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Fermi-Luttinger liquid: Spectral function of interacting one-dimensional fermions
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We evaluate the spectral function of interacting fermions in one dimension. Contrary to the Tomonaga-
Luttinger model, our treatment accounts for the nonlinearity of the free fermion spectrum. In a striking
departure from the Luttinger liquid theory, the spectrum nonlinearity restores the main feature of the Fermi

liquid: a Lorentzian peak in the spectral function on the particle mass shell. At the same time, the spectral
function displays a power-law singularity on the hole mass shell, similar to that in the Luttinger liquid.
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I. INTRODUCTION

One-dimensional problems play a special role in quantum
many-body theory. In many cases, the reduced dimensional-
ity affords one a deeper understanding of the role of interac-
tions in a many-body system. Recent progress in experimen-
tal techniques has also contributed to the increased attention
paid to a variety of one-dimensional (1D) fermionic and
bosonic systems. Examples include edge modes of the quan-
tum Hall liquid,1 carbon nanotubes,? cleaved edge semicon-
ductor wires,? antiferromagnetic spin chains,* and cold atoms
in 1D optical traps.’ These developments catalyze the inter-
est to the fundamental theory of interacting 1D quantum
liquids.6-1?

The traditional framework for discussing 1D systems is
provided by the exactly solvable Tomonaga-Luttinger (TL)
model.'3-15 The crucial simplification that makes the model
solvable is the linearization of the fermionic dispersion rela-
tion. It was understood early on'* that a model with a linear
spectrum is an idealized one. The goal of this paper is to
elucidate the influence of the dispersion nonlinearity on the
spectral function of 1D Fermi systems.

In the absence of interactions, the spectral function is
given by A,(€)=3(e-§,), where &, is the single-particle en-
ergy measured relative to the Fermi level (§,= p*/12m— e for
Galilean-invariant systems). According to the Fermi liquid
theory,'® weak repulsive interactions merely broaden the
peak in A,(€) to a Lorentzian,

1

Ap(€) o —Tm ——————.
o9 e-&,+il27,

(1)
The broadening originates in the finite decay rate 1/27, of
the Fermi liquid quasiparticles. The rate can be estimated
with the help of the Golden rule,
1 2
L~ - DV, @
27, €r

where v is D-dimensional density of states and V is the char-
acteristic strength of the short-range repulsive interaction.
Indeed, quasiparticle relaxation occurs via real transitions re-
sulting in the excitation of particle-hole pairs. In dimensions
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D>1 already a single pair produces a finite decay rate. The
amplitude of such process is proportional to V, hence, the
dimensionless factor (vV)? in Eq. (2). The factor f; accounts
for the corresponding phase space volume, i.e., the number
of possibilities a pair can be excited while obeying the en-
ergy and momentum conservation laws.

In one dimension the situation differs dramatically. In-
deed, the Golden rule result Eq. (2) is identically zero for
D=1. Moreover, it can be shown!” that in the framework of
the TL model,'>-!3 the self-energy vanishes on the mass shell
in all orders of the perturbation theory. In fact, the TL Green

function!”!'® assumes manifestly non-Fermi liquid form. In
the vicinity of the mass shell, |e—&| <&/, it reads
( —sgn & )1'73
Gle) x| —/——— , 3
«(€) e &+ 10 (3)

where k=p—pp and & ==*vk is the dispersion relation linear-
ized near the right (left) Fermi point +pp. The corresponding
spectral function of, say, the right-moving excitations then
takes the form (hereinafter we concentrate on the limit of
zero temperature'®)

A(e) ~ ig[(f— &Jsgn &]. (4)

2
le— &'

The exponent v, in Egs. (3) and (4) characterizes the inter-
action strength and in the lowest order is given by

1
Yo= EV(VO_ VZpF)’ (5)

where v=(27v)~! is the density of states in 1D and V/ is the
Fourier transform of a short-range interaction potential.
Unlike the Fermi-liquid Lorentzian Eq. (1), the spectral
function Eq. (4) exhibits a characteristic threshold behavior.
The edges of the spectral support coincide with the single-
particle energies &, and the spectral function displays a
power-law edge singularity on the mass shell e— §&. This
singularity is a hallmark of the Luttinger liquid®® behavior.
The particle-hole symmetry of the TL model implies that
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FIG. 1. (Color online) (a) Support of the spectral function in
(p.€) plane. The parabola represents the mass shell (e=¢,). For €
<0, the mass shell coincides with the edge of the spectral support.
For €>0, however, the mass shell (dashed lines) falls into a broad
spectral continuum. In this region, the spectral function has a peak
of a finite width, which is indicated schematically by dark gray. (b)
The low-energy region near the right Fermi point p=pp, with k

=P—DPF-

A(€)=A_i(—e€); hence, the behavior of A;(e€) in the particle
region of the spectrum €>0 is identical to that in the hole
region €<<0.

The exact solvability of the TL model relies crucially on
the assumption of strictly linear dispersion relation. The pur-
pose of this paper is to examine the effects of the dispersion
nonlinearity on the spectral function of 1D spinless fermions.
Specifically, we consider a nonlinear dispersion relation with
a positive curvature, and approximate the single-particle
spectrum in the vicinity of the right (R) and left (L) Fermi
points by

2
RIL

v = xvk+——+ ...,
2m

k=p + pr. (6)

The presence of a finite mass m breaks the particle-hole sym-
metry of the TL model and affects the spectral function in the
particle and hole regions of the spectrum in manifestly dif-
ferent ways.

The effect of the dispersion nonlinearity on the particle
region €>>0 is the most dramatic. Rather than being the edge
of the spectral support, the mass shell e= §f now falls within
a broader continuum, see Fig. 1. Consequently, the edge sin-
gularity [cf. Eq. (4)] on the mass shell disappears and gets
replaced by a peak of a finite height. Both the shape and the
width of the peak appear to be rather different from those in
D> 1, see Eqs. (1) and (2). For €>0 and |e— & <k*/2m we
found

2
Map 4k -1 =%
Ayle) = ¥ Im( R, : )
yi e-& +il2T,

L2 1 1-y;
- —klm( T) . (7)
Y \e-&+il2n

The k-dependent exponent 7, is given by
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FIG. 2. (Color online) Spectral function in the vicinity of the
particle mass shell e~ §f > (. The solid line is a plot of Eq. (7) with
,LszF+k=1.1, m=0.4, and vy, given by Eq. (8). For comparison, the
dashed line corresponding to the Luttinger liquid result Eq. (4) is
also shown.

1
Ye= 3 (Wap it 1), (8)
where
2mu
My = V(VO - Vk) |k| (9)

is the exponent governing the power-law divergence of the
dynamic structure factor.® For short-range interactions g
— 0 when k— 0, while /.szF=2y0, hence k— 0 limit of Eq.
(8) agrees with Eq. (5).

The main feature of Eq. (7) is the appearance of a finite
quasiparticle decay rate, 1/27,. To the lowest nonvanishing
order in the interaction strength it is given by

1 L (&) 37
" CLvVo(Vo= V)] o €5

~0.03.

(10)

A finite decay rate emerges only in the fourth order in the
interaction strength.?! This is because the minimal relaxation
process involves excitation of two particle-hole pairs on the
opposite branches of the spectrum. The factor (§f)4 in Eq.
(10) accounts for the corresponding phase space volume.
Note also that 1/7,%m™ and vanishes in the limit m — o
taken at a fixed v, which corresponds to the TL model.
Despite its small value compared to that in higher dimen-
sions, the very emergence of a finite quasiparticle relaxation
rate in a 1D system is a matter of fundamental significance.
One may even wonder if it puts 1D Fermi systems back in
the realm of the conventional Fermi liquid theory. Indeed, in
a broad region |e—&|<(7,%)~" around the mass shell, the
spectral function Eq. (7) is essentially a Lorentzian with the
width 1/7,<(7,7))~' <£&F, see Fig. 2. Restoring all the fac-
tors, we find for the immediate vicinity of the particle mass

shell, |e— §f| = (Tky,%)‘l,

2 2
1 k 370( m )n 127,
Ado==|—| | 57| — 33— 1
e 7T<mv) K7 (e &)+ /47 (1)

Furthermore, for not too small momenta, such that
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k 1
In|—|=-— 12
o[ £)=- 1)

(this condition allows for k<pj at y,<<1), the Lorentzian
peak (11) carries most of the particle’s spectral weight, see
Sec. VIL This is the hallmark of the Fermi liquid.'® The
Luttinger liquid behavior is found only at smaller momenta
and sufficiently far away from the mass shell, at |e— §f|
> (1)

The dispersion nonlinearity has a strong effect on the
spectral function despite being irrelevant in the renormaliza-
tion group (RG) sense: it does not affect, for example, the
power-law asymptote of the local tunneling density of states
at  low  energies. However,  momentum-resolved
measurements>* and numerical simulations’ may reveal the
structure of the quasiparticle peak near the particle mass
shell.

In the hole region of the spectrum €<<0, the positive dis-
persion curvature does not smear the TL power-law singular-
ity at the mass shell. The singularity is preserved because
due to kinematic constrains, the hole mass shell remains to
be the edge of the spectral support (see the next section). The
only effect of the spectrum nonlinearity is the renormaliza-
tion of the exponent in the hole part of the spectral function
[cf. Eq. (4)],

_}/2
Axle) Wa(gf— €, (13)

— €

where f,’f—e< k*/2m and the exponent yzk is given by Eq.
(8). Note that the exponent is invariant upon momentum in-
version k< 2pr+k and interpolates smoothly between the
two Fermi points; Eq. (13) is applicable along the entire hole
mass shell line, see Fig. 1. The quadratic dependence of the
exponent on the interaction strength originates in the or-
thogonality catastrophe phenomenon.”?> Further away from
the hole mass shell the spectral function crosses over to the
TL one, Eq. (4).

We described above the behavior of the spectral function
close to the mass shell. The regions of a finite spectral weight
are indicated by the shaded area in Fig. 1. Apart from the
hole mass shell, all edges of the spectral support are charac-
terized by the power-law behavior of the spectral function
with momentum-dependent positive exponents. This is easy
to foresee, if one notices that the states responsible for the
nonzero spectral weight far from the single-particle mass
shell must involve several excitations. The main contribu-
tions to the values of the exponents come from the con-
straints on the phase space available for such excitations. The
additional contribution to the exponents is due to the inter-
action between the excited particles and holes. This contri-
bution is first order in the interaction potential and has the
same origin as the the exponents in the x-ray singularity
phenomenon.? A detailed theory of the threshold behavior of
the spectral function is developed in Sec. V.

