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We discuss the electron spin resonance in two-dimensional electron gas at zero external magnetic field. This
spin resonance is due to the transitions between the electron states, which are split by the spin-orbitsSOd
interaction, and is termed as the chiral spin resonancesCSRd. It can be excited by the in-plane component of
the electric field of microwave radiation. We show that there exists an inherent relationship between the
spin-Hall conductivity and the CSR in a system with the SO interaction. Since in the presence of the SO-
interaction spin is not conserved, the electron-electron interaction renormalizes the spin-Hall conductivity as
well as the frequency of the CSR. The effects of the electron interaction in systems with the SO interaction are
analyzed both phenomenologically and microscopically.
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I. INTRODUCTION

In systems with spin-orbitsSOd interactions the spin of
electrons can be coupled to an electric field, making it pos-
sible to manipulate electron spins without applying magnetic
fields. This is the main reason why the properties of the
electron gas in the presence of the SO interaction are in the
focus of the research in spintronics.1

In semiconductors with a zinc-blende or a wurtzite lattice
the SO interaction originates from the bulk-inversion asym-
metry sBIA d of the crystal structure,2,3 whereas the structure
inversion asymmetrysSIAd typical for heterostructures is an-
other source of the SO interaction4,5 in two-dimensional elec-
tron gass2DEGd.

In the presence of the SO interaction the spin degeneracy
of the electron spectrum is lifted. In this context, the possi-
bility of the existence of the spin-Hall current mediated by
the SO interaction has been discussed recently.6–11 It is now
widely accepted12–16 that in the static limit the disorder sup-
presses the spin-Hall conductivity in the bulk of a macro-
scopic system.17 Therefore, to investigate the bulk effects
related to the SO interaction it is worthwhile to turn to the
high-frequency phenomena whenvt@1.

In this paper we study the ac spin-Hall conductivity in a
2DEG with the Bychkov-Rashba SO interaction.5 We dem-
onstrate that similar to the Hall conductivity, which in the
absence of the SO interaction is inherently related to the
cyclotron resonance, the spin-Hall conductivity is related to a
specific sfor SO systemsd version of the electron-spin reso-
nancesESRd, which has been termed by Rashba as a “com-
bined resonance.”18–20 The combined resonance occurs as a
result of the transitions between the electron states, which are
split by the combined action of the SO interaction and the
Zeeman interaction induced by a static magnetic field. In a
2DEG with the Bychkov-Rashba SO interaction5 the spin-
split eigenstatessin the limit of zero magnetic fieldd are char-
acterized by their chirality. We will be interested in the par-
ticular limit of the combined resonance when a static
magnetic field is absent and the resonance is due to the tran-
sitions between electron states with different chirality. To

underline the nature of this resonance, we use the term “chi-
ral spin resonance”sCSRd, which emphasizes that the dis-
cussed electron-spin resonance occurs between the chiral
states that are spin split by the SO interaction rather than by
the external magnetic field.

In the presence of the SO interaction the dynamics of the
total current and the total spin is affected by the electron-
electronse-ed interaction. Consequently, the frequency and
the width of the CSR as well as the spin-Hall conductivity
acquire renormalization corrections. We start this paper by
applying the Kohn’s theorem21 procedure to analyze the
transverse transport coefficients in systems with the SO in-
teraction. In systems withno SO interactions it is easy to
show that the absence of thee-e renormalization of the Hall
coefficient RH at vct@1 is a direct consequence of the
Kohn’s theorem. We observe, however, that the SO and the
e-e interactions are not compatible in a sense that the equa-
tions of motion for the current operators can be closed when
only one of these interactions is present. Still, this approach
proves to be useful in finding a relation between the spin-
Hall conductivity and the dynamic spin-susceptibility that
holds in the clean limitsvt@1d even in the presence of both
the SO and thee-e interactions.22

A discussion of the Hall and spin-Hall conductivities fol-
lowing the lines of the Kohn’s theorem argumentation is
given in Sec. II. A calculation of the spin-Hall conductivity
in the absence of thee-e interaction using the equation of
motion for the current operators is given in Appendix A.sA
reader not familiar with the spin-Hall conductivity is recom-
mended to look at the calculations in Appendix A before
proceeding further.d In Sec. III we consider the renormaliza-
tion effects in the dynamic spin-susceptibility induced by the
e-e interaction within the framework of the phenomenologi-
cal Fermi-liquid theory. We find the spectrum of the spin
excitations in the SO system and, in particular, determine the
frequency of the spin resonance. Simultaneously, we calcu-
late the effects of thee-e renormalization on the spin-Hall
conductivity. This is how the relationship between the spin-
Hall conductivity and the CSR can be established. In Sec. IV
an alternative microscopic Fermi-liquid analysis of the dy-

PHYSICAL REVIEW B 71, 165329s2005d

1098-0121/2005/71s16d/165329s14d/$23.00 ©2005 The American Physical Society165329-1



namic spin susceptibility is presented for a justification of the
both approaches. In Sec. V we find the disorder-induced
width of the CSR, including itse-e renormalizations. In ad-
dition, the Fermi-liquid renormalizations of the D’yakonov-
Perel rate of the spin relaxation23 are obtained. In the end of
this section we discuss the electron-dipole mechanism20 of
the excitation of the CSR.

Finally, in the concluding sectionsVI d we discuss the per-
spectives of the experimental observation of the CSR, i.e.,
the combined resonance in the vanishing magnetic field. To
observe the CSR, the spin splitting induced by the SO inter-
action should be sufficiently isotropic. For the purpose of
definiteness, the calculation has been performed for the case
of Bychkov-Rashba SO interactionsSIAd. However, the re-
sults of this analysis are applicable in various other situa-
tions. In Appendix B we discuss the forms of the SO inter-
action due to the lack of the inversion symmetry of the host
crystalsBIA d2 corresponding to quantum wells grown in dif-
ferent crystallographic directions. We demonstrate that there
is a duality transformation relating the linear terms in the SO
interaction originating from the SIA and BIA mechanisms.
Because of this duality all the conclusions about the spin-
Hall conductivity and the electron-spin resonance found for
the Bychkov-Rashba SO interaction hold equally well for the
linear terms originating from the Dresselhaus SO interaction
in the cases off001g- and f111g-grown quantum wells.

II. TRANSVERSE CONDUCTIVITIES IN THE PRESENCE
OF THE ELECTRON-ELECTRON INTERACTION

Let us start with the application of the Kohn’s theorem
procedure to the Hall conductivitysand the Hall coefficientd
in a system without a SO interaction. In the presence of a
magnetic fieldB with the corresponding vector potentialA a
many-electron system is described by the Hamiltonian

H = o
i

1

2m
Fpi −

e

c
Asr idG2

+
1

2o
iÞ j

Ve−esr i − r jd. s1d

In this paperm denotes the band-structure mass of an elec-
tron in a heterostructure in contrast tome denoting the
vacuum mass of the electron. The current operator in the
presence of the vector potentialA is

J = o
i

1

m
Fpi −

e

c
Asr idG . s2d

It is convenient to introduce “the angular-momentum com-
ponents” of the current operatorJ

J± = Jx ± iJy s3d

with the commutator

fJ+,J−g = − 2
vc

m
N̂, s4d

where vc= ueuB/mc is the frequency of the cyclotron reso-

nance andN̂ is an operator of the total number of particles in
the system. The Kohn’s theorem states that thee-e interac-
tion does not change the frequency of the cyclotron

resonance.21 The essence of the theorem is the observation
that the electron interaction does not affect the equation of
motion for the total current operator

− i
]

]t
J±std = ± vcJ

±std. s5d

The unique property of the operatorsJ± is that they connect
the pairs of statesl ,m with the energy differenceEl −Em
= ±vc only. The closed equations5d yields for the time de-
pendence of the total current operators

