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A lateral interface connecting two regions with different strengths of the Bychkov-Rashba spin-orbit inter-
action can be used as a spin polarizer of electrons in two-dimensional semiconductor heterostructuresfKhodas
et al., Phys. Rev. Lett.92, 086602s2004dg. In this paper we consider the case when one of the two regions is
ballistic, while the other one is diffusive. We generalize the technique developed for the solution of the problem
of the diffuse emission to the case of the spin-dependent scattering at the interface and determine the distri-
bution of electrons emitted from the diffusive region. It is shown that the diffuse emission is an effective way
to get electrons propagating at small angles to the interface that are most appropriate for the spin filtration and
a subsequent spin manipulation. Finally, a scheme is proposed of a spin filter devicessee Fig. 9d that creates
two almost fully spin-polarized beams of electrons.
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I. INTRODUCTION

Recently we proposed1 to use a lateral interface between
two regions of the two-dimensionals2Dd electron gas with
different strengths of the Bychkov-Rashba2 spin-orbit sSOd
interaction as a spin-polarizing element for the purposes of
spintronics.3,4 The lateral interface introduces the space-
varying SO interaction which leads to spin-dependent refrac-
tion of spin carriers passing through the interface.5 Conse-
quently, an electron beam with a nonzero angle of incidence
after passing through the interface splits into beams with
different spin polarizations propagating in different direc-
tions ssee Fig. 1 for the scattering at the lateral interface
between the regions with and without SO interactiond. Using
an interface with an inhomogeneous SO interaction as a prin-
cipal element of spin-based devices we outlined the schemes
for a spin filter, spin guide, and a spin current switchsspin
transistord. This program promises to build spintronics de-
vices avoiding magnetic materials that are not conventional
for the semiconductor industry. It can be realized in the gated
heterostructures with a sufficiently strong Bychkov-Rashba
SO interaction6–8 by manipulating the gates.1

The effect of the separation of the trajectories of electrons
with different spin polarizationsschiralitiesd influenced by
the space-varying SO interaction has the same grounds as the
double refractionsbirefringenced of light in uniaxial crystals
exploited in optical devices for the polarization of light. The
separation of the trajectories of carriers of different spin has
been observed recently9 in the case of a homogeneous SO
interaction as a result of action of a perpendicular magnetic
field. The separation of the trajectories after reflection at a
lateral potential barrier in the presence of the SO interaction
has been observed in Ref. 10.

Two facts that can be useful for the purposes of the spin-
tronics have been found in Ref. 1 in the analysis of the spin-
dependent scattering of electrons incident on a lateral inter-
face with a SO interaction varying in the direction normal to
the interface. First, there exists an interval of outgoing angles
uc,u,p /2 where only electrons with a definite spin chiral-

ity can penetratessee Fig. 1d. If it is possible to collect elec-
trons from this interval, one will have an ideal spin filter.
Second, electrons of this chirality exhibit a total internal re-
flection for an angle of incidence in an intervalwc,w
,p /2, wherewc is a critical angle of the total internal re-
flection. It is clear from these observations that the electrons
propagating at small angles to the lateral interface are most
sensitive to the variation of the magnitude of the spin-orbit
interaction, and therefore such electrons are most appropriate
for spin control and manipulation. Hence one has to find a
way to createsand collectd flows of electrons of high inten-
sity that are almost tangential to the interface. In this paper
we suggest using the diffuse emission11,12as a possible solu-
tion of this task.

We show that making one of the two regions connected
by the lateral interface to be diffusive is an effective way to
achieve a flat angular distribution of particles emitted from
the diffusive region into the clean one. The effect of flatten-
ing of the angular distribution of the emitted electrons is the
robust property of the diffuse emission which holds despite
the presence of a spin-dependent reflection at the interface.

FIG. 1. sColor onlined The refraction of electrons at the interface
between the regions withsSOd and withoutsNd spin-orbit interac-
tion. A beam incident at anglew splits after the refraction into two
beams with “1” and “2” chiralities that propagate at anglesu±

sdenoted by red and blue colors, respectivelyd. sad uc determines the
limited aperture for2 chirality; in the angle intervaluc,u,p /2
only electrons of1 chirality can penetrate.sbd wc is an angle for
total internal reflection for electrons of the1 chirality.
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Due to the flatness of the angular distribution a substantial
portion of electrons propagates at small angles to the inter-
face and these electrons are suitable for the spin filtration and
subsequent spin manipulation. In Fig. 9 a scheme of a device
is presented which operates as a spin filter with a high level
of spin-polarization of a filtered current.

The paper is organized as follows. In Sec. II we present
the results1 of the analysis of scattering of electrons at the
lateral interface between the two regions with different mag-
nitudes of the Bychkov-Rashba term. In Sec. III we analyze
the transport of the 2D electrons in the presence of the Cou-
lomb interaction near the interface between the diffusive and
ballistic regions. In Sec. IV we reconsider the problem of the
diffuse emissionsMilne problem11,12d for an arbitrary dimen-
sion. In Sec. V we generalize the technique developed for the
problem of the diffuse emission to the case of the spin-
dependent scattering at the lateral interface. We use a semi-
classical approach with electrons moving along the classi-
cally allowed trajectories when the spin of electrons is the
only element treated quantum-mechanically. For this pur-
pose, we analyze the transport near the interface in terms of
the spin density matrix. In the Summary a scheme of a spin
filter device that creates two beams of electrons of a very
high level of spin polarization is presented.