The rest of the paper is organized as follows: In Sec. II we
present a qualitative analysis of the problem. Perturbative
calculation of 1/ 7 to fourth order in the interaction strength
is carried out in detail in Sec. III. In Sec. IV we develop a
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strategy of summing up the leading logarithmic corrections
while accounting for a finite 1/7, and derive Eq. (7). The
behavior near the edges of the spectral support is discussed
in Sec. V. We compare our findings with the results obtained
for the exactly solvable Calogero-Sutherland model in Sec.
VI. Finally, discussion and outlook are presented in Sec. VII.

II. QUALITATIVE CONSIDERATIONS

In this section we discuss the boundaries (kinematic
edges) of the area in (p, €) plane where the spectral function
differs from zero (see Fig. 1). We also provide a simple
qualitative framework for understanding the behavior of the
spectral function near the kinematic edges and in the vicinity
of the particle mass shell.

A. Support of the spectral function

Using the Lehmann representation, we may express the
particle contribution to the spectral function as

Ae) ‘E [<AWRT0)]? 8k — Pijy+ Pjy) (€= Ejpy + Ejg)).
5

(14)

Equation (14) may be viewed as the probability of tunneling
of a particle with a given momentum py+k and energy €r
+e€ into a 1D system (to be definite, we consider the right
movers pp+k>0). The initial state of the transition in Eq.
(14) is the ground state of the system |0, and the final state
is |f), with Py, P|yy and Ejp), E|;, being the corresponding
momenta (relative to pp) and energies (relative to €p), re-
spectively.

In the absence of interactions, the only possible final state
is that with a single right-moving particle added to the
ground state. Because of the momentum conservation the
added particle must have momentum k (hereinafter the
single-particle momenta are measured relative to the respec-
tive Fermi points), |f)=¢£'|0). Equation (14) then yields A,
o O(k)Se— gf). With interactions present, states |f) may con-
tain, in addition, a number of particle-hole pairs. This allows
Ai(e) to be finite away from the single-particle mass shell
e=£F. Still, there are regions in (p,€) plane where A(€)=0
due to kinematic constrains. To simplify the analysis of these
constraints we focus on the low energies, | €| < €, and small
momenta |k| <kp.

The simplest low-energy final state, beyond the single-
particle one, is the state containing one additional particle-
hole pair. Given that the total momentum (relative to pp) is
small, the additional pair must have a small momentum too.
Therefore, it has to be located in the vicinity of either the
right or the left Fermi point. These states, see Figs. 3(a) and
3(b), have the form

= W I0), k>0, k>0, k<0 (15)

and
)= W0, k>0, k<0, ks3>0, (16)

respectively. The state (15) has energy
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FIG. 3. Final states |f), see Egs. (14) and (21), corresponding to
the boundaries of the regions where A;(€)>0. The black (white)
circles stand for extra particles (holes) added to the ground state;
the dashed line indicates the Fermi level. States (a) and (b) corre-
spond to the particle edge (e¢>0); states (c) and (d) correspond to
the hole edge.

1
Ejp-Eg=vlk +ky—k;) + %(k% +ia-k).  (17)

Taking into account the momentum conservation k;+k,—ks
=k, we find

1
Ejp— Ejgy=vk + %[k%kg— (ky+k,—k)*].  (18)

The constraints on k;, k,, and k5 in Eq. (15) guarantee that
k>0. At a given k, the smallest possible value of the exci-
tation energy E|,—E|g) is reached at k;=k,=0, k3=—k.
Similar consideration for the state (16) yields (with mo-
mentum conservation k;+k,—k;=k taken into account)

Kk kyky
E‘f)_El(» = - Uk+ kal - E + ;(kl +k2) - 7

(19)

At k<0, the lowest energy is reached at k;=k,=0, kz=—k.

An important observation following from the above
analysis is that the lowest possible excitation energy corre-
sponds to the final states with all particles at the Fermi level,
and a single hole with the largest possible absolute value of
the momentum. It is easy to check that a final state with more
than one particle-hole pair excited from the ground state still
has the lowest energy when all the available momentum is
“carried” by just a single hole. Thus the final states (15) and
(16) correspond to the kinematic boundary &, for the particle
(e>0) part of the spectral function. Combining Eqs. (18)
and (19) at k;=k,=0, we find

&=vlk| - K*12m. (20)

Although we considered here the small-k domain only, Eq.
(20) is valid for the entire region —2pp<k<2pp, see Fig. 1.
Finding the spectral edges for higher momenta |k|>2pp,
however, requires consideration of final states with more
than one particle-hole pair.
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When considering the hole part of the spectrum, we again
start with the Lehmann representation,

Ax(©) = 2 [KAYION8(k + Py — Pyy) Se+ Eppy — Ejgy).
p

21

Here Py is the momentum of the final state relative to —py.
In the absence of interactions, the matrix element in Eq. (21)
is finite only for a single hole excitation with momentum k
<0, and A, 6(-k)S(e- f). Interaction results in a finite
Ale) at e# §,’f. Indeed, consider the state [see Fig. 3(c)]

D= v W Wl10), k<0, k>0, k3<0. (22)

In zero order in interaction, the energy of this state is
L 2 2
E‘f)—E|0>:U(—k1+k2—k3)—%(kl+k2_k3). (23)

To find the spectral edge [i.e., the largest possible value of €
in Eq. (21) at a given k], we look for the lowest possible
energy of the final state E|;, in Eq. (23). Given the momen-
tum conservation, k;+k,—ky=k, this limit is reached at k;
=k, ky=ky=0 for k<0, and at k,=k, k;=k3=0 for k>0. In
other words, the lowest-energy final state (hence the highest
possible €) coincides with the energy of a single hole, see
Figs. 3(c) and 3(d). Consideration of final states with more
than one particle-hole pair excited does not change this con-
clusion. Accordingly, the kinematic boundary for the hole
part of the spectral function at small & is given by

& =—vlk| +K2m. (24)

Just as it is the case for €>0, Eq. (24) is valid for |k|
<2pp; finding the kinematic boundary for higher momenta
requires consideration of final states with more excitations.

The support of the spectral function in (p, €) plane is il-
lustrated in Fig. 1.

B. Spectral function near the edges of the support

Near the edges of support in (p,e€) plane, the spectral
function displays a power-law dependence on the distance to
the edge. The behavior of A;(€) near the hole mass shell,

Al = (& - &% 0(E - ),

is very similar to that in the TL model. The deviation of the
exponent in Eq. (25) from (-1) is quadratic in the interaction
and positive, just like it is in the TL model.

Adding an extra hole to an interacting system is accom-
panied by the creation of “soft” particle-hole pairs; we con-
sidered an example of such three-particle final state in the
previous subsection, see Eq. (22) and Fig. 3(c). Excitation of
multiple low-energy particle-hole pairs leads to the orthogo-
nality catastrophe;?? thus the correction to (=1) in the expo-
nent is positive and is proportional to yi The main differ-
ence compared with the TL model is that now the extra hole
interacts with the soft pairs residing near both Fermi points,
while in the TL model only pairs on the opposite branch of
the spectrum contribute to the singularity.

-2pr<k<0, (25)
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When the edge of the spectral support no longer coincides
with the mass shell, which is always the case for particles
(e>0) and at 0 <k <2pp also for holes (€<0), the behavior
of the spectral function near the edge is different from that
described by Eq. (25). We find that the corresponding expo-
nents are positive and finite even in the limit y,— 0.

To be definite, let us consider the particle edge e— &, at
k<0. The spectral function differs from zero in the vicinity
of the edge due to three-particle final states |[f)
:l,l/,frw,gw,fJO), see Eq. (16) and Fig. 3(b). If we replace the
matrix element in Eq. (14) by a constant, then the depen-
dence of Ay(€) on e-§& can be found by power counting,

Ak(f) x f dkldkzdk35(k1 + kz - k3 - k)

X Se—& —& + &)< (e=E)0e-&). (26)

Equation (26) corresponds to the final state |f) with two
particles close to the Fermi points +p, and a “deep” hole
with momentum (relative to —py) approaching k, see Fig.
3(b). Interaction of the two particles near the Fermi level
with the hole and with each other leads to a logarithmic
renormalization of the matrix element in Eq. (14). Similar to
the x-ray edge singularity problem,?® the renormalization oc-
curs already in the first order in the interaction strength and
leads to

Ale) o (= &) b, 2pp < k< 0. (27)

For a short-range interaction and small momenta |k|<py we
have p1; < uy, =27, and Eq. (27) simplifies to

A o (e )"0,

For a linear spectrum (TL model), the left-moving particle
and hole have the same velocity, destroying the core-hole
effect leading to Eq. (27).

The consideration of spectral function near the hole edge
e— & at k>0 is very similar, yielding

Aye) = (Ek— €)1 2Fp etk 0 <k <2pp.  (28)

The signs of two terms in the exponent here are different
from those in Eq. (27) because of the difference in the struc-
ture of the relevant final states. In the three-body sector, for
example, the final state consists of one particle and two holes
(rather than two particles and one hole as in the case of Eq.
(27) above), see Fig. 3(c). For a short-range interaction and
small momenta, Eq. (28) simplifies to

Ale) = (&~ €)',

Finally, we discuss the particle edge e— &, at k>0. A new
element here is that the relevant soft excitations reside on the
same branch of the spectrum. When € is close to &, these
excitations tend to occupy almost identical right-moving
states with k— 0. In the specific example of the final state
shown in Fig. 3(a), the momenta of two particles differ by
~(e=§)/v. This results in a suppression of the matrix ele-
ment in Eq. (14), [(f|4{70)] = £~ &. A proper modification of
Eq. (26) then leads to A.(e)o(e— é)? Accounting for the
particle-hole interaction in the final state yields
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Ay,
k>0

T~

& 0 & €
— N
(28) 29 (™

k<0

(25) (27)

FIG. 4. Dependence of the spectral function on € at a fixed k
=p—pp with k>0 (upper panel) and k<0 (lower panel). The num-
bers in brackets refer to the equations describing the corresponding
asymptotes of A(e). At large |e—&], |e—&|>k*/m (this region is
not shown in the figure) the conventional Luttinger liquid behavior
A(e)= |e+vk|75|e—vk\“/tz)"' is restored.

Ae) = (e £, 0<k<2pp. (29)

At k=2pp (i.e., p=3pp) the spectral edge & touches zero,
§2PF=O. Close to this point the exponent can be evaluated

using the conventional bosonization technique.?* It yields 3
—4y, for the exponent in agreement with Eq. (29) (indeed,
szF=2’}’o)-

The dependence of the spectral function on € at a fixed k
is sketched in Fig. 4.