J±std = e±ivctJ±. s6d

With the Kohn’s result for the time dependence of the current
operators, we are fully equipped for the calculation of the
conductivity tensor. According to the Kubo formula, the con-
ductivity tensor in the presence of thee-e interaction is given
by

s+− =
e2

v
E

0

`

dteivtkfJ+std,J−s0dgl = − 2i
ne2

mv

vc

v + vc
, s7d

where k¯l means quantum mechanical as well as thermal
average andn is the density of the electron gas. Finally,
having in mind thats−+svd=−s+−s−vd, s++=s−−=0, and
sxy=−syx=s1/4idfs−+−s+−g, one gets for the transverse
components of the conductivity tensor the following result:

sxy = −
ne2

m

vc

vc
2 − v2 . s8d

Remarkably, the factorn preserves here its physical meaning
of the density of the electron gas and does not acquire any
renormalization correction in the presence of the electron
interaction because of the universal form of the commutator
s4d. Together with the absence of the renormalization correc-
tions to the cyclotron frequency this leads to an important
consequence for the Hall coefficientRH=rxy/B. Inverting the
conductivity tensor one obtains in the dc limitv→0,

rxy =
m

ne2vc; RH = − 1/nec. s9d

Thus, the absence of the renormalization corrections toRH in
the clean limit, vct@1, is a direct consequence of the
Kohn’s theorem. For the limit of a weak magnetic field,
vct!1, the proof of the absence of the renormalization cor-
rections to the Hall coefficient of an interacting electron gas
requires a considerable effort.24

Let us check the possibility to extend the Kohn’s theorem
to a 2DEG with the Bychkov-Rashba SO interaction5 origi-
nating from the structure-inversion asymmetry of the hetero-
junction

HSO= o af pi 3 ,g · si , s10d

where the unit vector, is perpendicular to the plane of the
2DEG. In the presence of the SO interaction the current op-
eratorJ contains a spin-dependent term
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J = oSpi

m
+ af, 3 sigD ; P/m+ 2af, 3 Sg. s11d

Here P and S are the operators of the total momentum and
spin, respectively. Since thee-e interaction commutes with
the current operator the interaction drops out from the equa-
tion of motion forJ, as it takes place in the Kohn’s theorem.
Still, the current operator has a complicated dynamics due to
the SO interaction. For example, for the componentJy one
gets

idJy/dt = − 2ia2 o pi
xsi

z = − 4ima2Jz
x, s12d

whereJz
x is thex component ofz-spin current operator

Jz
x =

1

2 o pi
x

m
si

z. s13d

An attempt to get a closed system of equations by supple-
menting Eq.s12d with the equation of motion forJz

x fails. It
happens in the following way: in the equation of motion for
the total currentJa the contributions from thee-e interaction
term Ve−e cancel pairwise: ]Ve−esr i −r jd /]r i +]Ve−esr i

−r jd /]r j =0. On the contrary, in the equation of motion for
the spin currentJz

x each of the derivatives is multiplied by a
spin operator of different particles and as a result, thee-e
interaction does not drop out: si

z]Ve−esr i −r jd /]r i

+s j
z]Ve−esr i −r jd /]r j =ssi

z−s j
zd]Ve−esr i −r jd /]xi Þ0.

The very fact thatVe−e does not drop out from the equa-
tions of motion indicates that in the presence of the SO in-
teraction the dynamics of the electron gas is affected by the
e-e interaction. In spite of this complication, the Kohn’s
theorem approach is useful for proving the relation between
the spin-Hall conductivity and the dynamic spin susceptibil-
ity that remains intact even in the presence of thee-e inter-
action ssee also Ref. 22d. The spin-Hall conductivity§xy

z de-
scribes the response of the spin-z-component current in thex
directionJz

x to the electric field applied in they direction. It
is determined by the Kubo formula as follows:

§xy
z =

e

v
E

0

`

dteivtkfJz
x,Jys− tdgl. s14d

To explore its relation with the spin susceptibility we elimi-
nateJz

x in favor ofJy with the use of Eq.s12d. Performing the
time integration by parts one obtains

§xy
z =

ie

4ma2E
0

`

dteivtkfJystd,Jys0dgl. s15d

In a translation-invariant system the total momentumPstd is
a conserved quantity, the commutatorfPstd ,Ss0dg
=fPs0d ,Ss0dg=0, and, therefore, the momentum operatorPy

drops out from Eq.s15d. Finally, one gets

§xy
z svd =

ie

m
E

0

`

dteivtkfSxstd,Sxs0dl. s16d

Thus, there is a direct connection between§xy
z and the dy-

namic sretardedd spin susceptibility

§xy
z =

e

m
xxxsq = 0,vd,

xxxsq = 0,vd =
i

4
E

0

`

dteivtko fsi
xstd,si

xs0dgl . s17d

In the presence of the SO interactionxxx has a behavior that
differs radically from that whena=0. In the absence of the
SO interaction the total spin is conserved. Therefore,xxxsq
=0,vda=0=0 and, consequently, the spin-Hall conductivity
vanishes ata=0, whereas at any finitea one getsxxxsq
=0,vdÞ0 and, consequently,§xy

z Þ0.
It is worth noting that Eq.s17d is valid only in the absence

of disorder. The correlation functionxxx, by itself, is insen-
sitive to disorder as long as the elastic scattering rate is less
than the spin-splitting energy. However, the relation between
§xy

z and xxx is very subtle12–16 because in the presence of
disorder the momentum is not conserved, and there is a com-
petition between the spin and momentum contributions to the
current vertexsinter- and intrabranch contributions in termi-
nology of Ref. 16d. The involvement of the momentum part
of the current operator makes Eq.s17d unapplicable for ana-
lyzing the static limit of the spin-Hall conductivity in the
presence of disorder or an external magnetic field. Still, Eq.
s17d is valid whenv@h2 fsee Eq.s57d and the discussion in
the end of Sec. Vg and will be used for the analysis of the
CSR.

III. FERMI-LIQUID ANALYSIS OF SPIN CORRELATION
FUNCTION IN THE PRESENCE OF SO INTERACTION:

THE SPIN RESONANCE

It has been demonstrated above that in the presence of the
SO interaction, the dynamics of the total current is affected
by the e-e interaction. As a consequence of this fact, the
spin-Hall conductivity acquires corrections, which we ana-
lyze now with the use of the methods of the phenomenologi-
cal Fermi-liquid theory. Since the calculation of the spin-Hall
conductivity reduces in the clean limit to determining the
dynamic spin-susceptibility, one can follow the derivation of
the spin-waves spectrum in the Fermi liquid in an external
magnetic fieldssee Chap. 1, §5 in Ref. 25d. There is an
important difference, however, between the spin splitting in-
duced by the external magnetic field and the SO interaction.
As a result of the SO interaction the spin of an electron feels
an “individual” magnetic field, which is directed perpendicu-
lar to the momentum of the electron. For this reason, to
analyze the spin dynamics in the presence of the SO interac-
tion it is convenient to introduce the chiral basis with the
rotated Pauli matricestp

n =sap
n ·sd, where ap

n =ha1,a2,a3j
=h−, ,p̂ ,p̂3,j andp̂ stands for a unit vector in the direction
of momentump. fHere we consider the Bychkov-Rashba SO
interaction. Similar analysis can be done for the case of SO
interaction induced by BIA2 ssee Appendix B for detailsd.g

Sinceap
n form an orthonormal basis,t matrices have the

same commutation relations as the Pauli matrices. In the chi-
ral basis, the free single-particle Hamiltonian acquires the
diagonal form
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HSO=
p2

2m
+ auputp

3 s18d

with the energy spectrum split into two chiral branches

ep
± = p2/2m± ap. s19d

In the presence of thee-e interaction the spin splitting
induced by the SO interaction is renormalized. It can be de-
termined by a self-consistent equation

dêp
SO= afp 3 ,g · s + Tr8E dV8 f̂pp8

]n

]e
dêp8

SO, s20d

where f̂pp8 is the function introduced by Landau to describe
the effects of electron interaction in the Fermi liquid, and Tr8
denotes the trace with respect to the spin indices. In Eq.s20d
dn̂p