II. SPIN-DEPENDENT SCATTERING AT THE LATERAL
INTERFACE

Consider a two-dimensional electron gas confined in the
xz plane by a potential well in the semiconductor hetero-
structure. Generally, the potential well has the shape of an
asymmetric triangle, and, consequently, there is a direction

of asymmetry,l̂, perpendicular to the electron gas plane. This
leads to the appearance of the specific spin-orbit interaction

term2 in the Hamiltonian,asp3 l̂ds. We will consider the
case when the parametera varies along thex direction. The

direction of l̂ is chosen asl̂ =−ŷ. Generally, the Hamiltonian
has the form

HR =
1

2m
px

2 +
1

2m
pz

2 + Bsxd +
1

2
sl̂ 3 sdfasxdp + pasxdg.

s1d

Here Bsxd describes the varying bottom of the conduction
band which may be controlled by gates. The current operator
corresponding to this Hamiltonian contains a spin term:J
=p /m+asxdsl̂ 3sd. The presence of spin in the current op-
erator implies that in the process of scattering at the lateral
interface with varyinga the continuity conditions for the
wave function involves the spin degrees of freedom of the
electrons. This makes the electron scattering at the interface
to be spin-dependent.

To diagonalize the Hamiltonian with the Bychkov-Rashba
term in the regions of constanta one has to choose the axis

of the spin quantization along the directionsl̂ 3pd. Then for
the two chiralitiessreferred to below as “1” and “2” modesd
the dispersion relations are given by

E± =
p2

2m
± ap + B. s2d

Correspondingly, the momenta of the waves of a given en-
ergyE involved in the scattering at the interface between the
two regions with differenta are determined as follows:

pSO
± = mfÎ2sE − Bd/m+ a2 7 ag = mvFsÎ1 + ã2 7 ãd.

s3d

HerevF=Î2sE−Bd /m, and we introduce a small dimension-
less parameterã=a /vF which we will use throughout the
paper. Notice that at a given energy the velocity of electrons
of both chiralities is the same:v=]E± /]p=vF

Î1+ã2.
Let us discuss the kinematical aspects of the electron scat-

tering at the lateral interface. An incidentsnonpolarizedd
beam comes at anglew from the region without or with a
suppressed spin-orbit term, denoted as the N region, and
when transmitted into the SO region splits into two beams of
different chirality that propagate at different anglesu±. Fig-
ure 1 illustrates the scattering for the simplest case when
asx,0d=0. The conservation of the projection of the mo-
mentum on the interface together with Eq.s3d determine the
angles of the transmitted and reflected beamssSnell’s lawd:

pN sinw = pSO
± sinu±, s4d

wherepN is a momentum of an electron in the N region and
pSO

± are the momenta in the SO region after passing through
the interface.

From Eqs.s3d and s4d it follows that the SO region is
more “optically” dense for the1 modesi.e., it has a smaller
wave vectord and less dense for the2 mode. Correspond-
ingly, the 1 mode is refracted to larger angles than the2
one, and therefore the1 mode exhibits a total internal re-
flection with a critical anglewc. As to the2 mode it has a
limited aperture in the SO region for outgoing angles:u
,uc,p /2.

Remarkably, the angle interval where only the1 mode
can penetrate is not narrow as its width has a square root
dependence onã. It follows from Snell’s law thatsp /2
−ucd<sp /2−wcd<Î2ã. Actually, one can reduceuc even
further. With the gates acting selectively on the different re-
gions of the electron gas,dB=Bs−`d−Bs+`dÞ0, one can
alter the position of the bands relative to the Fermi level in
the N and SO regions. A simple analysis shows that with an
increase ofdB si.e., loweringpF in the normal regiond the
angle intervalsp /2−ucd grows and reaches 2Îã. Starting
from this moment the angle interval suitable for spin filtra-
tion narrows and eventually becomes,ã, instead of,Îã.

The problem of scattering of electrons at a lateral inter-
face between the two regions with different magnitudes of
the Bychkov-Rashba term has been considered in Ref. 1 for
the two limiting cases of a sharp,l /d*1, and smooth,
l /d!1, interface, wherel is an electron wavelength andd
is an effective width of the interface. Here a qualitative de-
scription of the analysis of the spin-dependent scattering at
the interface will be presented only.

A scattering state of an electron coming from the N region
in the stateeispxx+pzzdxN

+ is given by

SHEKHTER, KHODAS, AND FINKEL’STEIN PHYSICAL REVIEW B71, 125114s2005d

125114-2



C+ = eipzzHeipxxxN
+ + e−ipxxxN

+ r++ + e−ipxxxN
− r−+, x , 0

eipx
+xxSO

+ t++ + eipx
−xxSO

− t−+, x . 0
J ,

s5d

wherexN/SO
± are spinors corresponding to the6 chiral modes

in the N and SO regions, andr and t are the amplitudes of
the reflected and the transmitted waves. In Eq.s5d the inter-
face is atx=0 and for simplicity we limit ourselves to the
case of the interface between the N and SO regions. A similar
expression holds also forC− which evolves from the inci-
dent statexN

− .
The flux of particles impinging on the interface at a given

anglew can be defined asIededwds, whereds is the cross-
sectional areaswidthd of a beam. The intensityIe

SO of the
transmitted flux of a given chirality can be found from the
relation uTSO←Nswdu2Ie

N coswdw= Ie
SOcosudu. Here the co-

sine factors take into consideration the change of the cross-
sectional width of the beam as a result of the scattering,
while uTSO←Nswdu2= utu2svx

SO/vx
Nd swe use the fact that for the

two chiralities the velocities are the samed. Finally, the inten-
sity of the refracted flux relative to the incident one is equal
to

Ie
SO/Ie

N = sdu/dwd−1svSO/vNdutu2. s6d

For a sharp interface the amplitudesr ,t can be found from
the continuity conditions, while for a smooth interface one
can conduct the analysis of the refraction using a small pa-
rameter h=sda /dxd /apF,l /d!1. In the latter case the
electron spin adjusts itself adiabatically to the momentum
keeping its polarization in the direction perpendicular to the
momentum.