C. Spectral function near the particle mass shell

For a nonlinear spectrum (6) the particle mass shell €
=§f>0 lies above the lower edge of the spectral support,
§k=§f—k2/m. Far away from the mass shell the difference
between §f and &, is not important, and at e— §f>k2/ m the
spectral function A,(€) approaches the TL form Eq. (4). In
the vicinity of the mass shell, however, A;(€) undergoes a
dramatic change. Indeed, since e= §f now lies within a
broader continuum, the quasiparticle relaxation (decay) is no
longer prohibited by the conservation laws. As a result, in a
parametrically wide region (indicated by dark gray in Fig. 1)
the quasiparticle peak in A,(€) acquires a Fermi-liquid-like
Lorentzian shape, see Eq. (11).

It is instructive to discuss the origin of a finite relaxation
rate in a 1D Fermi system. First of all, unlike in higher di-
mensions, relaxation in one dimension cannot occur via two-
particle collisions. Indeed, conservation of the momentum
and energy allows at most a permutation of the momenta of
two colliding particles.

Scattering processes that result in a redistribution of the
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pp—l—k}f-z

pF-i-k
—pF—|—k:L'

—pp+ky prtkg

FIG. 5. The initial (left panel) and the final (right panel) states of
a three-particle scattering process that leads to a quasiparticle relax-
ation in one dimension.

momenta and thus potentially lead to a finite relaxation rate
must involve at least three particles. In such three-body col-
lision three particles with momenta k, kg, and k; (relative to
+pp) in the initial state |i) end up in a final state |f) with
different momenta k', kp, and k;, see Fig. 5. For a generic
interaction®! the transition |i)— |f) has a nonvanishing am-
plitude A.

In order to estimate the relaxation rate of an extra right-
moving particle with momentum k due to three-body colli-
sions, we note that the single-particle states kp and k; in the
initial state of the transition |l) are below the Fermi level,
while all three single-particle states in the final state |f) are
above it. Applying now the Golden rule, we find

R 0
— f dk’ dicpdk; f dkdkg| AJ?
Tk 0

X A (k+kg+kp)— (k" +kp+kp)]
X OLE+E +E) - (E &+ EDL (30)

where A is the three-body collision amplitude introduced
above, and the ¢ functions express the energy and momen-
tum conservation.

In writing Eq. (30) we took into account that for k<pp
the conservation laws cannot be satisfied unless the collision
involves both the right- and the left-moving particles. Further
analysis shows that the conservation laws allow a small
(=k?/m) momentum transfer to the left-movers. Such solu-
tion can be found by iterations. To zero order in kL—ki, the
momentum conservation gives k—k’ =kp—kg. The energy re-
leased in the collision of two right-moving particles then is
§f+ §f —§f, —§R R< k?/m. This energy is transferred to the left

movers, §L §k <k*/m, which corresponds to the momen-

tum transfer kp—k; =< k?/mv <k. Accordingly, the energy and
momentum conservation restrict the range of the momenta
contributing to the integral in Eq. (30) to

k' kg,

kgl <k, ki,

k;| = k*/mv. (31)

The § functions in Eq. (30) remove the integrations over
kg and k;. With the phase space constraints (31) taken into
account, the remaining integrations then yield the estimate

/7, o | AP (32)

For a weak generic?! interaction, the nonvanishing three-
particle collision amplitude .4 appears in the second order in
the interaction strength. More careful consideration (see Sec.
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III) which accounts for the indistinguishability of the two
right-moving particles participating in the collision results in
the estimate

Ax Vy(Vo= V) < k2, (33)

cf. Eq. (10). Accordingly, the quasiparticle decay rate scales
with k as 1/7,kb.

III. PERTURBATION THEORY

In this section we evaluate the imaginary part of the self-
energy Im EP(G) perturbatively in the interaction strength.
Specifically, we focus on the near vicinity of the mass shell
€~¢, The Fermi liquid theory predicts a nonzero self-
energy already in the second order in the interaction strength,
see Eq. (2). We show below that in one dimension the
second-order contribution to Im 2,,(6) vanishes on the mass
shell, even if the curvature of the dispersion relation Eq. (6)
is taken into account. A finite quasiparticle decay rate ap-
pears only in the fourth order, and only if m~' #0.

We describe interacting spinless fermions by the Hamil-
tonian

H=>, S+ E (qu P;P‘_yq + 2qu§pfq>,
ak o

2Lq#0
(34)

where a=R, L, the dispersion relation & is given by Eq. (6),
and py=%; ,’fql,b,f is the Fourier component of the density
operator. We found it convenient to distinguish between the
interbranch and the intrabranch interaction potentials (de-
noted by U, and V,, respectively).”! However, for the sake of

brevity, we will set Uu,=Vv, in the results.

A. Second order

Evaluation of the self-energy in the second order of per-
turbation theory at |e| > |§p| parallels the corresponding cal-
culation in the problem with linear dispersion relation
(Tomonaga-Luttinger model). The only finite contribution
comes from the interbranch interaction U, and the result
reads

1 |é-&
50 = ite- )| Lin S il - )
F
(35)

with yy=vU,/2. Vanishing of the imaginary part of the self-
energy below the mass shell is due to kinematic constraints:
the phase space available for scattering process vanishes in
the limit €— §,.

For |€| <|&,| real decay processes are allowed by conser-
vation laws only if the dispersion is nonlinear. For clarity, we
consider the decay of a right-moving particle (§f >0). In the
presence of the spectrum nonlinearity Im 2, acquires an ad-
ditional contribution in the second order in the intrabranch
interaction V. This contribution comes from the scattering
processes with two particles and one hole in the final state,
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all three on the right-moving branch. The Golden-rule ex-
pression for Im 2, reads

T
~im3P(e = 2 [AVPole- & - & + &), (36)
2 ik ;
where k=p—pp and k;+k,—k;=k due to momentum conser-
vation. The Fermi statistics dictates that k;,k,>0 and k;
<0. The amplitude of the scattering process is given by

A(l) = Vk—k| - Vk—kz' (37)

The conservation laws are satisfied only in the limited energy
range, &< e< & with &=&—k*/m, see Eq. (20). We defer
the discussion of the spectral function near the lower edge of
the spectrum e=¢§, to Sec. V, and focus here on the immedi-
ate vicinity of the mass shell, |e—&| <k?/2m. In this limit
Eq. (36) yields

2
~Im3?(e) = %(gf —e0(& - e (38)

with u; defined in Eq. (9) and & given by Eq. (6). The real

part of the self-energy is given by

e~ &
Kim

2
-Re3P(e) = ﬂ(e— E)In (39)
41

According to Eq. (38), the intrabranch interaction along
with the positive curvature of the dispersion relation (1/m
>0) results in a finite Im E,(cz) at e< ff. Equation (38)
complements Eq. (35), familiar from the conventional TL
theory. Note that in both cases Im E,(cz)(e) vanishes on the
mass shell due to the phase space constraints.

For the particle branch of spectrum (e~ &f>0), the kine-
matic restrictions on the phase space are lifted in higher-
order processes. The simplest process leading to a finite self-
energy on the mass shell is the second-order process that
results in the creation of two particle-hole pairs in the final
state.

B. Fourth order

There are two kinds of the fourth-order processes. The
first one leads to a logarithmic correction to the scattering
amplitude via virtual creation of a particle-hole pair. Similar
logarithmic corrections appear in higher orders of perturba-
tion theory as well. Summation of the leading logarithmic
contributions in all orders (the corresponding procedure is
described in Sec. IV) results in a power-law behavior of the
spectral function. This is very similar to the TL model, al-
though with the exponent slightly modified due to the disper-
sion nonlinearity.

A different kind of second-order processes, leading to the
finite on-shell value of Im 2, involve creation of five quasi-
particles in the final state: a particle on the right-moving
branch, and two particle-hole pairs. Kinematic consider-
ations show that the two pairs must be excited on the oppo-
site branches of the spectrum in order to yield Im 3, # 0 on
the shell. The corresponding contribution to the self-energy
is then given by
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k

(a) (b)

FIG. 6. Second order in U contributions to the amplitude A(jg/
(a) and (b) correspond, respectively, to the first and second terms in
Eq. (42). Two more contributions (not shown in the figure) corre-
spond to the replacement k<= k—g+Q in the final states; these are
the third and fourth terms in Eq. (42).

a
~mIP(=— X [ADPSe- & o+ E - &
4,Q-k ko

~& ot &), (40)

where the summation range is limited by the Pauli principle
constraints

k—q+Q,k1,k2>0; kl—q,kz—Q<O,

and the amplitude A® consists of two contributions,
AP = AG) + AG). (41)

these two contributions correspond to two possible ways the
desired final state can be reached in a second-order process:
The first one, A(jl)joc U?, arises solely due to the interbranch
interaction U, see Fig. 6. The second one, A(g‘),oc UV, in-
volves both the interbranch (U) and the intrabranch (V) in-
teractions, see Fig. 7. The corresponding analytical expres-
sions read

FIG. 7. Second-order contributions to the amplitude A(g‘), (a)-
(d) correspond to the first terms in the numerators of the four con-
tributions in Eq. (43). Four more contributions (not shown in the
figure) correspond to the replacement k; <> k—g+Q in (a)—(d).
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A0) = UUso . UUso
R _ (R L L R )
&, = &gt b0 b0 Eima T8 6
Us—tej+oUs—,

TR R L L
Ei-gr0 = Ekq + €m0~ Siyrick,
Uik, +0Us=x,

TR R L L
-~ Eeegro ¥ &, — €k 0uk

: (42)

©) UQ(Vq—Q - Vk—k1+Q) UQ(Vq—Q - Vk—kl)
V= +
gfl B gfl_Q B gﬁz + géz‘Q gfl—‘l B gfl“”Q + g£2 B gﬁz‘Q
. Uo(Vy=Vii)
gf—zﬁQ - gf—q - géz + géz—Q
Uop(Vy= Vii+0)

+ .
R R R 4R
fk_q+Q - gkl—q + §k1 - &0

(43)

(A more general but rather cumbersome expression for the
amplitude free from the simplifying assumption?! is derived
in Ref. 25.)

One immediately notices that Ag‘), vanishes for the
momentum-independent intrabranch interaction V,=V,. Al-
though it is not obvious, the amplitude .A(l% vanishes?® for
momentum-independent interbranch interactions U,=U, and
for a strictly parabolic dispersion relation.

To proceed further, we assume that both inter- and intra-
branch interactions are symmetric analytic functions of the
transferred momentum; at small momenta

1 us 1 !
U,~ U+ 5 0t V= Vo+ E%qz, (44)

and at large ¢ the potentials vanish sufficiently fast.?! We
also neglect cubic and higher-order terms in the dispersion
relation Eq. (6).