SO=]n/]edêp
SO is the response of the distribution function

of the quasiparticles to the SO-interaction term, while the
integral term describes the modification of the quasiparticle
energy spectrum as a result of the change of the quasiparticle
distribution. Note that Eq.s20d is a matrix equation in spin

space, and we use for the functionf̂pp8 the standard notation

nseFd f̂pp8=Fsupp8d+Gsupp8dsW ·sW 8, whereupp8 is an angle be-
tweenp andp8, andnseFd=m* / p is the renormalized den-
sity of states for both spin components in a 2DEG.sNatu-
rally, only the spin-dependent part of the Landau’s function
is important for the phenomena related to the SO interac-
tion.d To solve Eq.s20d one should expandGsud in a series of
2D harmonics,Gsud=omGmeimu, and exploit the following
property of the Pauli matrices:sW ·TrssW 8tp

nd=2tp
n. As a result,

the renormalized spin splitting of the electron energy spec-
trum, dêp

SO;a* pFtp
3, is determined by the renormalized SO

parametera* = a / s1+G1d; see also Ref. 26.
To find the dynamic spin susceptibilityxsq=0,vd we cal-

culate a response linear in the time-dependentin-planemag-
netic field Bxe

ivt. Consider the equation of motion of the
density matrixdn̂ in the Landau’s Fermi liquid in the pres-
ence of the SO interaction and the perturbation termdêB,
which is introduced by the magnetic field,

dêB = − gmBssx/2dBxe
ivt = − sxFeivt, s21d

wheremB=e" /2mec and the Lande-factorg depends on the
semiconductor.fIn GaAs g=−0.44, whereas in InxGa1−xAs
heterostructures the absolute valueugu can be an order of
magnitude larger.g Since spin variables are involved,dn̂ is a
matrix in spin space and its time evolution is given by the
commutator

i
]

]t
dn̂p = fdn̂p,dêpg. s22d

In our casedêp=apFtp
3+dêB+Tr8edV8 f̂pp8dn̂p8, where the

last term accounts for the effects of the Fermi liquid.
To find the response linear in the magnetic field, one has

to consider the case when the magnetic term is much smaller
than the spin-orbit one,dêB!2apF. In Eq. s22d the static
part of dn̂p induced by the SO interaction,dn̂p

SO, should be
separated from a time-dependent partdn̂p

B

dn̂p = dn̂p
SO+ dn̂p

B. s23d

After this separation Eq.s22d can be linearized with respect
to dêB anddn̂p

B

i
]

]t
ûp = − Fdêp

SO,ûp + nseFd
1

2
Tr8E dV8 f̂pp8ûp8G

+ fdêp
SO,sxgFeivt. s24d

Here we rewritedn̂p
B in terms of the displacement function

ûp, describing the deformation of the Fermi surface,dn̂p
B

=s]n/]edûp snote that ûp depends on the direction of the
vectorp and is a matrix in spin spaced. In Eq. s24d, the static
partdn̂p

SO has been absorbed bydêp
SO giving the renormalized

spin-splitting energyD

dêp
SO= a * pFtp

3 =
1

2
Dtp

3. s25d

With the use ofsx=spxtp
2+pytp

3d /p the “driving-force” term
in the above equation can be rewritten as

fdêp
SO,sxgFeivt = − iDt1px

p
Feivt. s26d

To solve Eq.s24d, we represent the matrixûp in terms of
t matrices:ûp=u1supdt1+u2supdtp

2+u3supdtp
3, where up de-

notes the direction of the vectorp. The coefficientsuisupd are
determined by a system of equationssupp8;up−up8d

D−1du1supd
dt

= u2supd +E dup8Gsupp8dcosupp8u2sup8d

− Feivtcosup, s27ad

D−1du2supd
dt

= − u1supd −E dup8Gsupp8du1sup8d, s27bd

du3supd
dt

= 0. s27cd

In the transition from Eq.s24d to Eqs.s27ad ands27bd it has
been used thatsW ·TrssW tp8

n d=2tp8
n and that the commutator

ftp
3 ,tp8

2 g=−2it1cosupp8.

Since the functionf̂pp8 depends on the directions of vec-
tors p andp8 through cosupp8 only, Eqs.s27ad–s27cd can be
solved by expanding uisud in 2D harmonics, uisud
=omui

meimu

D−1du1
m

dt
= u2

mF1 +
1

2
sGm+1 + Gm−1dG −

1

2
sdm,1 + dm,−1dFeivt,

s28ad

D−1du2
m

dt
= − u1

ms1 + Gmd. s28bd

It has been used here thatGsudcosu→ s1/2dsGm+1+Gm−1d
and that the harmonics coefficients are even inm, Gm=G−m

sthis is because the functionf̂pp8 is even inupp8d. After the
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time-Fourier transform one gets the frequencies of the spin
waves

vm
2 sq = 0d = D2s1 + GmdF1 +

1

2
sGm+1 + Gm−1dG . s29d

In the absence of thee-e interactionvm does not depend on
m as each spin precess independently in the individual field
induced by the SO interaction with the same frequency. The
e-e interaction couples the precession motion of different
spins, thereby lifting the degeneracy of the precession by
renormalizing the frequency. As a result one gets a set of the
spin-wave excitations corresponding to different 2D harmon-
ics. Unlike the noninteracting case where the spin precession
is circular, in the presence of thee-e interaction, the preces-
sion is elliptical.

When an electromagnetic field is applied to the electron
gas the CSR can be excited. The only harmonics activated by
the in-plane field are those withm= ±1

u1
±1 = − i

vD

2sv1
2 − v2d

Feivt, s30ad

u2
±1 = s1 + G1d

D2

2sv1
2 − v2d

Feivt, s30bd

and, therefore, the CSR frequencyvCSR is determined byv1

vCSR= Dhs1 + G1df1 + 1
2sG0 + G2dgj1/2. s31d

Unlike the ESR in the absence of the SO where the reso-
nance frequency is not renormalized,vCSR is renormalized
by thee-e interaction. This is quite natural as the ESR analog
of the Kohn’s theorem21 does not hold in the presence of the
SO interaction.

To find the spin-spin correlation functionxxx we calculate
Sx= 1

2nseFdTre ûpssx/2dsdu /2pd as a response of the electron
gas to the magnetic fieldBx. Only tp

2-component ofûp con-
tributes and, therefore,

Sx =
1

4
nseFdo

m

u2
mfdm,1 + dm,−1g

= nseFds1 + G1d
D2

8fsvCSRd2 − v2g
sgmBdBx. s32d

Noting that xxx is equal toSx/ sgmBBxd, one obtains in the
limit of small v!vCSR,D that

xxxsq = 0,v → 0daÞ0 =
1

8

nseFd
1 + 1

2sG0 + G2d
, s33d

and correspondingly in the absence of disorder the renormal-
ized value of the spin-Hall conductivity in the limit of small
frequencyssee the discussion in the end of Sec. IId is equal to

§xy
z =

e

8p

1

1 + 1
2sG0 + G2d

m*

m
. s34d

The angular structure of the corrections to§xy
z calculated in

Ref. 22 to the lowest order in thee-e interaction are in agree-
ment with this result.

In the above consideration we find the dynamic spin sus-
ceptibility by calculating the response to a magnetic field
Beivt coupled to the magnetic moments of electrons via the
Zeeman interaction. Actually, as a mechanism of the excita-
tion of the CSR this type of coupling is very ineffective. In
the presence of the SO interaction the electromagnetic field
A can excite the spin-flip transitions much more effectively
by coupling through the electric-dipole interaction −se/cdAJ.
sFor the electric-dipole excited spin resonance see Ref. 20.d
The relative effectiveness of the two mechanisms is of the
order of the ratio of the Compton length to the electron
wavelength:sÂ /ld2,10−9−10−8. We postpone the discus-
sion of excitation of the CSR as well as of the width of the
resonance to Sec. V.

Finally, a further comment is in order. The above calcula-
tion demonstrates an inherent relationship between the spin-
Hall conductivity and the CSR. The same correlation func-
tion, xxxsq=0,vdaÞ0, describes the resonance and determines
the value of§xy

z , including its static limit. Actually, the exis-
tence of a relationship between a transverse conductivity and
a corresponding resonance is generic. In clean systems, in
the absence of dissipation, the longitudinal conductivity
sxxsvd vanishes when the frequencyv is in the range 1/t
!v!DE as at such frequencies the dipole transitions with
the energyDE cannot be excited. Unlike the longitudinal, the
Hall conductivity, as well as the spin-Hall one, are related
not to the real transitions but to the virtual. This leads to the
generic relationship between the transverse conductivities
and the corresponding resonance; see also Sec. II, where the
connection between the Hall conductivity and the cyclotron
resonance has been demonstrated.

IV. SPIN CORRELATION FUNCTION IN THE PRESENCE
OF THE SO INTERACTION: MICROSCOPIC

CALCULATION

In this section we develop a microscopic derivation of the
dynamic spin susceptibility as an alternative to the phenom-
enological description presented in Sec. III. As a whole, we
follow the scheme elaborated for the microscopic derivation
of the dynamic spin susceptibility by one of us in Ref. 27.