It has been shown in Ref. 1 that in the course of refraction
at the interface withã!1 transitions between states of dif-
ferent chirality are strongly suppressed. For that reason, the
drop of the intensities of the transmitted electrons without
change of their chiralityt++ and t−−, see Fig. 2, occurs prac-
tically only due to the reflection which becomes decisive
only for w*wc. In particular, for a smooth interface the
probability of the reflection outside the region of the total
internal reflection is almost entirely suppressed because the
matrix elements describing reflection are integrals of the rap-

idly oscillating functions. Consequently, the transmission
amplitudes presented in Fig. 2 have almost rectangular shape
for a smooth interface.

Summarizing the results obtained in Ref. 1 for the cases
of the sharp and smooth interface one can state that for both
the discussed cases an electron in a state of a definite chiral-
ity propagates along the classically allowed trajectory for
this chirality, while a change of the chirality is very ineffec-
tive.

The case of the N-SO interface described so far was taken
mostly for illustration. Actually, any interface with a change
of a results in splitting of the trajectories that can be used for
the purposes of spin polarization and filtration. In the analy-
sis above, one should replacea by the difference of the
strength of the spin-orbit interactiondaSO across the inter-
face.

III. KINETIC EQUATION, ELECTRONEUTRALITY, AND
BOUNDARY CONDITIONS

In this section we discuss the kinetics of the two-
dimensionals2Dd electron gas near the boundary between
the diffusive and ballistic regions. We show that within the
linear response approximation the equation determining the
current distribution function and the equation determining
the density and potential profiles are decoupled, except for
boundary conditions. This analysis justifies the concept in-
troduced by Landauer:14 to determine the transport properties
it is enough to consider noninteracting quasiparticles that
propagate without interaction, i.e., ignoring any effects re-
lated to the redistribution of the potential due to the Coulomb
interaction of electrons. The problem requires, however, fix-
ing up the boundary conditions, which we perform below for
a particular geometry.

The kinetic equation describing a stationary flow of elec-
trons by a distribution functionnpsxd is

]epsr d
]p

]npsr d
]r

−
]epsr d

]r

]npsr d
]p

= Sthnpsr dj. s7d

The electron flow is forced by the electric field,]epsr d /]r
=e¹Fsr d. Correspondingly, Eq.s7d should be supplied by
the Poisson equation which when limited to the 2D plane is

DF = − 4per2Ddsyd. s8d

Here the Laplacian acts in 3D space, whiler2D is the devia-
tion of density of the 2D electron gas from the equilibrium
value. Therefore Eq.s8d should be supplemented with the 3D
conditions onF that will take care of the 3D environment of
the 2D electron gas. This introduces an element of nonuni-
versality into this problem. Fortunately, in the linear response
approximation the situation is much more tractable and the
problem of the current flow of the 2D gas becomes self-
containedssee, e.g., Ref. 15d.

In the linear response approximation one keeps terms lin-
ear in¹Fsr d anddnpsr d only:

FIG. 2. sColor onlined The intensities per unit outgoing angle of
the electrons transmitted without change of their chirality
,sdu+/dwd−1ut++u2 and,sdu−/dwd−1ut−−u2 per unit angle as a func-
tion of an angle of incidence for sharpssolid lined and smooth
sdashed lined interfacessRef. 13d.
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vF
]dn̄psr d

]r
− e¹ Fsr dvF

]nF
0

]e
= Sthdnj, s9d

wherednpsr d=npsr d−nF
0 and nF

0 is the Fermi-Dirac equilib-
rium distribution.sWe assume throughout the paper that the
spatial variation of the Fermi-energy level as well as other
parameters of the electron liquid such as the density of states
and the screening length occurs on distances greatly exceed-
ing the wavelength and the mean free path. For that reason,
the spatial variation of the parameters characterizing the
electron liquid is ignored below.d In the presence of the
electron-electron interaction there is an additional force that
originates from the interaction of the quasiparticles. This ef-
fect has been accounted for by a substitution of the local
equilibrium distributiondn̄psr d in place ofdnpsr d in Eq. s9d,
see Ref. 16.

Following Refs. 17 and 15, one can shift the distribution
function by a local value of the potentialFsr d introducing a
displacement functionfsr ,wd

dn̄psr d =
]nF

0

]e
efFsr d − fsr ,wdg, s10d

where the direction of the momentump is given by the angle
w. In terms of the displacement functionfsr ,wd the system of
Eqs.s9d and s8d acquires the form

vF
]fsr ,wd

]r
= Sthfj, s11d

DF − 2k2DFsr ddsyd = − 2k2Dkfsr ,wdlwdsyd, s12d

wherek2D=2pe2]n/]m is the inverse screening length of the
2D electron gas, which in the Thomas-Fermi approximation
is equal to 2e2m; kfsr ,wdlw=esdw /2pdfsr ,wd is fsr ,wd av-
eraged over directions of momentum. Thus, although Eq.s9d
together with the Poisson equations8d constitutes a system of
two coupled equations, the potentialFsr d drops out from Eq.
s11d governing the functionfsr ,wd. Given boundary condi-
tions, the displacement functionfsr ,wd determines the cur-
rent distribution without any feedback from Eq.s12d:

j sr d = 2eE d2p

s2pd2vFdn̄psr d = 2e2n2DkvFswdfsr ,wdlw,

s13d

wheren2D is the density of states per one spin species,n2D
=m* /2p.