We will evaluate Eq. (40) for e=&F. In this limit the typi-
cal momentum of the right-moving particles in the final
states contributing to Im 224) is of the order of k and the
velocity variation is ~k/m. The energy gain due to the pro-
duction of the right-moving particle-hole pairs is therefore
~k(k/m). Conservation of energy then yields the estimate
for the typical momenta of the left-moving particle and hole
in the final state,

ky ~ Q ~ kK*Imv <k.

Carrying out the summation over k; in Eq. (40), we obtain

m
-m3P(EH=> X —APP, (45)
4,0 0<k,<Q 4q

where the summations over ¢ and Q are restricted to the
domain
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k-dlg _ 0< LU (46)

0<g<k,
2mv 2mv

The amplitude A®), see Egs. (41)-(43), simplifies consider-
ably in the limit k<<mv. Keeping only linear in Uj and Vj
contributions, we find

g* - (2mvQ)*

A® =U,2Uy+ Vv
O( 0 0) 8mv2q2

(47)

The high powers of the momenta here as well as the factor
1/m resulted from delicate cancellations among various con-
tributions to the amplitude. Since the amplitude (47) is inde-
pendent of k,, the integration over this variable in Eq. (40)
brings about a factor Q/2. The remaining integration over
g and Q is restricted to the domain D defined in Eq. (46),

dqdQ mQ

)2
447 87Tq|A | '

~Im 3V(&) = f
D

The integration here is straightforward and yields

302U+ V)*k®

—Im 224)(65) = 5(3211_””)2)3

(48)

Note that Im V(&8 scales with k as k8. The factor k* here
originates in the amplitude: according to Eq. (47), its typical
value is A® k2. The remaining factor k* comes from the
integration over Q (recall that Qxk?). Using now k*Vj
=~2(V,=V,), see Eq. (44), and setting U,=V,, we arrive at
Eq. (10) with 1/27,=-Im 25(4)( ) [here we took into ac-
count that Im 222)(5,():0].

The above derivation can be extended to €# & . The self-
energy varies with € on the scale of the order of k%/2m, and
it vanishes identically for e<§, as expected from the kine-
matic considerations of Sec. II.

According to the developed perturbation theory the spec-
tral function in the vicinity of the particle mass shell takes
the form

1 —Im Ek( 6)

Ayle)=— ; (49)
B (e— &2+ [Im 3 (9)
where Ek(e)=§),(<2)(e)+21((4)(e) and the corresponding contri-
butions are given by Egs. (35), (38), and (48). As a result, the

spectral function in the energy interval

—(up) ' = e- & = (1)

around the mass shell is a Lorentzian with the width 1/27,.
Outside this interval Im 2]((2)(6) >Im E](j)(f) and the spectral
function is described by a power law A(€) ~|e— &, with
the exponent equal to —1. The perturbation theory developed
so far does not take into account the logarithmic renormal-
ization of the scattering amplitudes. In Sec. IV we show that
summation of the leading logarithmic corrections leads to the
interaction-dependent correction to the exponent. The height
of the Lorentzian peak Eq. (49), is also renormalized, see Eq.
(11) above.
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IV. LEADING LOGARITHMIC CORRECTIONS

It is easy to see that excitation of virtual particle-hole
pairs leads to the logarithmically divergent contributions in
perturbation theory, in very much the same way as in the TL
model. The real part of the self-energy acquires such loga-
rithmic corrections already in the second order in interaction,
see Eq. (35). The logarithmic terms in the imaginary part of
the self-energy appear in the fourth order. These contribu-
tions vanish on the mass shell, and thus do not affect the
validity of Eq. (48).

In this section we develop a procedure for the summation
of the leading logarithmic corrections to the Green function
G(€) in the presence of nonlinear terms in the dispersion
relation Eq. (6). The nonlinearity is not important as long as
|e—=&F|>k?/2m. Close to the mass shell, however, the behav-
ior of the spectral function deviates significantly from that in
the conventional Luttinger liquid. For a positive curvature
[i.e., for 1/m>0 in Eq. (6)], deviations are the strongest for
the particle (e>0) excitations with k>0; we have already
seen that the on-shell excitations acquire a finite lifetime 7;.
On the other hand, the behavior of the hole branch (e<0) is
qualitatively similar to that of a Luttinger liquid. We will
concentrate here on the properties of the particle branch at
|e— & <k*/m, deferring the discussion of the hole region of
the spectrum till the end of this section.

A. Vicinity of the particle mass shell: e— §f, k>0

In order to account simultaneously for both the logarith-
mic renormalization and the finite quasiparticle lifetime, we
notice that the relevant energy scales form a well-defined
hierarchy

1 K R 2

— < <& <mv. (50)

27, 2m
The logarithmic corrections originate from almost the entire
energy band, i.e., from the states with energies in the range
(|6—§f ,mv?). On the other hand, the finite lifetime 1/7,
originates in the decay of a particle into particle and hole
states within much narrower strip of energies of the width of
the order of £F.

Our strategy for evaluation of the Green function will be
as follows:

(i) First we will take into account virtual transitions to
states with relatively high energies, corresponding to the mo-
menta p in the range Ak=<|p—py|=pp for the right-movers
and Ak*/mv < |p+pg| <pp for the left movers (here A>1).
This step is similar to the standard renormalization group
(RG) calculation for the Tomonaga-Luttinger model.?” As a
result of “integrating out” the high-energy states, G(¢€) ac-
quires a multiplicative factor. In addition, some irrelevant
terms are generated in the Hamiltonian; these terms do not
affect the logarithmic renormalization of Gy(€), but contrib-
ute to the decay rate 1/7;, which is evaluated on the latter
stage. The multiplicative RG terminates when the energy
bands have been reduced to strips of the right-moving states
with |p—pp|=Ak, and the left movers with |p+p|
< Ak*/mu, see Fig. 8(a).
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®) AR/ Ak
| —Pr | | Pr p
(b) )\kizmv VS
FIar] < v d

FIG. 8. (a) Subbands in the momentum space remaining after
performing the RG transformation described in step (i) in the text.
(b) Subbands of the effective model described by the Hamiltonian
(58). The state with k>0 under consideration belongs to d subband.

(ii) In the next step, we separate the remaining states in
three groups. The first two (subbands r and [) correspond to
two segments, |p—pg/ =Nk and |p+pgp=Ak?/mv on the
right- and left-moving branches, respectively; hereinafter A
< 1. The rest of the states form subbands d, see Fig. 8(b).
The state of interest k belongs to the right-moving branch of
d subband. This state acquires a finite lifetime 7;, which
manifests itself in the shifting of the pole in G(e) by i/27;
off the real axis. Importantly, the dominant contribution to
the finite lifetime comes from the decay of the state of inter-
est into other states within d band. Although the subbands r
and / make a negligible contribution to the decay rate 1/ 7,
the density fluctuations in these subbands induce a slowly
varying [on the time scale of the order of (k?/2m)~'] fluctu-
ating field that affects the dynamics of the high-energy (e
~ ff) d-particle. Our formalism accounts for both these fluc-
tuations and for the finite decay rate 1/27, and leads to Eq.
(7).

Now we sketch the implementation of the two steps de-
scribed above. (Some technical details are relegated to ap-
pendixes A and B.)

Step (i) follows, with a small modification, the conven-
tional RG procedure employed in the theory of Tomonaga-
Luttinger model.?” We introduce a reduced space of single-
particle states with |p—pg| <kg for the right-movers and |p
+pr| <k for the left-movers and consider the Green’s func-
tion, Gy(€;k;,kg), defined in the reduced band. Following
the idea of the multiplicative RG,?” we consider the transfor-
mation of the Green function associated with the reduction of
the bandwidth (k; —k;, kg— k), and cast it in the form

k; k;
Gilesky kp) = z(—L,—R>Gk(e;kL,kR). (51)
ky kg
Next, we use the results of the Sec. III A to evaluate the
Green function (51) perturbatively in the second order in the
interaction potential. This leads to an approximate expression
for z,

z(ﬁ,@>=1—2y§ml&—omlﬁ, (52)
ky, kg

where Ak<kj ,<pp. The last term on the right-hand side

here expresses the fact that the renormalization of Gy(¢€) for a

right-mover results from its interaction with the left-movers;

this is why the function z depends only on a single argument
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k;/k;. Equation (52) is valid up to the second order in 1y,
and also assumes that y(2) In(k; /k;)<<1. In order to find
z(k; /k;), we supplement Eq. (52) by the requirement that the
scaling function has a multiplicative property.”’ That leads to

2
k; k,;> (ki)‘”o
—=,— = , ANk <kgpgky, <pg. 53
Z<kL ke k RLKp =~ PF (53)

In order to keep the state of interst & under consideration
it must lie within the reduced band of right-movers. Accord-
ingly, the scaling of the right band must stop at kp=~ Ak.
However, the bandwidth of the left-movers can be reduced
even further, all the way down to k; ~Ak*/mv. The latter
scale represents the width of the band to which the states
involved in real transitions associated with the formation of
1/ 7, belong, see Sec. III B. [Note that according to Eq. (35),
the scaling exponent in the interval Ak*/mv <k, <Ak is v}
rather than 27].

Using now Egs. (51) and (53), we find

Ak \2%( Akm \ % AR
Gk<e>=(—”) ( "G e Ak) (54)
€ Akv mv

(we used mv ~ pp here). Note that the nonlinearity of the
single-particle spectrum does not affect the form of Egs. (52)
and (54) as long as A>1.

However, because of the nonlinearity, reduction of the
bandwidth (kp— Ak*/py) generates an additional interaction
term

Ve S MU, otk e (59)

The matrix element M here accounts for the contributions to
the total transition amplitude A® of the virtual states outside
the reduced band of the left-movers. These states contribute
to A(sz)/ but not to A(Uzs/ Therefore one finds M= (1/ 2)A(5L
(here 1/2 is a combinatorial factor). Since all the momenta in
Eq. (55) belong to the reduced band, we have

/4" = 2mvQ)’

M=U,U; (56)

8muv’q*

as it is clear from the analysis leading to Eq. (47). Using ¢
~kand Q ~k2/pF, we estimate M ~ k*/mv?, i.e., M vanishes
for a linear spectrum. The generated interaction Eq. (55) is to
be added to the Hamiltonian Eq. (34), where all the operators
now act within the band of reduced width. Along with the

interaction terms already present in Eq. (34), VA contributes
to the inelastic scattering processes giving rise to a finite
quasiparticle relaxation rate 1/ 7.