Let us discuss the ladder diagrams for the spin-density
correlation function presented in Fig. 1. We choose to work
with the amplitudes known in the Fermi-liquid theory asGk.
This approach has the following reasoning. A two-particle
vertex functionGsv ,kd includes an irreducible part, the con-
tributions from the incoherent scattering, and, most impor-

FIG. 1. Spin-density correlation function.
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tantly, the contributions from a multiple rescattering of
electron-hole quasiparticle pairs. Apart from small correc-
tions ,a /vF!1, neither the irreducible part of the vertex
function nor the contributions from the incoherent scattering
are sensitive to a small modification of the electron spectrum
because they accumulate their values far from the Fermi sur-
face. On the contrary, the rescattering of a quasiparticle pair
requires certain care. The reason is that the contribution from
a cross section with an electron-hole pair as an intermediate
state is equal to a singular combinationvFk / sivn−vFkd,
wherevFk originates fromdekspd=esp+kd−espd ssee Chap.
2, § 17 in Ref. 25d. Index k in Gk means that inGsv ,kd the
contributions of such cross sections are taken as follows: one
first takesv=0 and only afterward takes the limitk→0. In
the presence of the SO interaction the energy difference
dekspd acquires a gap when the two quasiparticles have dif-
ferent chirality. The order of limits corresponding toGk

makes this amplitude to be not sensitive to a gap in the
energy spectrum of the quasiparticles. Indeed, in the consid-
ered order of limits the combinationdekspd / fivn−dekspdg is
equal to −1 for any energy spectrum of electrons. Altogether
this argumentation28 leads to the conclusion that the values
of the static amplitudesGk are not modified by a SO interac-
tion apart from small corrections,a /vF!1. This feature of
the amplitudeGk makes it particularly convenient for the
purposes of the microscopic analysis. Diagrammatically the
amplitudeGk can be defined as a two-particle amplitude ir-
reducible with respect to a RA sectionsby the RA section we
understand a product of the two Green’s functions when one
of them is retarded, while the other one is advancedd. With
the use ofGk, the ladder diagrams for the two-particle corre-
lation functions are rearranged in such a way that the blocks
of the combination ivn/ fivn−dekspdg rather than
dekspd / fivn−dekspdg stand separated by amplitudesGk.

Depending on the spin structure the two-particle ampli-
tude can be split into two parts

nseFd
2

a2Ĝ1
k

a3

a1
a4

a2sp,p8d = G1sp,p8dda1,a3
da2,a4

,

nseFd
2

a2Ĝ2
k

a3

a1
a4

a2sp,p8d = − G2sp,p8dda1,a2
da3,a4

. s35d

Here matricesĜ1,2
k denote the spin-dependent amplitudes,

while the dimensionless functionG1,2 determine the param-
eters of the Fermi-liquid theorysin G1,2 the indexk is omit-
tedd. The minus sign in the amplitudeG2 is due to the anti-
commutation of the fermionic operators. The factora
appears in a standard way because it describes the weight of
the quasiparticle part in the Green’s function.25 For electrons
at the Fermi energy the functionsG1,2sp ,p8d=G1,2supp8d de-
pend on the scattering angleupp8 only. The coefficients of the
expansion ofG1,2supp8d in angular harmonics are used as the
parameters of the Fermi-liquid theory. In 2D they are defined
as follows:

G1,2
m =E du

2p
G1,2sudexps− imud. s36d

Now we turn to triangle verticesg. Like Gk, the vertexg
in Fig. 1 is a dressed vertex irreducible with respect to RA
sectionssi.e., it extends from an external vertex to the first
RA sectiond. The arguments concerning insensitivity of the
static limit of the two-particle vertex functions to the SO
interaction remains also validswith an accuracy,a /vF!1d
for the renormalized “triangle” vertexg. Since we are inter-
ested in the spin-density correlation function, we consider
the case when the external vertices contain a spin operator
sx/2 ssuch a vertex is denoted below asĝsxd. Due to the
Fermi-liquid corrections the vertexĝsx acquires the renor-
malization factors1+G2

0d, whereG2
0 is zero harmonics of the

interaction amplitudeG2sp ,p8d. The last contribution in Fig.
1 to be commented on is the static spin susceptibilityxxxsv
=0d sthis correlation function does not contain any RA sec-
tionsd. According to the same argumentation it is equal to
s1/4dnseFds1+G2

0d.
The singular part of the matrix Green’s function in the

presence of the Bychkov-Rashba SO interaction is

Ĝsie,pd = o
z=±1

uzpl
a

ie − ep
z + m

kzpu, s37d

where the residuea is a weight of the quasiparticle part in
the Green’s function.fIn what follows the singular parts of
the Green’s functions will be used without the factora. This

is the reason for attachinga2 to the matricesĜ1,2
k in the

relationss35d. With the use of the effective massm* and a
proper redefinition of triangle verticesg the explicit depen-
dence on the residuea drops out from the Fermi-liquid
calculations.25g The direct product of spinorsuzplkzpu in the
Green’s functionGsie ,pd is the projector onto the chiral
states with the eigenenergiesep

z =p2/2m* + zD /2; here and in
what follows the chiral state indexz= ±1. The eigenspinors
in Eq. s37d can be found from the eigenvalue problem fortp

3

matrix

tp
3uzpl = zuzpl, uzpl =

1
Î2
Fize−iqp

1
G , s38d

wheree±iqp=spx± ipyd /p.
To conduct the calculation in the chiral basis, the spinors

will be transferred from the Green’s functions to the interac-
tion amplitudes and to the verticesĝsx ssee Fig. 1d. As a

result, one gets for the matricesĜ1,2

nseFd
2

a2Ĝ1
k

z3

z1
z4

z2sp,p8d = G1sp,p8dkz3puz1plkz2p8uz4p8l,

nseFd
2

a2Ĝ2
k

z3

z1
z4

z2sp,p8d = − G2sp,p8dkz2p8uz1plkz3puz4p8l,

s39d

and, similarly, for the verticesĝsx

aĝsx
z2

z1spd = s1 + G2
0dkz1pu

sx

2
uz2pl,
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az2

z1ĝsxspd = s1 + G2
0dkz2pu

sx

2
uz1pl, s40d

where the first and second lines correspond to the left and
right triangle vertices in Fig. 1.

The matrix elements appearing in Eqs.s39d and s40d can
be easily found

kzpuuz8p8l =
zz8eisqp−qp8d + 1

2
,

kzpusxuz8p8l =
zeiqp − z8e−iqp8

2i
. s41d

Then, for the matrixĜ1 one has

nseFd
2

a2Ĝ1
k

z3

z1
z4

z2sp,p8d =
1

4
G1sqpp8ds1 + z1z3ds1 + z2z4d,

s42d

and for the matrixĜ2, which is of special importance since it
controls the dynamics of spins, one getssqpp8=qp−qp8d

nseFd
2

a2Ĝ2
k

z3

z1
z4

z2sp,p8d = −
1

4
G2sqpp8df1 + z1z2z3z4 + z1z2e

−iqpp8

+ z3z4e
iqpp8g. s43d

Note that there appears an additional angular dependence
because of the factorse±iqpp8 and therefore in the expansion
in a series of 2D harmonics one should take into consider-
ation thatGsqde±iq→Gm71.

It will be convenient to represent the matricesĜ in the

chiral basis by 434 matricesĜi j . For that we choose the
following convention. The first indexi represents the left
pair of indicess z1

z3
d in the orders +

+
d , s −

−
d , s +

−
d , s −

+
d, while the

second indexj represents the right pair of indicess z2

z4
d in the

same order. Finally, after the expansion in 2D harmonics, the

explicit block-form expressions for the matricesĜi j look as
follows sSx= u 0 1

1 0ud:

nseFd
2

a2Ĝ2
ksmdi j = −

G2
m

2
U1 + Sx 0

0 1 + Sx
U

−
G2

m+1

4
U1 − Sx 1 − Sx

1 − Sx 1 − Sx
U

−
G2

m−1

4
U 1 − Sx − 1 +Sx

− 1 +Sx 1 − Sx
U , s44d

and

nseFd
2

a2Ĝ1
ksmdi j = G1

mU1 + Sx 0

0 0
U . s45d

Note, that one can combineĜ1 with the top-left block in the

first term of Ĝ2 to create the amplitudesG1−G2/2ds1+Sxd,
which controls the singlet channel of the electron-hole exci-

tationsscharge-density excitationsd. Since the spin dynamics
is controlled bys1−Sxd and s1+Sxds1−Sxd=0, the singlet
channel amplitude is decoupled from spin excitations.