When one is interested in the connection of the current
density with the distribution of the potential and density in
the 2D electron gas, Eq.s12d should to be involved along
with the relation connectingr2D with Fsr d and fsr ,wd:

dr2Dsr d = 2E d2p

s2pd2dnpsr d = sk2D/2pedfkfsr ,wdlw − Fsr dg.

s14d

For good enough conductors the Poisson equation reduces to
the condition of the electroneutrality18 swhich is valid in any
dimensiond. Under these circumstances typical distances on

which the potentialF in the left-hand side of Eq.s12d
changes are much longer than the screening lengthk2D

−1. Cor-
respondingly, u¹Fu! uk2Dkfsr ,wdlwu, uk2DFsr du, and the
Poisson equation reduces to the condition of the electroneu-
trality:

dr2Dsr d = 0; kfsr ,wdlw = Fsr d. s15d

Now we turn to the discussion of the boundary conditions.
Let us assume that the diffusive region has a stripe geometry
with the x axis directed along the stripessee Fig. 3d. In the
diffusive region the collision term is controlled by the elastic
relaxation timetel, and the kinetic equation acquires the form

vF
]fsr ,wd

]r
= Sthfjelastic= −

fsr ,wd − kfsr ,wdlw

tel
. s16d

Here we assume that the impurity scattering is of short range
nature.sThe angular dependence of scattering of electrons by
the impurities does not influence the distribution function of
electrons deep inside the diffusive region, but is important
for the angular profile of the diffuse emission.d With the
elastic mean free pathl =vFtel used as a unit of length, the
kinetic equation can be rewritten in terms of the dimension-
less variablesz=x/ l:

− cosw
]

]z
fsz,wd + fsz,wd = kfsr ,wdlw. s17d

Here the minus sign in the first term containing] /]z appears
becausew is chosen as an angle formed by a momentum with
the direction −x̂ snote that −x̂ directs inwards the diffusive
regiond.

FIG. 3. The physical setup which leads to Eq.s24d as a bound-
ary condition for the kinetic equation. The diffusive region has a
geometry of a stripe that runs into a ballistic basin. The current
density vanishes inside the ballistic region at a typical distanceL
! l in. Trajectories that start from a terminal on the ballistic side of
the device and reach the diffusive stripe are shown by dashed lines.
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In the current carrying state electrons deep inside the dif-
fusive region are distributed according to the Drude form.
Correspondingly, at a distancescounted from the interfaced
exceeding fewl Eq. s17d has a solution:

fDrsz,wd = − Jp−1scosw + zd. s18d

Here the factors are fixed in such a way that the currentJszd
defined as

Jszd = − 2pkcoswfsz,wdlw s19d

is equal toJ for the distribution functionfDrsz ,wd. With the
use of Eq. s13d the physical current j ; j x=
−2e2n2DvFkcoswfsz ,wdlw can be related to the currentJ de-
fined in Eq.s19d as follows:

j = pFse2/2p2dJ. s20d

To obtain the relation between the currentj and the elec-
tric field let us apply a gradient to the both sides of Eq.s14d
with the distribution functionfDr used forfsr ,wd. Then, to-
gether with the fact that the electric fieldE=−¹F, one gets
the relation:

j = sE − Dch ¹ sedr2Dd, s21d

where the conductivitys=2e2n2Dsl2/2td while the diffusion
coefficient of charge density,Dch, corresponds to the Einstein
relation,Dch=s]m /]nds /e2. Under the condition of the elec-
troneutralitydr2Dsr d=0 and j =sE. fActually Eq. s21d does
not require the Drude form,fDr, of the distribution. It holds
in the diffusion approximation when the distribution function
has only two first harmonicsfsx,wd= f s0dsxd− f s1dsxdcosw and
the functionsf s0dsxd and f s1dsxd vary on scales much exceed-
ing the mean free pathl.g

To proceed further with Eq.s11d, one has to specify the
distribution of particles incident from the terminals located
on the ballistic side of the device under discussion. Gener-
ally, this distribution is not universal as it depends on a par-
ticular geometry. For definiteness, we consider the case when
the diffusive region that has stripe geometry runs into a bal-
listic basin, see Fig. 3sa stripe is wide enough allowing the
transverse quantization of electrons to be ignoredd. Follow-
ing Ref. 15, we use the method of characteristics to deter-
mine a distribution of particles that impinge onto the diffu-
sive stripe from the ballistic regionscorresponding family of
anglesw will be denoted aswb→dd.

In the ballistic region the collision term is controlled by
the inelastic relaxation timetin, and the kinetic equation ac-
quires the form

vF
]fsr ,wd

]r
= Sthfjinelastic= −

fsr ,wd − Fsr d
tin

. s22d

The solution of Eq.s22d for the directionswb→d is given by

fsr ,wd =E
−`

0

dt
et/tin

tin
Ffr̃ stdr ,wg, s23d

wherer̃ stdr ,w is the trajectorysthe characteristicsd of an elec-
tron that starts at the remote past from a terminal on the
ballistic side of the device and reaches the pointr with the

momentum directed alongw at the momentt=0; see dashed
lines in Fig. 3. We assume that the current carrying area
widens sharply on the ballistic side of the setup. Correspond-
ingly, the current density vanishes inside the ballistic region
at a typical distanceL. Under the conditionL! l in=vFtin, the
integral in Eq.s23d is accumulated at distances where elec-
trons are at the equilibrium and the potentialFsr d is equal to
its equilibrium value at a terminal deep inside the ballistic
region, Fs+`d. Then, it follows from Eq.s23d that for in-
coming directionsfsr ,wb→dd=Fs+`d. This provides us with
the boundary condition to be imposed at the interface,x=0,
on the incoming part of the function:

fsx = 0,wb→dd = Fs+ `d. s24d

The obtained boundary condition is isotropic. This remark-
able feature is a consequence of the choice of the proper
geometry.