We now proceed to step (ii) of the program outlined
above, i.e., evaluation of the Green function in the reduced
band. To this end, we separate the states in the reduced band
in two narrow subbands: the [ band with |k"| < \k?/p- around
the left Fermi point, and the r band with |k"| < \k around the
right Fermi point. The remaining states form subband d, see
Fig. 8(b). Parameter \ here satisfies the conditions
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A
y(z)lnx<1, A<1. (57)

[Note that at y,<<1 the two conditions (57) can be satisfied
simultaneously.] The states within the subbands r and [ pro-
duce additional logarithmic renormalization of the Green
function. The first condition in Eq. (57) allows us to disre-
gard such corrections originating in d subband. The second
condition in Eq. (57) ensures that accounting for the inelastic
scattering within d subband reproduces the result of Sec. III
for the relaxation rate 1/7;.

We write the Hamiltonian H+ VA acting in the reduced
subspace r,1,d (see Fig 8), as

H+Vy=H,+H, +H,_,. (58)

The first and second terms in the right-hand side account for
the states in the “high-energy” subband d and the low-energy
subbands r and [,

Hy=PH+V\)P, Hy=P,(H+VyP,,

where P,; and P, are projectors onto the corresponding
states. The third term in Eq. (58) describes the interactions,

Hy_py=Py(H+ V)P, +P,(H+V\)P,.

Using Hamiltonian Eq. (58), we evaluate the Green function
of a particle in the subband d.

We start the evaluation of G(e;Ak*/mv,Ak) with ac-
counting for the interaction terms in H, Evaluation of the
self-energy follows the perturbative analysis of Sec. III. The
only difference is that the second-order contribution to
Im3,, see Eq. (38), is absent provided that |e—&|
<Nk*/my. Indeed, a finite Im 25{2) requires excitation of a
particle-hole pair in the / subband. Such processes are absent
in H, but are included in H,_,; discussed below. In addition,
the second-order contribution to the real part of the self-
energy, Re 3, ~ y5(e—&)In(A/\), can be also neglected as it
is small compared with |e~&f|. Unlike in the second order,
the low-energy states (I and r bands) do not play any special
role in the fourth order calculation, see Sec. III. Hence, H,
alone is sufficient in order to reproduce the relaxation rate

1/27; (note that the term VA is important for this calcula-
tion). Thus, neglecting H,_,;, we find for the retarded Green
function

1

—_—. 59
e- & +il2T, (59)

AR
Gg( E;—,Ak> =

mv
Next, we account for the effects of H,_,; interaction on the
Green function of a particle in the d subband. For this cal-

culation \A/A is irrelevant. Moreover, the interaction between r
and [ subbands does not contribute to the Green function in
the leading logarithmic approximation (this interaction leads
merely to the higher-order corrections to the exponents). We
thus neglect both these terms and write H,; and H,_,; as

Hy= X > &g, (60)

a=rl k
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@) ,~7~, (b)

FIG. 9. (a) Lowest-order logarithmic correction to the d-particle
propagator (solid line); the dashed line stands for r(/) bosons. (b)
Example of renormalization of the d-particle-boson vortex; wavy
lines represent interaction within the d subband. (c) One of the
contributions to the decay rate of a d particle.

Hy =V — Vk)_ > pipl,
L
|gl<N\k

1
+Wo-Upd 2 pply,  (6D)

gl <\K2/muv

where the form of the interaction potentials Vy—V, and U,
—Usp sk originates in the reduction of the general interaction
to the density-density form. Because of the strict limitation
on the wavelengths of the density fluctuations, the subbands
r and [ do not contribute to 1/7,. Therefore the spectrum
within these subbands can be linearized. Since both r and /
subbands contain the Fermi level, the excitations within
these subbands can be described using the conventional
bosonization technique Upon introducing the bosonic fields
cp; such that pq —1qgoql/27r we represent H,; and H,_,; in
the form

1 1
Hy=7— > ol + — > vdiell. (62)
lal <Mk lgl<\/mu
VO_Vk d
Hy > aple”
" 2’7TL \q\<)\k gl 4
Up—Uyp 1k
_iz—LF > apie, (63)
™ gl <\ /mov

In the second order of perturbation theory the interactions in
H, can be neglected. The self-energy of d-particle is then
given by the diagram shown in Fig. 9(a). Its evaluation re-
produces the logarithmic divergence at e— §f, see Eq. (39).
To go beyond the lowest order, we need to take into ac-
count simultaneously both the interactions present in H, as
well as the interactions of d-particles with the bosons. Since
we are interested in the limit e— §f —0, it is sufficient to
consider only the most divergent in this limit contributions.
Clearly, accounting for both types of interactions pro-
duces two kinds of contributions. First, interactions within
the d subband renormalize the particle-boson interaction ver-
tex. Vertex corrections such as that in Fig. 9(b) can be shown
to be small (see Appendix A), and we neglect them herein-
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after. Second, the interactions “dress” the bare d-particle
Green’s function, see Fig. 9(c), replacing it by that given in

(59). Obviously, the effect of the dressing is to cut the
logarithmic divergencies off at |e—& | ~ 1/,

The task of evaluating contributions such as that shown in
Fig. 9(c) is greatly simplified by the fact that particle-boson
interaction is associated with rather small (<\k) transferred
momentum. This allows us to linearize the d-particle spec-
trum about gf,

'gd’ = gfﬂc’

It is convenient to write the d-particle Green’s function in
the real space-time representation,

AK? o
Gl &= Ak|=| dx | dte'"Gi(x), x=(x,1).
mv

In the absence of particle-boson interaction GZ satisfies the
equation

~E& vk, vy=v+kim.

(l§t+lvd —§k+—)Gd(X) A(x).

With vertex corrections neglected, the effect of the bosonic
fields is merely to induce a slowly varying in space and time
potential in which d-particle moves. This fluctuating poten-
tial can be written as

Uo= Uy 1k
P g ¢ (64)

Vo=V
1) = a0 + e
¢0x1) 2 ¢ 2

The retarded Green function of d-particle in the presence of
the fluctuating potential GZ(X| ¢) satisfies the equation

(lg + ’Ud gk + — + ¢(X)>Gd(x|¢) 8(x), (65)

and G{(x) is obtained by averaging G¢(x| ¢) over the Gauss-
ian fluctuations of the field ¢,

Gl(x) = (G{(x|$)),.

Here (...), denotes the time-ordered averaging over the
slowly varying field ¢, see Eq. (64). Note that G in Eq. (65)
describes a propagation of a single d-particle in an empty
band, hence the corresponding retarded Green function coin-
cides with a time ordered one.

Carrying out the calculations, we find

G(x| ) = — i60(1) 8(x — v 1) it TO-00]  (66)

dw
0(X)=f; >

the summation over g here is restricted to |g| <\k for r-d
interactions and to |g| <Ak*/mv for I-d interactions. Note
that because 6 enters Eq. (66) only in combination 6(vt,t)
—6(0,0), the pole at w=v,q in Eq. (67) does not show up in
Eq. (66).

with

Meiqx—iwt;

w—-04q

(67)
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With the dynamics of the bosonic fields described by a
quadratic Hamiltonian (62), averaging in Egs. (66) and (67)
is straightforward. It yields

G(x) = —i6(1)8(x — vt) il K(x) 68)

with
Kx) = 5 ((005) ~ 600,

:J do< (HQ) (- q)>5,3[1 ~ cos(qx— )],

277 (0— vag)*
(69)
Here
(@) $(= )}, = i(Up = Uy, ) IT'(q) + (Vo = VI (q),
(70)

and I1"/(q) =—i<p”lp”l)¢,= (g/2m)(xw-vg+i0sgn q)~! are
density-density correlation functions for » and / bosons. Sub-
stitution of Eq. (70) into Eq. (69) and then into Eq. (68)
yields

GH(x) = — i0(1) S(x — v )& =127

2
Map ik N2
exp) — Lrt ln[1+i—(x+vt)}
4 mv
MZ
—I"ln[l—ixk(x—uz)] ) (71)

The Green function in the reduced band is given by the Fou-
rier transform of this result (see Appendix B for the details of
the calculation),

AR 1 ok — e+ & — iz \ %
Gk 6;_,Ak = R . B
mv e-&+il2n | 4y, N /m

12 (e & ving\%
¢ B[ 2SI BT T (72)
49\ NPm

Now using Eq. (54) and taking into account condition (57),
we finally arrive at the expression for the spectral function
[the abbreviated versions of it were given in Eq. (7) and Eq.

(1D)]

L (EN(R\EE . B -1\
Ale)=—| = — Im T
4\ e m v; \e-&+ilm

Mi( 1 -7,
-S| . 73
% e-g§+i/27k> (73)

The validity of the result (73) is restricted to the vicinity
of the particle mass shell, |e— §f| <N\Kk?/2m. 1t is clear, how-
ever, that well above the mass shell, at e— §f>k2/ 2m, the
dispersion nonlinearity has no effect and the spectral func-
tion crosses over to the conventional TL expression Eq. (4).
On the other hand, e= §k=§f—k2/ m below the mass shell
represents the kinematic edge of the spectrum, see Sec. II.
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Evaluation of the spectral function in the immediate vicinity
of the edge requires a special consideration, and is discussed
in Sec. V below.

B. Vicinity of the hole mass shell: e— §,l§, k<0

The behavior of the spectral function near the hole mass
shell (e— & <0) is much simpler because the decay of a
hole is prohibited by the energy and momentum conservation
laws. The spectral function can be evaluated by following
closely the route outlined in Sec. IV A apart from two im-
portant modifications: First, one needs to replace 1/7,—
+i0 in Eq. (65) and its solution. Second, unlike d-particle, d
-hole has a velocity v, which is smaller than v; the difference
is due to the positive curvature of the dispersion relation.
This affects the analytical properties of Eq. (71). Indeed, at
x=vg4t the factors x+vt and x—vt have the same sign for v,
<wv. This in turn results in A (€)=0 at > &, which agrees
with the kinematic constraints on the hole part of the spectral
function, see Sec. II. Below the mass shell, at 0<§f—e
<k%/2m, we find

B @)vg(kz/m)vﬁ—vf(e_gf_,_i())*/z
Gk(e)—<6% &0\ Em . (74

The imaginary part of this expression is given in Eq. (13).

V. EDGE SINGULARITIES

In the previous section we found that the spectral function
diverges at the hole mass shell, which coincides with the

edge of the spectrum e=&, at k<<0. Here we consider the
behavior of the spectral function in the vicinity of the re-
maining kinematic boundaries. As discussed in Sec. II, in all
cases the spectral function exhibits a power-law suppression
at the edge. The suppression originates in the phase space
constraints which lead to vanishing of the spectral function
linearly with the distance to the edge. Interactions modify the
exponent via a mechanism analogous to the x-ray edge sin-
gularity in metals:?® the transition amplitudes in Eqgs. (14)
and (21) acquire a power-law dependence on the distance to
the edge. In this section we develop a technique to account
for this dependence.