It remains to calculate the triangle verticesĝsx, which are
represented in a four-row-column form assgsxdi and jsg

sxd.
For the left vertex, one hassgsxdi ;aĝsx

z2

z1=s1+G2
0d

3kz1pusx/2uz2pl and for the right vertex,jsg
sxd;az2

z1ĝsx

=s1+G2
0dkz2pusx/2uz1pl. With the use of Eq.s41d one obtains

sgsxdi =
s1 + G2

0d
4i

fz1d m,−1 − z2d m,1g

=
s1 + G2

0d
4i

Sd m,−1Uc

c
U + d m,1U− c

c
UD . s46d

Here the columnc=f 1
−1

g has been introduced to shorten the
notations. Similarly,

jsg
sxd = −

s1 + G2
0d

4i
fz1d m,−1 − z2d m,1g

= −
s1 + G2

0d
4i

Sd m,−1Uc

c
U + d m,1U− c

c
UD . s47d

To proceed further, we discuss a RA section in Fig. 1.
Since we are studying the dynamic susceptibility,xxxsq
=0,vd, the momenta in the product of the two Green’s
functions GRGA coincide. After the integration over
j=p2/2m*−m the product of two Green’s functions yields

sGRGAdz2

z1 =
1

2
nseFd

2pi

ivn − Dsz1 − z2d/2
. s48d

Here the product of the Green’s functions with different
chirality acquires the difference of the frequency and the spin
splitting of the energy spectrum in the denominator, while
sGGd+

+ andsGGd−
− are insensitive to the SO spin splitting. To

describe the rescattering of a pair of quasiparticles, one has

to consider a ladder of RA sections with the amplitudesĜk in

between. The amplitudesĜk are accompanied by the fre-
quency summation. Ultimately, the geometrical series of the
ladder diagrams for the two-particle propagation function

yields fsGRGAd−1−svn/2pdĜkg−1, whereĜk is determined in
Eqs. s44d and s45d, whereas the productsGRGAd is consid-
ered as a matrix with the diagonal elements only that are
given by Eq.s48d. Owing to the chiral nature of the spectrum
of the excitations the triangle verticesĝsx activate the chan-
nels withm= ±1 only. This fact has been already observed in
the phenomenological treatment and here reveals itself in
Eqs.s46d ands47d through the Kronecker’sd m,±1. As a con-
sequence, in the calculation of correlation functionxxx only

the matricesĜ1
m=±1 and Ĝ2

m=±1 are involved.
Performing the necessary matrix multiplications and the

remaining frequency summation one gets for the dynamical
part of the spin correlation function
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xxx
dynamicsq = 0,vd

=
1

8
nseFds1 + G2

0d2

3
− D2 + 2v2s1 + G2

1ds1 + G2
2d

D2f1 + sG2
0 + G2

2d/2g − v2s1 + G2
0ds1 + G2

1ds1 + G2
2d

.

s49d

Here we performed an analytic continuation from the posi-
tive frequencies on the Matsubara axis to the real frequency
axis by ivn→v. Together with the static part ofxxx

staticsv
=0d=s1/4dnseFds1+G2

0d this leads to the final result

xxx
totalsq = 0,vd

=
1

8
nseFds1 + G2

0d

3
D2s1 + G2

2d
D2f1 + sG2

0 + G2
2d/2g − v2s1 + G2

0ds1 + G2
1ds1 + G2

2d
.

s50d

Remarkably, this expression reduces to Eq.s33d obtained
phenomenologically

xxxsq = 0,v → 0daÞ0 =
1

8

nseFd
1 + 1

2fG0 + G2g
, s51d

when the relation

s1 + Gmd = 1/s1 + G2
md s52d

is appliedfsee Chap. 2, § 18 in Ref. 25 and note that in Eqs.
s18.7d ands18.9d of the textbookC=−G2 andB=−G2+2G1g.
The resonance frequency obtained in Eqs.s49d and s50d re-
produces correctly the frequency of the CSR as given by Eq.
s31d.

V. RENORMALIZATIONS OF DISORDER-INDUCED
RESONANCE BROADENING AND SPIN-RELAXATION

RATE

In this section we first extend the treatment of the dy-
namic spin susceptibility to include the disorder. This pro-
vides us with a source of the spin relaxation, which leads to
the broadening of the chiral spin resonance. Next we con-
sider the coupling of the spin degrees of freedom to the elec-

tromagnetic field through the current operator.sFor the sake
of brevity the electric-dipole interaction as a driving force of
the spin resonance was ignored in Sec. III where the cou-
pling via the magnetic moment only was considered.d We
show, however, that in excitation of the CSR the electric-
dipole interaction is, by far, dominating. Eventually, we com-
pare the intensity of the dissipation through the resonant
transitions with the nonresonant ac-Drude losses.

To account for the impurities, the RA sections in the
above calculations of the spin susceptibility should be re-
placed by the diffusion ladders. After the standard averaging
over the impurities the effective scattering amplitude due to

disorder is equal toĴ=nimpu
2supp8dda1a2

da3a4
, wherenimp is

the number of impurities per unit square,usupp8d is the ma-
trix element of the impurity potential, and the Kronecker’s

symbols describe the spin structure ofĴ. It is assumed that
for electrons at the Fermi energyusupp8d is a function of the
scattering angle only. The disorder averaged Green’s func-
tions are

Gz
RAsie,pd =

1

ie − espd − zD/2 ± i/2t
, s53d

where the scattering rate 1/t=pnseFdnimpku2supp8dlu. For
weak enough SO interaction the scattering rate 1/t is inde-
pendent of the chiralityz. Note also that the static amplitude

Ĝk can be taken ignoring the influence of the disorder when
1/eFt!1 based on the arguments presented in the beginning
of Sec. III.

To study the spin-density correlation function we sum the
ladder diagrams describing the two-particle propagation
function in the electron-hole channel. For a clean system this

propagation function is equal tofsGRGAd−1−svn/2pdĜkg−1.
Now the multiple rescattering induced by the impurity am-

plitude Ĵ and by thee-e interaction amplitudeĜk should be

considered simultaneously. The impurity amplitudeĴ, unlike

Ĝk, preserves the frequency of the scattered electrons, and
therefore in the two-particles diagrams it is not accompanied
by the frequency summation. Hence, to include the impurity

scatteringĴ in the two-particles propagation function it suf-
fices just to modify the previous result as follows:

fsGRGAd−1−Ĵ−svn/2pdĜkg−1. As a result, for the total spin-
spin correlation function one obtainsfcompare with Eq.s50dg

xxx
totalsq = 0,vd =

1

8
nseFds1 + G2

0d
D2sx2vn + 1/t2d

D2fsx0 + x2dvn/2 + 1/2t2g + x0vnsx1vn + 1/t1dsx2vn + 1/t2d
. s54d

Here the scattering rates 1/t1 and 1/t2 are determined by the impurity scattering potential as follows: 1/tm=pnseFdnimpkf1
−exps−imudgu2supp8dlu with m=1,2, while the frequency renormalization factorsx0,1,2=1+G2

0,1,2. Since it isG2 that controls
the interaction in the spin-density channel, the correlation functions54d is determined only by the coefficients of the angular
expansion of this amplitude.

Equations54d reveals the existence of the CSR when the system is clean enough,D@1/t1,2. To determine the position and
width of the resonance, one has to perform the analytical continuation of the retarded correlation functions54d from the
Matsubara axis to the real one and to find the roots of the cubic polynomial in the denominator of Eq.s54d. In the vicinity of
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the resonance, the spin-density correlation function can be
written as

xxx
totalsq = 0,vd = −

1

8
nseFd

s1 + G2
0d

s1 + x2/x0d
vres

2

v2 − vres
2 + 2ih2v

.

s55d

The renormalized frequency and the width of the CSR are,
correspondingly,

vres= DS1 + x2/x0

2x1x2
D1/2

, s56d

and

h2 =
1

2x2s1 + x2/x0dt2
+

1

2x1t1
. s57d

Under the condition of stability of the electron liquid all the
parametersx0,1,2 are positivesno Pomeranchuk’s instabili-
tiesd and h.0. The positive sign ofh2 corresponds to the
attenuation of the spin-density excitations as it should be.