Together with the current distribution deep in the diffu-
sive region given by Eq.s18d, the relations24d constitutes
the full set of the boundary conditions needed for the solu-
tion of Eq. s16d. Two remarks are now in order to complete
the discussion of the boundary conditions.

sid Notice thatFsx=0dÞFs+`d. The point is that due to
the abrupt change in scattering the solutionfsr ,wd of Eq.
s16d has a singular derivative near the interface. Under these
circumstances, one cannot neglect the termDF in Eq. s12d,
and therefore the condition of the electroneutrality is violated
in the vicinity of the interface in a strip of a width~k2D

−1.
The deviation of the density distributiondr2Dsr d from the
equilibrium at the interface leads to the variation of the po-
tential, and henceFsx=0d differs from Fs+`d.

sii d As Eq. s16d can be satisfied byfsr ,wd=const, any
solution of Eq.s16d can be shifted by a constant with no
consequences for the physical quantitiesfat any measure-
ment of the current one registers the difference between
fluxes of incoming and outgoing particles and the isotropic
part of fsr ,wd is cancelled outg. It follows from Eq.s10d that
the distribution of particles impinging onto the diffusive
region at the interface,dn̄wb→d

sx=0d, is not affected by
a global shift of the potential:dn̄wb→d

sx=0d=s]nF
0 /]edefFsx

=0d−Fs+`dg. This is in full accord with the fact that one is
free to shift the potentialF by a constant.

In Sec. IV and V we chooseFs+`d=0 and correspond-
ingly use fsx=0,wb→dd=0 as the boundary condition for the
function fsr ,wd at the interface between the diffusive and
ballistic regions.

IV. DIFFUSE EMISSION PROBLEM

In this section we present a solution of the classical prob-
lem of the diffuse emissionsMilne problem11,12d ssee Fig. 4d
in the form convenient for the subsequent analysis of Sec. V.
It is given for an arbitrary dimensiond, but we are interested
in the particular case ofd=2.

Let us specify the notation for anglew used throughout
Sec. IV and V: for each of the two regions, diffusive and
ballistic, w is chosen as an angle formed by the momentum
of an electron with a normal to the interface directed inwards
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to the corresponding region. Correspondingly, form=cosw
we adopt the convention19 that for electrons propagating
away from the interfacem.0 sdenoted as +m in what fol-
lowsd, while m,0 sdenoted −md corresponds to electrons
propagating towards the interface.

The general solution of Eq.s17d can be written as a sum
of the current carrying Drude flowfsee Eq.s18dg and the
currentless “counterflow”gsz ,md, i.e., fsz ,md= fDrsz ,md
+gsz ,md. At a distance about a few mean free pathsl the
counterflow gsz ,md approaches an isotropic distribution
sgenerally, a nonzero constantd. For currentless counterflow
particles injected into the diffusive region eventually return
back to the interface. Hence the distribution function of par-
ticles emitted by the diffusive region,gs−md, should be de-
termined completely by the distribution function of the in-
jected particles,gs+md. Due to the linear nature of Eq.s17d,
the gs±md parts of the distribution function are related
linearly11 by the angular Green’s functionSsm ,m8d:

gsz,− md =
1

m
E

+
dV8Ssm,m8dgsz, + m8d. s25d

HeredV8 stands for the angular integration ind dimensions,
while the subscript1 in the integral indicates that the inte-
gration is limited to the directions for whichm8.0. With the
use of Eq.s25d one can reexpress the densityrgszd corre-
sponding togsz ,md through the incoming part of the distri-
bution only:

rgszd =E
+

dVHsmdgsz, + md s26d

where

Hsmd = F1 +E
+

dV8
Ssm,m8d

m8 G . s27d

The Green’s functionSsm ,m8d satisfies a nonlinear inte-
gral equation which can be derived as follows. Differentiate
Eq. s25d with respect toz, express the derivatives]g/]z
through the kinetic equations17d, and use Eq.s25d to elimi-
nategsz ,−md in favor of gsz , +md. In result one gets

E
+

dV8Ssm,m8dS 1

m8
+

1

m
Dgsz, + m8d

=
1

Sd
HsmdE

+
dV8Hsm8dgsz, + m8d, s28d

whereSd is a total solid angle ind-dimensions. As this rela-
tion holds for an arbitrary incident distribution the equation
for the Green’s functionSsm ,m8d follows:

Ssm,m8dS 1

m8
+

1

m
D =

1

Sd
HsmdHsm8d. s29d

The counterflow does not carry current and therefore it sat-
isfies

E
+

dVfmgs+ md − mgs− mdg = 0. s30d

This implies that Green’s functionSsm ,m8d should satisfy the
condition

m =E
+

dV8Ssm,m8d s31d

that can be verified with the use of Eq.s29d along with the
relatione+dVHsmd=Sd.

As it has been explained in Sec. III the geometry of the
discussed setup is such that the distribution function in the
ballistic region does not contain a component describing par-
ticles propagating towards the interface, i.e.,fs0, +md=0.
Therefore, in the solutionfsz ,md= fDrsz ,md+gDrsz ,md one
has to counterbalance the partfDrs0, +md by a proper choice
of gDrs0, +md=−fDrs0, +md. Then the emission outside the
diffusive region consists of the two contributions:fDrs0,
−md from the Drude flow, andgDrs0,−md which originates
from the compensating counterflow. AsgDrs0, +md is known,
the latter contribution can be found with the help of Eq.s25d.
As a result, the emission in the Milne problem is given by
the expression

fMs0,−md = J
d

Sd
Fm +

1

m
E

+
dV8m8Ssm,m8dG , s32d

which can be simplified using Eqs.s29d and s31d together
with the relatione+dVmHsmd=Sd/Îd. Finally, the angular
distribution of the particles emitted from the interface into
the clean region is given by

fMs0,−md = J
Îd

Sd
Hsmd. s33d

This result coincides with the one presented in Ref. 11 for
the cased=3.

FIG. 4. sColor onlined Milne problem. The diffusive region is to
the left of the interface,z,0. The ballistic region is to the right,
z.0.
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In Fig. 5 the functionHsmd and the angular dependence of
the Drude flow distribution,,cosw, are plotted, both nor-
malized toJ=1. As compared to the Drude flow, the diffuse
emission distribution in the Milne problem has a qualita-
tively different behavior at large angles. Namely, the distri-
bution flattens and a considerable part of the distribution is
transferred to the large angles.