The edge of the spectrum corresponds to final states of the
transition in which all of the momentum and energy are car-
ried by a single hole, see Sec. II. At energies close to, but not
precisely at, the kinematic edge, the final states may contain,
in addition to this “deep hole,” an arbitrary number of low-
energy particle-hole pairs near the two Fermi points.

When the distance in energy to the corresponding edge is
small compared to k*/m, the hole can be treated as distin-
guishable from the rest of the particles in the system.®!10
Formally, this amounts to projecting out all states except
those in the narrow stripes of momenta r,/ near the Fermi
points, and a strip d deep below the Fermi level. (Note the
difference between the narrow d subband defined in this sec-
tion and the wide one in Sec. IV.) The d subband hosts a
single hole, and the interaction of this hole with the rest of
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—PF
—pp+k

FIG. 10. Solid lines indicate the states included in the effective
Hamiltonian (76)—(80). The d subband hosts a single hole. The
interaction of the hole with r and / subbands leads to the excitation
of low-energy particle-hole pairs. Production of multiple particle-
hole pairs results in a power-law dependence of the spectral func-
tion in a close analogy with x-ray edge singularity in metals.

the system results in the excitation of the particle-hole pairs
in the subbands r and /.

We consider first the behavior of the spectral function
near the hole edge e~ &, at k>0, and then proceed with the
consideration of the particle edge € close to &.

A. e—&, k>0

In this case the deep hole in the final state of the transition
is located at momentum =k (relative to —pp) on the left-
moving branch of the spectrum, see Fig. 10. In order to de-
scribe the final-state interaction, we project the Hamiltonian
(34) onto narrow strips of momenta shown in Fig. 10, H
=PHP, where P projects onto states within r, [, and d sub-
bands, while the remaining states are regarded as either oc-
cupied or empty. In order to extract the dependence of the
spectral function on the distance to the edge with the leading
logarithmic accuracy, it is sufficient to carry out the projec-
tion to zero order in interactions for the Hamiltonian and to
the lowest nonvanishing (first) order for the observable. The
omitted higher-order contributions would contribute beyond
the leading logarithmic accuracy.

We introduce slowly varying in space fields

ik x
Y= > e—im, (75)

'|<ky V

ikx
=3 ot
JZ k >

[k|<ky V

where ky<<k is the high-momentum cutoff, and write the
effective Hamiltonian in the coordinate representation as

He=H,+ Hy+ Hyy. (76)
Here

H, = f dx[ /(= ivd ) + o (ivd,) /] (77)

and
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H,= f dxyf (& + iv g9 ) ¢! (78)

describe r, I, and d subbands, respectively. In writing Eqs.
(77) and (78) we linearized the spectrum within the respec-
tive subbands, so that

giw =§_k_vdk,7 vy=0v—kim. (79)

The third term in the right-hand side of Eq. (76) describes
the interaction between the subbands,

Hiy=- J dxﬁd[(vo - Vk)Pl +(Vo- VZpF—k)pr]

+(Vo=Vap,) J dxp’(x)p'(x), (80)

where p"/(x)= ¢ (x)y/*(x) are particle densities in r,I sub-
bands, and p%(x)=y#(x)y#"(x) is density of holes in d sub-
band. In writing Eq. (80) we have set V,=U,,.

Our goal is to evaluate the hole contribution to the spec-
tral function

1(° . _
A"(e):Req_Tf dte"“(gb,’f%)ﬁ(O)). (81)

—0

The projection should now be applied to the operator 1/1{5 in
Eq. (81). In this case, however, the lowest order is insuffi-
cient, as the state with momentum k on the right-moving
branch of the spectrum lies outside the subbands r,/,d of the
effective Hamiltonian. Instead, the relevant contribution is
generated in the first order in the interaction strength.

The higher-order contributions can be found with the help
of a unitary (Schrieffer-Wolff) transformation that decouples
states within the subbands r, [, and d from the rest of the
system. Consider the following term in the original Hamil-
tonian (34),

1
OH = (V= Vy,) . ‘k%
i 0

X (L=Pl o o W P+He. (82)

5k1+k2,k3

Schrieffer-Wolff transformation H — e’SHe™™ eliminates the
off-diagonal contributions such as Eq. (82). To the lowest
(first) order in the interaction strength, the generator of such
transformation reads

IRRLAC VIR
=TT R AN ky+kok
L& - &)y, 2

X (1= P)YE U W i P+ Hee,

so that [iS, Hy]=—6H, where H,, is the noninteracting part of
Eq. (34).

As far as the effective Hamiltonian (76) is concerned, the
transformation leads merely to the correction to Hj,,
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1 .4
OH;, = EDS’ SH],
which amounts to negligible second-order corrections to the
coupling constants in Eq. (80).
The same Schrieffer-Wolff transformation applied to the
operator (Mf yields

O LiSgf) = - 2 e L

f gk 2 lﬂé; l//kzl//16+k2 kyskytks

|k;|<kg
(83)

This contribution, as well as those generated in higher or-
ders, conserves separately the numbers of right- and left-
movers. With this constraint, the first-order contribution (83)
is a product of the least possible number of operators acting
in the subbands r,[,d; hence, it is the most relevant one as
far as the behavior of the spectral function near the edge is
concerned.
Using now Egs. (75), (81), and (83), we find

0
a@ ke [ax| aenwcovon @

with

W(x) = ¢/ )y () (). (85)

To proceed further, we bosonize fermions in r and [ sub-
bands according to

[ +igh! r r :
Wl =\kee®",  [¢"(x),¢"(y)]= ximsgn(x-y),

(86)

where the upper/lower sign corresponds to r/l, and kg is a
high-momentum cutoff for bosonic modes,

(@"'(x)"(0) = [@"(0)]*) = = In(1 F 2rikyx).

In the bosonic representation Egs. (77) and (80) read

=3 | dx(0,0%? (87)

a=r,l

=
A, dar

dx
Hip =~ f ZT_d[(Vo = V' + (Vo= Vo, )3:¢']

+ (Vo= Vi) f a0, )

and Eq. (85) becomes

W(x) = koei[‘Pr(")+‘Pl(")]1pd(x). (89)

The correlation function (84) with W given by Eq. (89)
and with the dynamics governed by the effective Hamil-
tonian (78), (87), and (88) can be evaluated exactly. This can
be done by following the steps outlined in Sec. IV. Equiva-
lently, one can diagonalize the effective Hamiltonian by an
appropriate unitary transformation.®!° The generator of such
transformation reads
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—PF Pr P

—prp—k

FIG. 11. Solid lines indicate the subbands r, [, and d in the
effective Hamiltonian for the evaluation of the particle contribution
to the spectral function at €— &, k<0.

A

1
w=3 J dxpy(0) pop -1 #' () = pe'(0)]

1U“2p
+— J dxl¢"d.¢' - ¢'d.¢] (90)
8

with w, introduced in Eq. (9) above. In writing Eq. (90) we
omitted all but the first order in interaction contributions (re-
call that second- and higher-order corrections have been ne-
glected in the derivation of the effective Hamiltonian). The
transformation decouples the subbands from each other to
linear order in interactions,

eiWHeffe_iwzHrl"'Hds (91)

and also modifies the operator W, see Eq. (89),
MV o e+ ap ity J21¢0 il =yt iy )Y 2¢!, (92)

Since the transformed Hamiltonian (91) is quadratic,
evaluation of the correlation function Eq. (84) is straightfor-
ward. Keeping only linear in w, terms in the exponents, we
find

(W (x, )W (0,0)) & Sx + v t)e’™
X ko[ 1 + 27riko(vt — x) ]~ "H2p-kH2p,
X ko[ 1 + 2ariky(vt + x) ]~ Fapp.
(93)

Substitution of Eq. (93) into Eq. (84) then yields the spectral
function near the edge,

Agle) o (& -

see Eq. (28). This result is valid when e is close to the edge,
&—e<k®/m, and for 0<k<2pp (note that for k>py the
above derivation should be modified as in this case d sub-
band in the corresponding effective Hamiltonian belongs to
the right-moving branch of the spectrum).

The interaction-induced corrections to +1 in the exponent
in Eq. (94) (which comes from the phase-space constraints)
allow for a simple interpretation based on the analogy with
x-ray edge singularity?® in metals: —u, originates in the at-
tractive interaction of the deep hole on the left-moving
branch of the spectrum with a soft left-moving particle;

€) ! HRHH 22, (& — ), (94)
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Mop i is due to the repulsion between the deep hole and a

soft right-moving hole; finally, —Z/JQPF is due to the attraction

between a soft left-moving particle and a soft right-moving

hole (note that both particles are soft, hence the factor of 2).
For small k, the exponent in Eq. (94) simplifies to

V= g+ pap k= 2p0p, — 1 = i = pop, — 1 -2,

where we used u,, =27, and and the fact that for a generic
interaction w;— 0 when k— 0.

B. e— &, k<0

The consideration in this case is very similar to that in
Sec. V A. The effective Hamiltonian accounting for the final-
state interaction again consists of subbands r and [ near the
two Fermi points, and d subband (now centered at momen-
tum —k>0) deep below the Fermi level on the left branch of
the spectrum, see Fig. 11. The projection, carried out to the
lowest order in interactions, yields Eqgs. (76)-(80) with the
replacement & — —&, and v,—v+k/m in Eq. (78), and k—
—kin Eq. (80).

The particle contribution to the spectral function is given
by

A(€) =Re 1 f | dre’ (YR ()Y (0)). (95)
m™J 0

Similar to above, application of the Schrieffer-Wolff trans-
formation to the operator /" yields the relevant contribution
in the first order in the interaction strength,

Vim Vap,ak 1
P o S R T'?”Ilclzl//l—lk+k35kl+k2,k3' (96)

g+, L\k\<k0

When written in the coordinate representation, Egs. (95) and
(96) give

A(e) < Re J dxfoc dte" (W (x,))¥7(0,0)) (97)
0

with
Wix) = ¢ () () ¢ (x). (98)

The spectral function (97) is evaluated by bosonizing the
Hamiltonian and diagonalizing it by a unitary transforma-
tion, just as it is done in Sec. V A. This procedure yields

Ae) o (€= &) M tnc o fe— &), (99)

This result is valid at e— &, <k*/m, and for all k in the range
-2pr<k<0. Note that ,UZPF and Mop 1k enter the exponent in
Eq. (99) with opposite signs compared to those in Eq. (94).
This is because the interaction of the deep hole with a par-
ticle on the r branch is attractive, whereas the corresponding
correction to the exponent in Eq. (94) originates in the repul-
sion between the deep hole and another hole in r subband.
As expected, the exponent in Eq. (99) is invariant upon

exponent in Eq. (99) simplifies to

1= g = pop i+ 2p0p — 1+ pop =1+ 2.
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pF'—k

FIG. 12. States included in the effective Hamiltonian
(100)—(103) for the evaluation of the spectral function at €— &, k
>0.