The third pole, which is purely imaginary,h1=−i / fsx0

+x2dt2g, describes the relaxation rate of the “chiral magneti-
zation.” Both relaxation ratesh1,2 are determined by the
combinations of the scattering rates 1/t1,2 only, which is
natural forD@1/t1,2.

Note that the structure of the denominator in Eq.s54d is
rich enough that regimes with other relaxation rates and dif-
ferent parameters of the resonance are possible when
1/sx1t1d , 1 /sx2t2d, and 1/fsx0+x2dt2g differ significantly
from each other. This is likely to happen near an instability
when one ofx0,1,2@1.

In the limit when the SO interaction is smallsi.e., when
D!1/t1,2d, it follows from Eq.s54d that the rate of the spin
relaxation is determined by the D’yakonov-Perel
mechanism23 with a proper Fermi-liquid renormalization

xxx
totalsq = 0,vd =

1

8
nseFds1 + G2

0d
D2t1

D2t1/2 + s1 + G2
0dvn

.

s58d

Let us now discuss the mechanisms of excitation of the
CSR. The peculiar feature of the SO systems is that the
single-particle current operatorJ contains spinfsee Eq.s11dg.
Consequently, the electric-dipole interaction −se/cdAJ
couples the electromagnetic fieldA to the spin density. The
electric-dipole interaction is a much more effective way of
excitation of the spin resonance compared to coupling of the
electromagnetic wave to the magnetic moments via the Zee-
man interaction.sTo excite the CSR it is necessary to have an
in-plane component of the electric field of the radiation. This
can be achieved either in the Faraday geometry when the
electromagnetic wave is incident along the direction perpen-
dicular to the plane of the 2DEG or in the extraordinary
Voigt geometry when the electromagnetic wave propagates
parallel to the plane of the 2DEG with the in-plane electric
field.d To clarify this issue, consider the electromagnetic

wave in the Faraday geometry withEstd= x̂E0e
ikz−ivt and

Bstd= ŷE0e
ikz−ivt. The energy dissipation rate according to the

Kubo formalism is determined by

Q = 2 ResxxsvdE0
2 + 2vsgmBd2Im xyysvdE0

2. s59d

Note that at the absence of the external magnetic field there
is no superposition contribution from the electric- and
magnetic-dipole interactions toQ. For the purpose of com-
parison of the two mechanisms, let us confinesxxsvd to the
contribution originating from spin transitions. When only the
spin term of the current operator is kept in the correlation
function determining the conductivity, it follows immedi-
ately that Resxxsvd=s4e2a2/vdIm xyysvd and the dissipa-
tion rateQ can be written as

Q = 2v Im xyysvdF4e2a2

v2 + sgmBd2GE0
2. s60d

For v=vres the first term in the square brackets does not
depend on the SO-coupling constanta. Omitting all renor-
malizations, it is,e2"2/pF

2, while the second term can be
estimated as,e2Â2, where the Compton’s lengthÂ=" /mec.
The dipole moment corresponding to the wavelength of the
electrons is few orders of magnitude larger than the dipole
moment corresponding to the Compton’s length, and there-
fore only the electric-dipole mechanism is relevant for the
excitation of the CSR. The relative strength of the two
mechanisms issÂ /ld2,10−9–10−8.

Ignoring the momentum part of the current operator in the
correlation function that determinessxxsvd is justified in the
clean system only, i.e., when the total momentum is con-
served. In the presence of disorder the situation is more
subtle. Namely, in the limitv!1/t the momentum part of
the current operator participates equally in the excitation of
the spin-flip transitions. Moreover, there are claims that in
the static limit the spin-flip transitions cannot be excited
through the electric-dipole interaction, −se/cdAJ, because
there is a complete cancellation between the two terms of the
current operator.sThis cancellation has been noted in Refs.
12–16 in the context of vanishing of the static spin-Hall con-
ductivity in the bulk of a macroscopic system.d In the high-
frequency limit the balance between different terms of the
current operator is changed, and participation of the momen-
tum part of the current operator in the excitation of the spin-
flip transitions becomes insignificant.

Let us clarify the action of the different terms of the
current on the spin-flip transitions when the frequency is
finite. Suppose that the current-current correlation function
begins with the momentum part of the current operator.
Naively it cannot excite the spin transitions because

Tredj pFĜRsie ,PdsxĜAsie ,pd~edjfoddsjd, where foddsjd is
an odd function ofj. To get a nonvanishing contribution to
the spin transitions from these terms one has to keep the
dependence onj either in the current vertex or in the spin-
splitting of the energy spectrumsboth depend explicitly on
the momentumd. This will inevitably be accompanied by the
appearance of the small parametera /vF. However, the spin
part of the current contains the same parameter because it
also originates from the SO interaction. Together the two
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terms in the current operator give a frequency-dependent fac-
tor gA→S=sa /vFdf1−1/svnt+1dg for the effective coupling
of the electromagnetic fieldA to spinsshere, for the sake of
brevity, impurities are assumed to be pointliked. At low fre-
quencies this factor approaches zero making the excitation of
the spin-flip transitions problematic. At finite frequencies the
second term ingA→S originating from the momentum part of
the current operator decreases, resulting in a finitegA→S. This
is why in the Introduction we have pointed out that it is
worthwhile to turn to ac phenomena for studying the effects
of the SO interaction. Note that the CSR is a high-frequency
phenomenon. For the CSR to be narrow enough the reso-
nance frequencyvresshould much exceedh2,1/t1,2. In this
limit the factor f1−1/svnt+1dg in gA→S approaches 1.

For completeness let us discuss the spin-Hall conductivity
in the static limit. As it has been pointed out in Ref. 13, the
statement that the spin-Hall conductivity vanishes is valid
only inside the bulk of a macroscopic system. Namely, the
cancellation between the two terms of the current operator
has been demonstrated for§xy

z sq=0;v!1/td, i.e., in a sys-
tem of infinite size. Still, in a finite-size system the spin-Hall
phenomenon can exist as the vanishing of the factorgA→S
may not work near the edges. In the latter case, in a broad
macroscopic system only a small fraction of the longitudinal
current that flows within a narrow strip near the edges is
effective for the spin-Hall voltage as the spin-Hall conduc-
tivity degrades inside the bulk of the sample. For discon-
nectedsor weakly tunnelingd edges the existence of a non-
zero spin conductivity results in the accumulation of az
component of spin density at the edges. In this connection,
let us indicate that the spin-Hall effect reported in Ref. 17
has been observed just at the edges of the conducting chan-
nel.

VI. CONCLUDING DISCUSSION

The analysis of the equations of motion performed along
the lines of the argumentation of the Kohn’s theorem reveals
an inherent relationship between a transverse conductivity
and a corresponding resonance in a clean system. The same
correlation function that describes the resonance determines
the value of the transverse conductivity, including its static
limit. Such relationship is useful for understanding the prop-
erties of the transverse conductivity. For example, in Sec. II
we demonstrate that the absence of thee-e renormalizations
to the Hall coefficient in a clean system is a direct conse-
quence of the Kohn’s theorem for the frequency of the cy-
clotron resonance. With this in mind, in Sec. III we find the
connection between the spin-Hall conductivity and a spin
resonance in a 2DEG with the SO interaction. Since this spin
resonance occurs as a result of the transitions between the
electron states of different chirality, which are split by the
SO interaction, it is called in this paper a chiral spin reso-
nance.

Recently, considerable efforts have been made to deter-
mine the value of the SO splitting in semiconductor hetero-
structures from the measurements of the magneto-
resistance.29–31 Another standard method for measuring the
SO splitting in the electron energy spectrum in 2DEG is the

analysis of the positions of the nodes in the beating pattern of
the Shubnikov–de HaassSdHd oscillations.32–36This method,
however, has certain reservations.29 In particular, the SdH
oscillations are controlled by the single-particle relaxation
time t, which in heterostructures is significantly shorter than
the transport time. In Sec. V we show that the width of the
CSR can be much smaller than 1/t as it is controlled by the
scattering rates 1/t1,2. The CSR, if observed, can be a useful
tool for an accurate measurement of the strength of the SO
interaction.