V. DIFFUSE EMISSION IN THE PRESENCE OF SPIN-
DEPENDENT SCATTERING AT THE N/SO INTERFACE

In this section we generalize the solution of the Milne
problem to the case of spin-dependent reflection at the inter-
face. We are mainly concerned with the influence of the
strong reflection at the angles tangential to the interface on
the distribution of the emitted electrons. We show that the
effect of flattening of the angular distribution is the robust
property of the solution of the Milne problem which be-
comes even stronger in the presence of such a reflection.

We now concentrate on the calculation of the diffuse
emission in the presence of the spin-orbit interaction at the
ballistic side of the junction. As compared to the consider-
ation in the previous section the scattering at the interface

now depends on the direction of spin of the incoming elec-
tron. On the other hand, electrons after a sequence of random
scattering in the diffusive region return to the interface pre-
serving their spinssee Fig. 6d, as the impurity scattering of
electrons in the diffusive region is assumed to be spin-
independent.

To describe such scattering, one should introduce a spin
density matrix%§§8. In the diffusive region each component
of the spin density matrix satisfies the kinetic equations17d
because in the normal region the Hamiltonian is spin-
independent. Consequently, one can apply the same angular
Green’s functionSsm ,m8d as in Eq.s25d.

We have to describe the counterflow at the interface in the
presence of the reflection. For clarification purposes, let us
imagine an auxiliary line,z=−0, separating the diffusive re-
gion from the NuSO interface.sActually, for a real device
there can be a physical, not auxiliary, interval between the
diffusion region and the beginning of the interface wherea
andB start to vary.d Similarly to the discussion of the Milne
problem it is assumed that the electron distribution is given
by a sum of the Drude flow and a counterflow. The incoming
part of the counterflow consists of two contributions: one,
yDrsz=−0, +md, counterbalances the incoming part of the
Drude flow, yDrsz=−0, +md=−%Drsz=−0, +md, while the
other, yreflsz=−0, +md, is determined by the flow incident
onto the linez=−0. As it has been explained is Sec. III and
has been already used in Eq.s32d we assume that there are
no electrons incident onto the NuSO interface from the SO
region. In the absence of electrons incident from the SO side
of the interface the flow incident onto the linez=−0 comes
only as a result of the reflection at the NuSO interfacefthe
latter circumstance explains our choice of a subscript for
yreflsz=−0, +mdg. Therefore the overall distribution of par-
ticles coming from the interface%overallsz=−0, +md=yreflsz
=−0, +md.

As a result of scattering inside the diffusive regionyDrsz
=−0, +md transforms into a part of the outgoing counterflow
yDrsz=−0,−md. Together with the Drude flow it yields the
following contribution to the outgoing distribution%Msz=
−0,−md=JsÎd/SddHsmds0, wheres0 is the 232 unit matrix.
The overall distribution of particles emitted from the line
z=−0 and incident onto the NuSO interface is given by

%overallsz = − 0,−md = J
Îd

Sd
Hsmds0 +

1

m
E

+
dV8Ssm,m8d

3yreflsz = − 0, +m8d. s34d

The second term in this equation is generated by the incident
part of the distribution,yreflsz=−0, +md, which in turn is
determined by the reflection of%overallsz=−0,−md at the
NuSO interface. The relation between the incident and re-
flected parts of the distribution should be found from the
solution of the scattering problem at the normal side of in-
terface

yreflsz = − 0, +md = Rsmd%overallsz = − 0,−mdR†smd,

s35d

where byR we denote a 232 block of the scattering matrix
corresponding to the reflection at the normal side of the in-
terface.

FIG. 5. sColor onlined The angular distribution,Hscoswd, of the
diffuse emissionsred lined as compared to the Drude flow distribu-
tion sblue lined for J=1. The functionHscoswdÞ0 at w=p /2.

FIG. 6. sColor onlined Milne problem in the presence of the
spin-dependent scattering at the interface. The SO interaction in the
diffusive regionsz,0d is suppressed.
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After substituting Eq.s35d in Eq. s34d one obtains a
closed equation for%overallsmd:

%overalls− md = J
1

Î2p
Hsmds0 +

1

m
E

+
dV8Ssm,m8d

3Rsm8d%overalls− m8dR†sm8d. s36d

To analyze the effect of the reflection at the interface on
the form of the diffuse emission, we study Eq.s36d for the
case of a smooth interface. In this limit the kinematical as-
pect of the scattering at the interface is most pronounced and
not masked by unnecessary complications. Namely, we as-
sume that for electrons of the2 chirality the probability of
the transmission is 1 at all angles, while for electrons of the
1 chirality the probability of the transmission is 1 forw
,wc and 0 otherwise; see Fig. 2 and the related discussion of
the smooth interface.

We will use a notationux±s±m , idl for spinors. The sign of
the first argument indicates the sign of the projection of the
momentum of a scattering electron on the direction perpen-
dicular to the interface, whilei = ±1 is the sign of the mo-
mentum component along the interface; the superscript6
denotes the chirality. Also in what follows the integration
over w will be performed asedw=oi=±1e−1

1 sdm /Î1−m2d. In
this notation the reflection part of the scattering matrix for
the smooth interface is given by