C.e—&, k>0

In this limit the final state of the transition involves cre-
ation of a hole with the momentum —k on the right-moving
branch of the spectrum, see Fig. 12 and discussion in Sec. II.
In order to evaluate the spectral function in the leading loga-
rithmic approximation, it is sufficient to consider the effec-
tive Hamiltonian consisting of d subband hosting the hole,
and r subband to allow for the creation of low-energy
particle-hole pairs near the right Fermi point, see Fig. 12.
(Inclusion of left-movers would merely add a second order in
interaction correction to the exponent.) Carrying out the pro-
jection and linearizing the spectrum within the subbands, we
find

Hee=H,+ Hy+ Hy, (100)
with
= f dxy (= ivd )y, (101)
Hd=de¢‘”(—é— ivy0) ¢ (102)
(here v,=v—k/m), and
Hiy == (Vo= V) f dxp?(x)p" (x). (103)

After bosonizing Egs. (101) and (103), the effective
Hamiltonian can be diagonalized by a unitary transformation
with generator

W=-2 | dxp(0 '),

5 (104)

The transformation yields, to first order in the interaction
strength,

¢"Hye " =H,+Hy, (105)

where H,=(v/4m) [dx(d.¢")*> and H, is given by Eq. (102).
Since the right-moving state with momentum k> k lies
outside the domain of the effective Hamitlonian (100), appli-
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cation of the lowest-order projection to the operator /', see
Eq. (95), is insufficient. Similar to above, the relevant con-
tribution emerges in the first order in the interaction strength
and reads

(ﬂR E kk1

Vi k2
z ‘/’2 sz o~ k+k35k +hy ey
kil <kq gk

(106)

Since ky<<k, we can expand here

dv,
Viek, = Vier, = (ky = kl)d_kk

Passing over to the coordinate representation, we find that
the spectral function is given by Eq. (97) with

P00 = ¢ 0 (= id) ¢ (0 (x).

Bosonizing Eq. (107) according to Eq. (86) and taking
proper care of the point splitting (see Appendix C for the
details), we find

(107)

Wi(x) = 2mkZe ¢ W yA(x). (108)

The unitary transformation (104) and (105) that diagonalizes
the effective Hamiltonian also modifies the operator W

e"d’\l”(x)e_’w o @12 ) yd i)

With the dynamics governed by the quadratic Hamiltonian
(105), it is straightforward to calculate

(W (x,)¥7(0,0)) = 8x — v t)e &
X ko[ 1 + 2riko(vt — x) 7424
(110)

(109)

Substitution of Eq. (110) into Eq. (97) then yields
Ale) o« (€= &) Hb(e— &) (111)

for the spectral function at e—&,<k?/m. The fact that the
interaction-induced correction to the exponent is =2 is due
to the presence of two soft particles interacting with the deep
hole, contributing —u,; each.

VI. CALOGERO-SUTHERLAND MODEL

In this section we consider a solvable model of interacting
1D fermions, the Calogero-Sutherland (CS) model. The cor-
responding Hamiltonian in the first-quantized form reads?®

H=-— 2+2 Vix;— (112)

2 ax; i<

where V(x) is a periodic version of the inverse-square inter-
action potential,

A\ = 1)/m

V(x) = (L/7r)? sin®(mx/L)

(113)

Correlation functions of the CS model exhibit rather un-
usual behavior. For example, the dynamic structure factor
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FIG. 13. (Color online) Support of the spectral function in
(p,€<0) half-plane. The upper boundary of the region where A
#0 comprises of \ identical parabolic segments (A=35 in the fig-
ure). We concentrate on the low-energy sector k=p—pr—0 (see the
inset).

S(g,w) differs from zero in a finite interval of
frequencies,®!%2%30 just as it is for free fermions. On the
contrary, for a generic interaction the structure factor has a
high-frequency “tail” S g*/w? which emerges already in
the second order of the perturbation theory in the interaction
strength.®® However, close examination of the corresponding
perturbative formula for the structure factor [see Eq. (18) of
Ref. 6] indeed shows that it yields zero for Vo |k]|.

Similarly, substitution of U=V, x|k| into Egs. (40)—(43)
yields 1/27,=—Im E,ﬁ‘”(gk) =0. Just as it is the case with the
absence of the high-frequency tail in S(q,w), the apparent
vanishing of the relaxation rate in perturbation theory sug-
gests that 1/7,=0 is the exact relation for the CS model.
Indeed, this agrees with the exact results for the Green
function® obtained for specific values of \.

Vanishing of 1/7, for particles is a peculiar property of
the CS model related to its integrability.?! Therefore, in the
context of this work, we concentrate on the hole contribution
to the spectral function; we believe that the CS model results
for the hole (e<<0) region of the spectrum are generic.

Single-particle correlation functions for the CS model
have been studied extensively?*3? in the context of the ex-
clusion statistics.>! Such interpretation is possible because
the inverse-square potential is impenetrable. Requiring the
many-body wave function to obey a certain symmetry with
respect to the permutations of the particles’ coordinates
amounts to merely choosing a rule according to which the
wave function is assigned an overall phase. For CS model,
the phase depends on the ordering of particles, but not on
their coordinates. Operators which do not permute particles
(e.g., the local density operator) do not affect the phase fac-
tor. Accordingly, the statistics of bare particles is immaterial
as far as the evaluation of, say, the dynamic structure factor
S(g,w) is concerned.'”

However, the situation with single-particle correlation
functions is more subtle. The anyon creation and annihilation
operators constructed and studied in Refs. 29 and 30 describe
fermions only for odd integer values of N. Rather than at-
tempting to derive fermionic Green function for general val-
ues of N\, below we will use the results of Ref. 30 to evaluate
A;(e) for e<0 and A=0dd integer, and then employ an ana-
Iytical continuation to extend the result to arbitrary values of
A

The excitations of CS model can be described in terms of
quasiparticles and quasiholes. Quasiholes are characterized
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by fractional inertial mass m=m/\ and velocities v; in the
range |v;| <v=pp/m, where pp=7n is the Fermi momentum
(n is particle concentration). On the contrary, quasiparticles
have velocities |v;| >v and their mass coincides with the bare
mass m that enters Eq. (112).

Consider now a state obtained by a removal of a single
particle (with mass m) from the ground state |0). For integer
\, this change of mass can be accommodated by creation of
exactly N quasiholes. It turns out that this simplest possibility
is, in fact, exhaustive.>®

The region of support of A(€) in (p,€) plane can now be
deduced from the energy and momentum conservation. In-
deed, using the well-known expressions®® for the energy and
momentum of a state with N quasiholes with velocities v;,
one can write

N A
e+ X -v)=0. p-Diw=0. (114)
i=1 i=1

For odd integer \, these equations have a solution for {v;}
provided that € and p lie within the shaded region in Fig. 13.
The upper boundary of this region, the solid line €=§,, com-
prises of A identical parabolic segments,

o
§p=%[(p—2lpp)2—p§], lp—2lps| < pr (115)

with integer I, |[|<(N=1)/2. The support of A,(e) is also
bounded from below by the dashed line e=p?/2m— e, with
€x=muv?/2; this boundary would be absent for generic values
of A.

We concentrate here on the low-energy sector with p
~pp, |€|<e€r (see Fig. 13) and “shift” the momentum ac-
cording to k=p—pp. The dependence of A;(e) on € has a
threshold,

A(e) x 0(E,—€), & =—vlk|+Kk2m, (116)

and our goal here is to find the behavior of A at a fixed &
when € approaches the threshold. This can be done by writ-
ing the spectral function in the form of a multiple integral,

v A
Ay(€) =m HdUiF({Ui})5[k+PF—”_12 Ui]

—v i=1
xd e+ m2) S @ -0))].

The 6 functions here reflect the conservation of momentum
and energy, see Eq. (114), and the form-factor F
= [({v;}#4]0)|> was found in Ref. 30,

Foh) = 11 fvi, - v, M 02 =0 002 (118)

i<iy

(117)

Equation (117) is nothing but the Lehmann representation of
the spectral function, with the final state of the transition
[{v;}) parametrized by the velocities of X quasiholes.

For |k| <pp and &,— €< €, the final states {v;} contribut-
ing to A have ny=(A—1)/2 quasiholes with velocities v;=~
—v and ny +1 quasiholes with velocities v;=~ +v. It is there-
fore convenient to introduce new variables
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U+U;

After expansion of the form factor to the lowest nonvanish-
ing order in x;,y;<<1, Eq. (117) takes the form

1 o o
Ayle) _H dxiJ dyjfn)\ﬂ({xi})fn}\({yj})
€rij Jo 0
k 1
X‘{Z;—vvz +X, - Z(X2+ Yz)}

e—vk 1
XO| —=+Y, -—-(X,+7Y,)|. 119
|: 27’1_11)2 1 4( 2 2):| ( )
Here
ny+1 ny
Xn= E x:l’ Yll=2y?7

i=1 i=1
and fy({z;}) is a function of N arguments z,,...,zy given by
Az =11 |Zil - Zi2|2/)\]._[ AL (120)

iy<iy i

this is a homogeneous function of degree

ex=o-{[20V=n) - 1P -2},

As it is easy to check,

X ~X<X <1, Y,~Yi<Y <I.

Moreover, when e is relatively far from the threshold, at &,
—€>1k*/2im, X, and Y, are of the same order, X, ~ Y. In this
limit X, and Y, in the arguments of the & functions in Eq.
(119) can be safely neglected, after which the integration
reduces to a power counting which yields

A€ = e+ vk M|e—vk|%, & —e>k¥m  (121)
with
(\-1)?
AR 122
%="ax (122)

Equations (121) and (122) reproduce the standard Luttinger
liquid result. At [vk—e€|<v|k| Eq. (121) agrees with Eq. (4)
above. Since the exponent 7, is an analytical function of A,
Eq. (122) is valid for all \ rather than for integer values only.
Indeed, in the weak interaction limit [\—1| < 1, Eq. (5) yields
Yo=(N\=1)/2, in agreement with the corresponding limit of
Eq. (122).

