
sider the normal-incidence case where the dynamics occurs
in spin sector only. Here we are interested in the limit of
adiabatic spin transfer realized in sufficiently thick DW. The
direction of the magnetic field is a parameter of the system
changing slowly inside the DW,

B = B�x� + Bxnx, �A1�

where B�x�=Bn�x� and

n�x� = �nz x� x0

nz cos ��x� − ny sin ��x� x0� x� x0 + L

nz x� x0 + L
 .

�A2�

In the last equation we assume ��x�=���x−x0� /L. For ��
=2�, the magnetic field defined by Eqs. �A1� and �A2� act-

ing on a particle passing the DW completes a circle, sweep-
ing the conical surface in B space. It is identical for x�x0
and x�x0+L. Therefore, the wave function adiabatically fol-
lowing the instantaneous eigenstate can only acquire the
phase factor after the DW passage,

��x0 + L� = ei"dei#��x0� . �A3�

The first factor represents the dynamical phase due to the
spin precession in magnetic field and the second factor is
geometric Berry phase, independent of the DW structure in
the adiabatic limit. Below we calculate the geometrical phase
explicitly for the specific model of DW specified by Eqs.
�A1� and �A2�, and compare it with the known theoretical
results.

We calculate transmission amplitudes t� for two spinors
�+�−� which are exact eigenstates of the Hamiltonian for x
�x0. The spin in these states is polarized parallel �antiparal-
lel� to the magnetic field outside the DW, i.e.,

��������� = �
��x,0,��
��2 + �x

2
. �A4�

In the last equation we use the notation

�x = 2BxL/�vF �A5�

similar to Eq. �6�. The transmission amplitudes are diagonal

elements of the inverse transfer matrix T̂ defined in Eq. �11�,

t� = ����T̂−1���� . �A6�

The unitary transfer matrix T̂ is found following the same
approach as in Sec. IV

T̂ = Û exp�i��x�exp�− iEL/vF� ,

Û = cos
�

2
��2 + ��x − ��/��2

+ i
��x − ��/���x + ��z

��2 + ��x − ��/��2
sin
�

2
��2 + ��x − ��/��2.

�A7�

Substituting Eqs. �A7� and �A4� in Eq. �A6� we obtain

t� = exp��i
�

2
��2 + �x

2 + i
EL

vF
�

�exp��i�
1 −
���x

2���2 + �x
2�� , �A8�

where we made an expansion

��2 + ��x − ��/��2 � ��2 + �x
2 −

���x

���2 + �x
2

�A9�

valid in the adiabatic limit, � , �x�1. Comparing Eq. �A8�
with Eq. �A3� we identify the first factor as corresponding to
the dynamical phase
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"d =
E� �B2 + Bx

2

L/vF
�A10�

due to the orbital motion and precession in the magnetic
field, and the second factor as the geometrical Berry phase,

# = ���1 − cos �B� , �A11�

where �B is an opening angle of the cone swept by the mag-
netic field in the DW. Equivalently, the phase # is half of the

solid angle subtended by the closed contour in the B space at
the degeneracy point B=0, in agreement with the general
theory. We notice that the geometrical phase is of opposite
sign for two spin orientations ��. The resulting deviation of
the precession angle from the one expected from Eq. �A10�
has been observed experimentally for neutrons passing the
region of the spiral magnetic field.39 We argue that similar
phenomenon could be observed in graphene samples for car-
riers passing the DW with the magnetic field rotation angle,
��=2�.
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