Let us discuss the questions of the excitation and detec-
tion of the CSR. The CSR is a limiting case of the combined
resonance18 when a static magnetic field is absent. The pe-
culiar feature of the combined ESRsincluding the CSRd is
that it can be excited by the electric-dipole interaction
−se/cdAJ rather than by coupling of the electromagnetic
wave to the magnetic moments via the Zeeman interaction.20

The possibility of the electric-dipole excitation of the reso-
nance makes the observation the combined ESR a feasible
task even in 2D systems.

A problematic point in detecting of a spin resonance in 2D
systems is that a number of electrons available for spin tran-
sitions is small. A standard method to overcome this diffi-
culty is detecting the ESR by the microwave-induced change
of the magnetoresistivity. The resonance frequency measured
in this way37,38 when extrapolated to zero magnetic field in-
dicates the existence of an intrinsic spin splitting. Bychkov
and Rashba5 attributed this splitting to the SO interaction
induced by the structure inversion asymmetry and extracted
the value of the SO coupling constanta.

To observe a resonance a fine-tuning control over the
resonance frequency is needed. An external magnetic field
used commonly in ESR experiments may not be welcome for
this purpose. The in-plane magnetic field makes the spin
splitting anisotropic along the Fermi surface, whereas the
perpendicular magnetic field requires an interpolation of the
resonance frequency to a zero-field limit. In addition, the
orbital quantization induced by the perpendicular magnetic
field rapidly leads to the quantization of the energy levels
resulting in the quantum Hall-effect regime as it took place
in Refs. 37 and 38. Perhaps, for the CSR it is preferable to
avoid the use of the magnetic field and instead to analyze the
resonance by combining the transport measurements with the
spectroscopy analysis.39 Another possible solution of the tun-
ing problem in the case of the CSR is the gate-voltage con-
trol of the SO splitting. For GaAs it does not look very
promising as the shift of the resonance frequency is rather
small.40 However, it is known that in InxGa1−xAs the gate
voltage strongly affects the spin splitting that allows the
resonance frequency to vary in a broad range.34–36

It is useful to compare the energy absorption related to the
resonant spin-flip transitions with the nonresonant heating of
the 2DEG sDrude mechanismd. Assuming that the micro-
wave radiation has a narrow frequency range compared to
the width of the resonance, one can estimate the resonant
part of the losses as,e2na2ttrE0

2,e2YE0
2. At v<vres,D,

the Drude part of the dissipation is,e2nvF
2ttr / sDttrd2E0

2

,e2Y−1E0
2. The dimensionless parameterY=sDttrdsD /eFd is

a product of two competing factors. The factorD /eF charac-
terizes the relative strength of the SO interaction, and it is
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relatively small, whereas the quality factorDttr @1. The ra-
tio of the two contributions to the energy absorption is,Y2.

The characteristics of the 2DEG and the data about the
SO splitting are presented in Table I. There, we assume that
the mobility me of InxGa1−xAs is about 23105cm2/Vs,
which is available for the present samples. For GaAs we take
me=203106 cm2/Vs available only for the best reported
samples. The value of the SO splitting for InxGa1−xAs is
taken from Ref. 34, where it was extracted from the beat
pattern of SdH oscillations. For GaAs the experimental scale
of the SO interaction,,100 ns−1, is taken from Fig. 3 of Ref.
30. We see that the resonance frequency in InxGa1−xAs cor-
responds to the far-infrared range, whereas in GaAs the rel-
evant frequencies are in the millimeter wave range.

To observe the CSR the spin splitting induced by the SO
interaction should be sufficiently isotropic. This may be re-
alized in various situationsssee Appendix B for more de-
tailsd. One example is the asymmetrical quantum well where
the SO interaction of the structure inversion asymmetry ori-
gin is dominant. Another variant is to fabricate a symmetric
quantum well with thef001g-growth direction and, in this
way, get rid of the SIA spin-orbit interaction leaving only the
SO interaction because of the lack of inversion symmetry of
the host crystalsBIA d.2 The last example isf111g-grown
quantum well, which can be asymmetrical, where the com-
bined action of the SO interactions SIA and BIA results in
the isotropic spin splitting. It is generally accepted that in
InxGa1−xAs heterostructures, the dominant SO interaction is
because of the SIA.34 However, this may be not the case for
the GaAs heterostructures, where the BIA spin-orbit interac-
tion is of comparable strength to the SO interaction induced
by the interface electric field. The resulting spin splitting is
anisotropic on the Fermi surface. This makes an observation
of the CSR in af001g-grown GaAs heterostructure problem-
atic.

In view of the considerable progress in the quality of 2D
heterostructures it is worthwhile to extend the measurements
of ESR to zero magnetic field. This can give a direct infor-
mation about the strength of the SO interaction.
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APPENDIX A: CALCULATION OF SPIN-HALL
CONDUCTIVITY IN THE ABSENCE OF e-e INTERACTION

Let us calculate the spin-Hall conductivity§xy
z for nonin-

teracting particles, copying the logic of the calculation ofsxy
in Sec. II.fEquationssA1d–sA3d duplicate the corresponding
equations in Secs. II and III. We repeat them here to make
this Appendix self-contained.g A single-particle Hamiltonian
with the Bychkov-Rashba SO interaction5 is

Hi
SO=

pi
2

2m
+ af pi 3 ,g · si , sA1d

where the unit vector, is perpendicular to the plane of the
2DEG. As a result, the energy spectrum is split into two
chiral branchesep

±=p2/2m±ap.
In the presence of the SO interaction the single-particle

current operatorj i contains a spin-dependent term,

j i =
pi

m
+ af, 3 sig. sA2d

Since in the absence of a magnetic field the Hamiltonian
sA1d does not contain any coordinate dependence, the mo-
mentum part of the current is time independent. Still, the
current has dynamics as the current operator contains spin.

We analyze the dynamics of spin in the chiral basis with
the rotated Pauli matricestp

n =sap
n ·sd, where ap

n

=ha1,a2,a3j=h−, ,p̂ ,p̂3,j and p̂ stands for a unit vector in
the direction of momentump. In the chiral basis the free
HamiltoniansA1d acquires the diagonal form

Hi
SO=

pi
2

2m
+ aupiutpi

3 sA3d

with the diagonal elements equal toep
±.

Any operator of the formTi
±= fsupiudt pi

± has an equation of
motion

d

dt
Ti

± = ifHi
SO,Ti

±g = ± ivpi

SOTi
±, sA4d

wheret ± are defined in the usual way,t ±=st1± it2d /2, and

vp
so= ep

+ − ep
− = 2ap. sA5d

These equations allows us to find the time dependence of the
current operatorsj i

x and j i
y. For that, we express the current

components in terms of thet-matrices

jx =
px

m
+ a

px

p
tp

3 − a
py

p
tp

2, sA6d

j y =
py

m
+ a

py

p
tp

3 + a
px

p
tp

2, sA7d

where the particle’s indexi is omitted. The first two terms in
the expressionsjx,y do not lead to the transitions between the
chiral states ofHi

SOand therefore do not depend on time. The
terms witht2 matrix induce the transitions between the states
of the opposite chirality separated by the energy ±vso. In
result, the time dependence of the current componentj ystd is

TABLE I. Electronic properties of 2DEG with SO
interaction.

n31011 cm−2
eF

smeVd
D

smeVd
" /ttr

smeVd Y

InGaAs 20 100 5 0.1 5

GaAs 2 7 0.07 0.0008 1
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j ystd =
py

m
+

a

p
fpytp

3 + pxstp
2cosvp

sot + t1sinvp
sotdg,

sA8d

and a similar expression forjxstd.
The oscillatory terms in Eq.sA8d are analogous to the

oscillations in the cyclotron resonance that originate from the
transitions between the states with different circulation; com-
pare Eqs.s5d and sA4d. Furthermore, the same description
applies for the case of the ESR, where the transitions in the
external magnetic field occur between the states of the oppo-
site spin polarization.

We are currently in the stage when the application of the
Kohn’s argumentation for the time evolution of the current
operators allows us to calculate the transverse conductivity.
The transverse spin conductivity§xy

z describes the response
of the spin-z-component current in thex direction, jz

x

= 1
4ss zjx+ jxs zd, to the electric field applied in they direction.