The behavior of the spectral function in the immediate
vicinity of the threshold, at & —e= k*/in, requires more deli-
cate consideration. Indeed, in this limit the velocity of one of
the quasiholes approaches

vo(k) =—v sgn(k) + k/m, (123)

while all other quasiholes have velocities v;— *v. In other
words, close to the threshold, almost all of the momentum
and energy are carried by a single quasihole,
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e )]

In order to evaluate the integral in Eq. (119), we note that for
&—e<k*/m and a=|k/pp| <1 the conservation laws [i.e.,
the & functions in Eq. (119)] imply that for k<0

Xlza, X2~Y1~a/2.
Actually, for k<0 it is just one of x;, say, Xy, 415 which is
close to a, while for i=1, ...n, one has x;~ o?. It is therefore
convenient to write

— 2
xn)\+l =a+txy, Xg~oa,

and introduce X;=X,—a=3"x;~a’. In the leading (sec-
ond) order in « the & functions in Eq. (119) can be approxi-

mated by
( l) ( 1)
2mv 2ml)

[note that 0<(&—e€)/mv*=< a*]. At the same time, Xy 41 0D
the form factor should be replaced by «. With these approxi-
mations, the remaining integrations are easily carried out re-
sulting in

Arco(@ o (E— ™07, 0<&-e=<km  (124)

The fractional part of the exponent here is twice that in the
Luttinger liquid limit, see Eq. (121). This is in agreement
with the leading logarithmic approximation result Aj_(€)
o (&~ e)yi", see Eq. (13). Indeed, substitution of V,=—\(\
—1)m|k|/m into Eq. (9) gives u;=puo=\~-1, independently
of k (this agrees with the exact value!® of the exponent that
governs the divergence of the structure factor, ug=1-1/\).
Equation (8) then yields y;=u3/2~27;. Note also that the
position of the spectral edge &, see Eq. (116), in the limit
N—1 agrees with Eq. (24).

Evaluation of A;(e) for k>0 proceeds similarly and
yields

Ag=o(€) = (&~ 9NN, 0< &-esKkdm  (125)

with y, given by

_ (-3

vi= 4\

(126)

For a weak interaction y3+7% ~1-2pu, in agreement with
Eqgs. (28) and (94). Note that the exact exponent in Eq. (125)
is positive for any strength of interactions.

We have thus demonstrated that, at least in the hole region
of the spectrum e€<<0, the behavior expected for a generic 1D
system with a nonlinear dispersion is consistent with the ex-
act results obtained for the Calogero-Sutherland model. It
would be interesting to find a solvable model for which our
conclusions for the particle region of the spectrum can be
similarly tested.
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VII. CONCLUSIONS

The total number of particles and the total momentum are
good quantum numbers for an isolated homogeneous fermi-
onic system, regardless of its dimensionality and the interac-
tion strength. In higher dimensions (D>1) and for moder-
ately strong interactions, an excited state of the system with
one extra particle and with momentum p is rather similar to
the corresponding state of a free Fermi gas. The similarity is
encoded in the energy and momentum dependence of the
spectral function A,(e)=—(1/m)Im G,(¢). The spectral func-
tion satisfies the exact sum rule,

J deA,(e)=1.

In a Fermi liquid (D> 1), the sum rule is almost completely
exhausted by the Lorentzian Eq. (1). The corresponding peak
is centered at the quasiparticle energy £, and has the width
1/27, which decreases with the increase of the Fermi energy,
see Eq. (2). On the contrary, in a Luttinger liquid the spectral
function, see Eq. (4), is manifestly non-Lorentzian. It di-
verges on the mass-shell e=§,, vanishes at €< §;, and decays
slowly with € at > §,.

We demonstrated that for a nonlinear dispersion relation
with positive curvature, see Eq. (6), the domain where A(€)
differs from zero extends below the mass shell, e=§,
—k*/m. The mass-shell e=&, now falls within the domain of
continuous spectrum. In this situation the Luttinger liquid
result Eq. (4) is no longer valid. Instead of a one-sided
power-law singularity at e— &, [cf. Eq. (4)], the spectral
function has a Lorentzian peak centered at the mass shell.
The width of the peak 1/7, see Eq. (10), is much smaller
than that in higher dimensions. In one dimension, the finite
relaxation rate 1/7, emerges only in the fourth order of the
perturbation theory in the interaction strength and increases
with k as k% (here k is momentum relative to p). At large
enough momenta k, which are still exponentially small in the
inverse interaction strength

(127)

2
—al
k= ppe” @,

(128)

the Lorentzian peak in the spectral function carries most of
the spectral weight. In other words, for k satisfying the in-
equality (128) the dispersion nonlinearity restores the Fermi
liquid character of the particle part of the spectrum. The
numerical coefficient a in the criterion (128) depends on the
fraction of the spectral weight chosen to fall within the
Lorentzian.

It should be emphasized that dispersion nonlinearity
brings about particle-hole asymmetry into the problem. In-
deed, we found that the nonlinearity does not affect qualita-
tively the hole region of the spectrum e<0. The spectral
function here resembles that in the Luttinger liquid, although
with the modified value of the exponent.

Finally, we mention that the emergence of a finite quasi-
particle lifetime brings some ramifications for the theory® of
the structure factor S(¢g,w) of an interacting 1D fermion sys-
tem. It smears the nonanalytical behavior of S(q,w) at w
=vq+q*/2m. The smearing, however, affects only a tiny por-
tion of the frequency interval |w—vgq|=<q¢?/2m. Indeed, the
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width of the smearing region scales with ¢ as 1/ Tq0<q8/ m?,
while the width of the interval of interest is g>/2m.
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APPENDIX A: VERTEX CORRECTIONS

In this appendix we consider the dimensionless coupling
vertex ' characterizing the interaction of the d particle with
the bosonic field ¢ describing excitations within the sub-
bands r and [, see Eq. (64). Our concern here is whether
corrections to I due to interactions within the d subband
affect the leading logarithmic series considered in Sec. IV.
The vertex depends on four variables, I'=I"(e,k,w,q). The
dependence of I" on its arguments around the mass shell is
not singular. It is clear then that the relevant object is the
on-shell vertex correction

T =T (&.k, £vg,q) — 1

(the bare value of the vertex is 1).

By construction of r,/ subbands (see Sec. IV A), the mo-
mentum ¢ transferred to the bosonic field ¢ is restricted to
|g| <\k. Accordingly, the relevant frequencies w=+vq sat-
isfy |w|<Avk<e. It then follows that the two d-particle
Green functions adjacent to the bosonic field ¢ in the dia-
gram such as that shown in Fig. 9(b) carry frequencies of the
same sign, sgn(e)=sgn(e+w). The on-shell vertex correction
can then be expressed via the time-ordered d-particle self-
energy 31 (€) as
T

[7)
ST = ﬁ

e (A1)

+0(q).

5—>§k

The latter is discussed in detail in Secs. III and IV above. In
the second order in d-d interaction the self-energy is purely
real and is given by 3~ yj(e-&)In(A/N), see Sec. IV.
Equation (A1) then yields

Re &I ~ v3 In(A/N) <1, (A2)

where we used Eq. (57). In the fourth order the self-energy
acquires a finite imaginary part on the mass shell, Im 2,((4)
X(&)=-1/27,. Taking into account that Im E,(j) varies with
€ on the scale ~k*/m, and using Eq. (A1), we find

1/7
Imol ~ 5+ <1, (A3)

k“/m

According to Egs. (A2) and (A3), vertex corrections due
to interactions within d subband are small. As far as the

summation of the leading logarithmic contributions in Sec.
IV is concerned, all such corrections can be safely neglected.

APPENDIX B: DERIVATION OF EQUATION (72)

In this appendix we supply technical details needed to
perform the Fourier transform of Eq. (71) leading to Eq.

PHYSICAL REVIEW B 76, 155402 (2007)

(72). The coordinate integration can be performed at once.
With the help of the convolution theorem, the remaining in-
tegral over time can be written as

AK? de'
Gk(e;—,Ak> =f —GGZ(E—G’)]:k(E’), (B1)
mv 2

where

1

Glle=———
k(e) E—§k+i/27'](

(B2)

is the bare d-particle Green function, see Eq. (59) and F,(e€)
is given by

T T
fk(e)=fdte’“ 1+i—(vg+v)t
mv

2
X[1 = iNk(vy—v)e]#4, (B3)
where we denoted w_=pu; and wu,= Mop ik for brevity. The

integration in Eq. (B3) is carried out using the convolution
theorem and the relation

2
2 0(= w4
™ ( 6) e—|e\/K’ (B4)

J‘ dteiet ~ E
(1+ixnreh T(uird) |d

K

where k~ Nk*/m. Taking into account that v,—v=~k/m and
vy+v=2v, we obtain for u, <1

2.2 ’ ’ ’ 2/4 ! 2/4
T 0(e")0(e + # + €\ M+
() ,u8_,u+ J g (e')0(e e)(e ) (e E) .

€€ +e K K

(B5)

Equation (B5) is valid for || < k=Nk?/m. In the case €>0
we have

wuzuz E 7 qu
fk<e>=f(;) B(j,l—%),

(B6)
where 4y2k= wi+ ,ufr, see Eq. (8), and B is the standard beta
function. For weak interactions, . <1, one finds B~4/u’.
The case €<0 is analyzed in a similar way. As a result, we
obtain

2

Yk
[126(e) + u26(- )], (B7)

| €
fk(6)=2—6‘;

covering both cases. We can substitute now Egs. (B2) and
(B7) into Eq. (B1). Rewriting the integral in the latter equa-
tion as the contour integral we obtain
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2
AK? Mop i d
Gk<e;—,Ak> =~ ()% | 2= f =
muv C

4%

where the function z“ is chosen to have a cut in the complex
plain along the negative real axis and contours C, run clock-
wise around the positive (negative) half of the real axis.
Closing the contours at infinity and taking the residue at z
=e—§&+i/27, we arrive at Eq. (72).

APPENDIX C: DERIVATION OF EQUATION (108)
Consider the operator
O (x) = o (= i)
entering Eq. (107). Proceeding in a standard fashion, we sub-

situte here i/ =kye'® with @= ¢", see Eq. (86), and write the
derivative as a finite difference,

(C1)

— ik,

2A

D (x) = —L oW iele+d) _ pmiel=A)] (C2)

On making use of the identity
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2
dz 7%

Cott g od | (B8)

; 2mie— & +il2T -2 _4)/2 c 2mie=§+il2T 2

2,12
eaeb — ea+b:e<ah+(a +b7)/2)

valid for any operators a and b which are linear in bosonic
fields (the colons denote the normal ordering), we find

o 10) pmipxxd) _ e—2<<p2(0)>:e—i[qo(X)+<p(XiA)]: X (1 % 27wikoA).
We now approximate here

erileW )], o 2i00) s A O)-2ipl),

so that
oW gmiol=) < o200 (1 1 2 ik A). (C3)
Equations (C2) and (C3) yield
D (x) = 2mkde W), (C4)

Substituting this expression into W =dTy# [see Egs. (107)
and (C1)], we arrive at Eq. (108).
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