R = 0, w , wc

= o
i

ux+s+ m,idlkx+s− m,idu, w . wc. s37d

For each direction −m we introduce the orthogonal basis
nas−m , id in such a way thatn1 is parallel to the incident
momentump; n2 is perpendicular to the electron gas plane,

n2i l̂; andn3 is directed along the vector of the polarization
of the 1 chirality. For the analysis of Eq.s36d it will be
convenient to use the four-component Bloch vectorss0,sd
related to the matrix% as follows:

s0s− m,id =
1

2
Tr s0%s− m,id,

sas− m,id =
1

2
Trsnasd%s− m,id,

%s− m,id = s0s0 + o
a

sas− m,idsnasd, s38d

wheres0 is the unit matrix ands are the Pauli matrices. In
terms of thess0,sd matrix Eq.s36d can be rewritten as a set
of coupled equations

s0s− m,id = J
1

Î2p
Hsmd +

1

m
o

j
E

0

coswc dm8
Î1 − m82

Ssm,m8d

3
1

2
fs0s− m8, jd + s3s− m8, jdg, s39d

sas− m,id =
1

m
o

j
E

0

coswc dm8
Î1 − m82

Ssm,m8d

3 kx+s+ m8, jdu
1

2
s ·nas− m,idux+s+ m8, jdl

3 fs0s− m8, jd + s3s− m8, jdg. s40d

Remarkably, all componentssa are determined by a single
combination fN

+s−m , jd=s0s−m , jd+s3s−m , jd. The combina-
tions s0s−m , jd±s3s−m , jd describe the probability for an in-
cident electron to be in the6 chiral state. The representation
of fN

± ass0±s3 is a consequence of the choice of the axisn3

along the direction of the spin polarization of an electron in
the state of the1 chirality. The fact that the right-hand sides
of Eqs. s39d and s40d depend solely onfN

+s−m8 , jd has a
simple physical reason: electrons of this chirality only are
reflected at the interface.fIn Eq. s40d the components1 is
determined byfN

+s−m8 , jd without any feedback, ands2 van-
ishes identically in the chosen parametrization.g

To proceed further we have to calculate
kx+s+m8 , jdu 1

2s ·nas−m , idux+s+m8 , jdl for both i , j = ±1. With
the use of the relation that determines the direction of the
polarization of a spinor,kx+s+m8 , jdusux+s+m8 , jdl=nx+s+m8,jd,
the discussed expression is reduced to1

2nx+s+m8,jd ·n
as−m , id.

Then Eqs.s39d and s40d can be rewritten in the form:

fN
+ s− m,i = ± 1d = J

1
Î2p

Hsmd +
1

m
E

0

coswc dm8
Î1 − m82

Ssm,m8d

3
1

2
hf1 − cossw8 ± wdgfN

+ s− m8, + 1d

+ f1 − coss− w8 ± wdgfN
+ s− m8,− 1dj, s41d

where anglesw andw8 are defined in Fig. 7. For the differ-
encedfN

+ s−md= fN
+ s−m , +1d− fN

+ s−m ,−1d one gets a homoge-
neous equation

dfN
+ s− md =

1

m
E

0

coswc dm8
Î1 − m82

Ssm,m8d
1

2
f− cossw8 + wd

+ cossw8 − wdgdfN
+ s− m8d. s42d

One can check that all eigenvalues of the right-hand side of
this equation considered as a kernel of the transformation are
less than 1. Therefore we conclude thatdfN

+ s−md=0, i.e.,
fN
+ s−m , id is a symmetrical function with respect toi. Finally,

this yields for Eq.s41d

fN
+ s− md = J

1
Î2p

Hsmd +
1

m
E

0

coswc dm8
Î1 − m2

Ssm,m8d

3 s1 − mm8dfN
+ s− m8d. s43d

Following the same route, it can be found from Eq.s40d
the distribution of particles in the2 chiral state:
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fN
− s− md = J

1
Î2p

Hsmd +
1

m
E

0

coswc dm8
Î1 − m2

Ssm,m8d

3 s1 + mm8dfN
+ s− m8d. s44d

Equationss43d ands44d can be analyzed using the smallness
of coswc, but they can be easily solved numerically. In what
follows we will use the results of numerical analysis for the
distribution functionsfN

± s−md.
Ultimately, we are interested in the distributions on the

SO side of the interface. To achieve this goal, we have to
connect the calculated distributionsfN

± to the distributions on
the SO sidefSO

± . It follows straightforwardly from the Liou-
ville’s theorem that

fSO
± se, + mud = fN

± se,− mwd, s45d

where mu and −mw are two directions connected by the
Snell’s law, Eq.s4d. In the subsequent discussion the nota-
tions fSO

± sud and fN
± swd will be used instead offSO

± se , +mud
and fN

± se ,−mwd; notice that we return to the definition of
anglesw andu as it is given in Fig. 1. Finally, in Fig. 8 our
result for fSO

± sud is presented.
We observe that the distribution of particles of the1

chirality emitted from the diffusive region into the clean one
is flat even in the presence of the spin-dependent reflection at
the interface. Moreover, at large angles the functionfSO

+ sud is
noticeably increased.

As a result of the reflection at the interface there is a
redistribution of the population of the particles of the1 and
2 chiralities. Consequently, the two chiral components of the
current,j±, change in the vicinity of the interface, and we are
faced with the question of the conservation of the total cur-
rent j = j++ j−. sWe assume for a moment the width of the
diffusive stripeW to be unity, and until the end of this sec-
tion will not distinguish between the density of current and
the total current.d To check the current conservation we first
calculated numerically the currentsj± with the use of the
distribution functionsfN

± se ,−md. We get that on the N side of
the interface the currentj++ j− is equal to the total currentj
deep inside the diffusive region. Further on, it can be shown

that the two parts of the physical currentj± do not change
after passing the interface. To do this notice that in the SO
region the chiral components of the physical current are

jSO
± = pSO

± e2

2p
kcosufSO

± sudl s46d

ffor the definition of the physical currents see Eqs.s19d and
s20dg. Having in mind Eq.s45d and the Snell’s law in its
differential form,pSO cosudu=pN coswdw, the following re-
lations for the6 chirality current components on the two
sides of the interface can be obtained:

j+ = pSO
+ e2

2p2E
0

p/2

du cosufSO
+ sud

= pN
e2

2p2E
0

wc

dw coswfN
+ swd s47d

and

j− = pSO
− e2

2p2E
0

uc

du cosufSO
− sud

= pN
e2

2p2E
0

p/2

dw coswfN
− swd. s48d

For the1 chirality component it has to be taken into consid-
eration that the current of the particles impinging on the
interface in the interval of angleswc,w,p /2 is canceled
out by the flow of the reflected particles.