In the chiral basiss z=−t1, and thereforejz
x=−spx/2mdt1.

The transverse spin conductivity is given by the correspond-
ing Kubo formulaswe restore the particles indexid

§xy
z =

e

v
E

0

`

dteivtko f jz;i
x , j i

ys− tdgl , sA9d

which with the use of Eq.sA8d yields

§xy
z = eoK a

mpi
F−

pi
xpi

ytpi

2

v2 +
spi

xd2tpi

3

v2 − svpi

sod2GL .

sA10d

To get the final result one has to perform the averagek¯l in
this equation. When averaged, the term witht2 matrix van-
ishes, ktp

2l=0, because the spin-dependent term in Hamil-
tonian sA1d containst3 matrix only. As the chiral states are
eigenstates with energiesep

±, the population of a statep is
equal tonFsep

+d for the + chirality state andnFsep
−d for the −

chirality state;nFsed=fexpse−md+1g−1. Correspondingly, the
expected value oftp

3 is equal toktp
3l=nFsep

+d−nFsep
−d. Finally,

this yields

§xy
z = eE d2p

s2pd2

1

8amp
fnFsep

−d − nFsep
+dg

=
e

8am
E dp

2p
fnFsep

−d − nFsep
+dg. sA11d

Unlike, the cyclotron resonance, where all electrons precess
together and contribute equally tosxy=−sne2/mdvc

−1, in the
case of spin-Hall conductivity the contribution from elec-
trons of the opposite chirality tend to cancel each other out.
The factor 1/a in Eq. sA11d is equivalent to 1/vc in sxy, but
due to the cancellation only a strip of the width 2am between
the Fermi surfaces of electrons of the opposite chirality con-
tributes that makes the value§xy

z finite in the limit of smalla.
For noninteracting electrons it is also possible to express§xy

z

as a contribution from the bottom of the band. For that, re-
write ep

± asep
±= 1

2msp±amd2− 1
2ma2 and shift the momentum

variables toq±=p±am. Then,

§xy
z =

e

4am
E

0

am dq

2p
nFS q2

2m
−

ma2

2
D . sA12d

At low temperaturesnFs0d=1 and§xy
z =e/8p for any finitea.

On the other hand, whenam!pF one can get for arbitrary
temperatures§xy

z <se/8pdnFse=0;Td, where nFse=0;Td is
the occupation number at the bottom of the band at a tem-
peratureT.

The expression for§xy
z as given by Eq.sA11d reminds the

corresponding expression for the static spin susceptibil-
ity: x=sgmB/2Bdefd2p/ s2pd2gfnFsep− 1

2Dzd−nFsep+ 1
2Dzdg,

where Dz=gmBB. This gives a hint why there exists a
connection41,22 between the spin-density correlation function
and §xy

z . In Sec. II a direct connection between§xy
z and the

dynamicsretardedd spin susceptibility has been derivedfsee
Eqs.s14d–s16dg

§xy
z =

e

m
xxxsq = 0,vd,

xxxsq = 0,vd =
i

4
E

0

`

dteivtko fsi
xstd,si

xs0dgl . sA13d

A direct calculation ofxxxsq=0,vd in the presence of the SO
interaction can be done straightforwardly with the help of
Eq. sA8d. In the limit of small frequencies,v!vso, the cor-
relation functionxxxsq=0,v→0daÞ0 is equal to a half of the
static spin susceptibility of a free 2DEG in the absence of the
SO interaction

xxxsq = 0,v → 0daÞ0 =
m

8p
. sA14d

Correspondingly, in the presence of the SO interaction the
spin-Hall conductivity§xy

z =e/8p.

APPENDIX B: FERMI-LIQUID ANALYSIS OF SPIN
RESONANCE IN THE PRESENCE OF DRESSELHAUS SO

INTERACTION (BIA)

In this appendix we analyze the kinetics of electrons in
the presence of the SO interaction of the BIA origin.2 The
spin-orbit interaction in the semiconductors with the zinc-
blende crystal structure is described by the Hamiltonian

Hbulk
SO = gfsxkxsky

2 − kz
2d + c.p.g, sB1d

where c.p. stands for the cyclic permutations. For 2DEG the
HamiltoniansB1d leads to a linear in momentum term in the
SO interaction.42 For the case of thef001g-grown quantum
well the linear term can be obtained fromHbulk

SO by replacing
kz

2 andkz by their averageskkz
2l and kkzl=0

Hf001g
SO = bspxsx − pysyd, sB2d

whereb=−gkkz
2l. Unlike the Rashba Hamiltonians10d, this

term does not have a structure of a triple scalar product and,
therefore, it is not rotationally invariant. Nevertheless, it
leads to the isotropic spin splitting of the energy spectrum.

The structure of the linear term that is formally identical
to the Hamiltonians10d can be realized in thef111g-grown
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quantum well. This is a consequence of a threefold rotation
symmetry with respect tof111g axis. On the contrary, SO
interaction in thef110g-grown quantum well results in the
anisotropic spin splitting and therefore such heterostructures
are not suitable for the observation of CSR.

In the following we analyze the kinetic equations24d for
the casef001g-grown 2DEG when the linear SO interaction
term is given by Eq.sB2d. The remaining cubic terms in the
SO interaction is a source of the CSR broadening. It can be
neglected for the narrow enough quantum well whenkkz

2l
@kF

2.
It is instructive to start with the Rashba and Dresselhaus

interactions acting together. The combined action of the BIA
and SIA mechanisms of the spin-orbit interaction is de-
scribed by the Hamiltonian

Hlinear
SO = aspysx − pxsyd + bspxsx − pysyd

=
1

2
Dpfapsx + bpsyg, sB3d

whereap
2+bp

2=1. In the presence of the two SO interaction
terms the spin-splitting energyDp is a varying function along
the Fermi surface

Dp = 2pFLp, Lp = fa2 + b2 + 2absin 2upg1/2. sB4d

The coefficientsap andbp are defined as

ap = Lp
−1sa sinup + b cosupd,

bp = Lp
−1s− a cosup − b sinupd. sB5d

We introduce a set of the Pauli matrices such that the SO
spin-splitting term takes the formdeSO= 1

2Dptp
3, namely,

tp
1 = − sz, tp

2 = − bpsx + apsy, tp
3 = apsx + bpsy.

sB6d

The renormalization of theb term by thee-e interaction is
analyzed in the same way as the renormalization of the
Bychkov-Rashba coefficienta in Eq. s20d yielding b* / b
=a* / a=1/s1+G1d.

The kinetic equation similar to Eqs.s27ad–s27cd can now
be written using the expansion ofûsupd in terms of the
tp-matrices:ûsupd=ouisupdtp

i . The force term is equal to

fdêp
SO,sxgFeivt = − it1s2pFa * cosup + 2pFb * sin updFeivt,

sB7d

and the kinetic equation acquires the form

Dp
−1du1supd

dt
= u2supd +E dup8Gsupp8dC

3,2sup,up8du2sup8d

− Dp
−1f2pFa * cosup + 2pFb * sin upgFeivt,

sB8ad

Dp
−1du2supd

dt
= − u1supd −E dup8Gsupp8du1sup8d.

sB8bd

Here the structure factorC3,2 appears because of the commu-
tator ftp

3 ,tp8
2 g=−2it1C3,2sup ,up8d, where

C3,2sup,up8d = apap8 + bpbp8

= sLpLp8d
−1fsa2 + b2dcossup − up8d

+ 2ab sinsup + up8dg. sB9d

The structure factorC3,2 reduce to cossup−up8d when only
one of the SO interactionssBIA or SIAd is acting.

The kinetic equation has the same form when either the
SIA or BIA mechanism acts solely. Hence the pure BIA sys-
tem exhibits the same chiral spin resonance with the fre-
quency given by Eq.s31d andD→DBIA. Actually this obser-
vation, as well as equal renormalization ofa andb, is related
to a duality of thea- and b-SO terms. Namely,Hlinear

SO is
symmetric with respect to a simultaneous rotation of the
Pauli matrices around the directionn̂=sx̂+ ŷd /Î2 by p, i.e.,
sx�sy, sz→−sz, together with the replacementa�−b,
whereas thee-e interaction is symmetric with respect to any
spin rotations.
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