Thus we arrive at the conclusion that the two parts of the
physical currentj± do not change after passing the interface,
i.e., jN

± = jSO
± . Together with the fact of the current conserva-

tion in the N region this implies that the total current in the
ballistic SO region is equal to the current deep inside the
diffusive region.

So far we limit ourselves to the diagonal elements of the
density matrix. This was possible because in the N region the
density matrix is diagonal in momentum space, while the
current operator is diagonal in spin space. The situation is
different in the SO region where the current operator ac-
quires the spin structure, see Sec. II. In addition, the density
matrix becomes nondiagonal in momentum space as an elec-
tron beam splits into two beams as a result of the refraction
at the interface with the inhomogeneous spin-orbit interac-

FIG. 7. sColor onlined Angles and directions of spinors involved
in the derivation of Eq.s41d. For each anglew andw8 there are two
possible momentum directions corresponding to a different sign of
the pz component.

FIG. 8. sColor onlined The displacement functionfSO
± sud of the

“1” sshown in redd and “2” sshown in blued polarization compo-
nents of the transmitted elecrrons forã=0.1 as compared with the
solution without reflection,ã=0 sdashed lined.
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tion. We will not discuss this problem for the following rea-
son. As it has been explained in Sec. III our analysis refers to
the case when the current is registered far away from the
near-field zone of the orifice, i.e., at a distanceL much ex-
ceeding the width of the diffusive stripe. At such distances
the trajectories of electrons of different chiralities diverge
from each other and therefore the nondiagonal in momentum
space components of the density matrix become nonlocal in
space. Since the current operator is local this nonlocality of
the density matrix cannot show up in the current measure-
ments.

VI. SUMMARY

We have analyzed the transport near the interface with the
inhomogeneous spin-orbit interaction in terms of the spin
density matrix. The present analysis has been performed un-
der the assumption that the SO interaction in the diffusive
region is absentssuppressed completelyd. In fact, a much
weaker condition is sufficient. It is enough that spin relax-
ation rate in the diffusive region is controlled by the
Dyakanov-Perel mechanism:20 1/ts,DSO

2 t!1/t, where
DSO=2asx,0dpF!1/t is the spin splitting of the energy
spectrum in the diffusive region,x,0. Under this condition
the spin relaxation of the electrons during the propagation in
the diffusive region after the reflection from the interface is
negligible. sThe other limit DSO*1/t will be considered
elsewhere.d

We have verified that the specific property of the solution
of the Milne problem—the existence of the flat distribution
with a large portion of electrons emitted at small angles to
the interface—still holds in the presence of the reflection at
the interface. Moreover, at large angles the distribution func-
tion of electrons of the1 chirality is noticeably increased,
see Fig. 8. As it has already been pointed out in Sec. II, there
exists an interval of the outgoing angles,uc,u,p /2, where
only the 1 spin chiral component can penetrate. Together,
these observations call upon to exploit the diffuse emission
for the purposes of spintronics.

In Fig. 9 a scheme of a device is presented which can
operate as a spin filter for a current passing through the dif-
fusive stripe confined between nonconducting areas A and B.
Two additional barrierssor gatesd are set at a distanceL
much larger than the width of the diffusive stripeW. Within

this geometry each collector,CW and CQ, gets spin carriers
emitted into the corresponding angular intervaldu. When
du,p /2−uc, particles of the1 chirality only can get into
the collectors. As a result, the currents inside each of the two
collectors are spin-polarized, dominantly along the ±x̂ direc-
tions.

In the setup under discussion the orifice of the stripe acts
as a source of a current with an angular distributionfSO

± sud.
The number of electrons of a certain chirality flowing in a
direction u per unit timesi.e., the angular fluxd is equal to
ISO

± suddedu, where the intensityISO
± sud is related tofSO

± sud
as ISO

± =fe2/ s2pd2gpSO
± fSO

± sudcosuW. The factor cosuW ap-
pears because we consider the flux of the particles outgoing
from the orifice at an angleu. The angular dependence of
ISO

± sud is in full accord with the expressions for the density

of the currentsj±; see expressions under the integrals in Eqs.
s47d ands48d. Assuming the angular distribution of the emit-
ted electrons to be practically flat, the spin-polarized current
that can be collected by each of the collectors is. jdu2/8. As
it has been explained in Sec. II the width of the angular
interval du=p /2−uc can be as much as 2Îã. At this point
the fraction of spin-polarized current reaches its optimal
value. jã /2. All collected electrons have the same chirality
that results in a very high level of spin polarization of the
current in the collectors. A deviation from the perfect level of
spin-polarization is only due to a small spread of the direc-
tion of motion of electrons within an angular intervaldu.

In Ref. 8 a large spontaneous spin splitting has been de-
tected in a gate controlled electron gas formed at a
In0.75Ga0.25 As/ In0.75Al0.25As heterojunction. The reported
splitting corresponds toã<0.1. For such values ofã one
may expect a rather large angular intervaldu that can be
usedfor spin filtration;du<36°. Under these conditions, the
device proposed in Fig. 9 has the following specifications: a

fraction up to 5% of the total current is collected inCW and is
salmostd fully spin-polarized along the directionx̂, while the

other fraction of 5% is collected inCQ and is spin-polarized
along the direction −x̂.

After filtration the spin-polarized current can be manipu-
lated similarly to the polarized light in optical devices. In
particular, one can link the spin filter to the switch of the
spin-polarized current discussed in Ref. 1.
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FIG. 9. sColor onlined A spin filter. Electrons emitted from the
diffusive stripe at small angles to the interface are spin polarized
and can be collected for subsequent spin manipulations.
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