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A lateral interface connecting two regions with different strengths of the Bychkov-Rashba spin-orbit inter-
action can be used as a spin polarizer of electrons in two-dimensional semiconductor heterosfiKictuas
et al, Phys. Rev. Lett92, 086602(2004)]. In this paper we consider the case when one of the two regions is
ballistic, while the other one is diffusive. We generalize the technique developed for the solution of the problem
of the diffuse emission to the case of the spin-dependent scattering at the interface and determine the distri-
bution of electrons emitted from the diffusive region. It is shown that the diffuse emission is an effective way
to get electrons propagating at small angles to the interface that are most appropriate for the spin filtration and
a subsequent spin manipulation. Finally, a scheme is proposed of a spin filter (smacEig. 9 that creates
two almost fully spin-polarized beams of electrons.
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[. INTRODUCTION ity can penetratésee Fig. L If it is possible to collect elec-
trons from this interval, one will have an ideal spin filter.

Recently we proposédo use a lateral interface between Second, electrons of this chirality exhibit a total internal re-
two regions of the two-dimensiong2D) electron gas with  flection for an angle of incidence in an intervaf< ¢
different strengths of the Bychkov-RasRkepin-orbit(SO) < #/2, where¢® is a critical angle of the total internal re-
interaction as a spin-polarizing element for the purposes ofiection. It is clear from these observations that the electrons
spintronics®** The lateral interface introduces the space-propagating at small angles to the lateral interface are most
varying SO interaction which leads to spin-dependent refracsensitive to the variation of the magnitude of the spin-orbit
tion of spin carriers passing through the interfad@onse- interaction, and therefore such electrons are most appropriate
quently, an electron beam with a nonzero angle of incidencgor spin control and manipulation. Hence one has to find a
after passing through the interface splits into beams withway to creatgand collect flows of electrons of high inten-
different spin polarizations propagating in different direc-sijty that are almost tangential to the interface. In this paper
tions (see Fig. 1 for the scattering at the lateral interfacewe suggest using the diffuse emissibias a possible solu-
between the regions with and without SO interactidssing  tion of this task.
an interface with an inhomogeneous SO interaction as a prin- We show that making one of the two regions connected
cipal element of spin-based devices we outlined the schemesy the lateral interface to be diffusive is an effective way to
for a spin filter, spin guide, and a spin current switsbin  achieve a flat angular distribution of particles emitted from
transistoj. This program promises to build spintronics de- the diffusive region into the clean one. The effect of flatten-
vices avoiding magnetic materials that are not conventionahg of the angular distribution of the emitted electrons is the
for the semiconductor industry. It can be realized in the gatedobust property of the diffuse emission which holds despite
heterostructures with a sufficiently strong Bychkov-Rashbahe presence of a spin-dependent reflection at the interface.
SO interactiof 8 by manipulating the gatés.

The effect of the separation of the trajectories of electrons
with different spin polarizationgchiralities influenced by
the space-varying SO interaction has the same grounds as tf
double refractior(birefringence of light in uniaxial crystals

exploited in optical devices for the polarization of light. The \ Y ; !

separation of the trajectories of carriers of different spin hasy, S s0 N

been observed recentlyn the case of a homogeneous SO ,x"

interaction as a result of action of a perpendicular magnetic G

field. The separation of the trajectories after reflection at a(a) (b)

lateral potential barrier in the presence of the SO interaction gy 1 (cColor onling The refraction of electrons at the interface
has been observed in Ref. 10. between the regions wittSO) and without(N) spin-orbit interac-

Two facts that can be useful for the purposes of the spingion. A beam incident at angle splits after the refraction into two
tronics have been found in Ref. 1 in the analyS|S of the SPINheams with 4" and “—" chiralities that propagate at ang|$

dependent scattering of electrons incident on a lateral intefidenoted by red and blue colors, respectiyelg) 6° determines the
face with a SO interaction varying in the direction normal tolimited aperture for— chirality; in the angle intervat®< < /2
the interface. First, there exists an interval of outgoing anglesnly electrons of+ chirality can penetratgb) ¢° is an angle for
° < 6< /2 where only electrons with a definite spin chiral- total internal reflection for electrons of the chirality.
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Due to the flatness of the angular distribution a substantial . p?

portion of electrons propagates at small angles to the inter- E = m tap+B. (2
face and these electrons are suitable for the spin filtration and

subsequent spin manipulation. In F&ya scheme of a device Correspondingly, the momenta of the waves of a given en-
is presented which operates as a spin filter with a high levedrgy E involved in the scattering at the interface between the
of spin-polarization of a filtered current. two regions with differentr are determined as follows:

The paper is organized as follows. In Sec. Il we present . 5 _ =5 _ ~
the resulty of the analysis of scattering of electrons at the  Pso~ mV2(E~B)/m+a® F a] =moe(V1+3° + @).
lateral interface between the two regions with different mag- (3)
nitudes of the Bychkov-Rashba term. In Sec. Il we analyz P . . .
the transport of %/he 2D electrons in the presence of the C)Z/o A 2(E—~B)/m, and we mtrodgce a small dimension-
lomb interaction near the interface between the diffusive andfSS parameteaza/vF V‘.’h'Ch we will use th".)thOUt the
ballistic regions. In Sec. IV we reconsider the problem of theP2Per- Notice that at a given energy the vel%of electrons
diffuse emissior(Milne problent™13 for an arbitrary dimen-  Of Poth chiralities is the same:=JE"/ dp=veV1+a”.
sion. In Sec. V we generalize the technique developed for the Let us discuss the kinematical aspects of the electron scat-

problem of the diffuse emission to the case of the SIOin_tering at the lateral interface. An incidefionpolarized

dependent scattering at the lateral interface. We use a seni€@m comes at angle from the region without or with a

classical approach with electrons moving along the classiSUPPressed spin-orbit term, denoted as the N region, and

cally allowed trajectories when the spin of electrons is theVhen transmitted into the SO region splits into two beams of
only element treated quantum-mechanically. For this purdifférent chirality that propagate at different anglés Fig-
pose, we analyze the transport near the interface in terms &€ 1 illustrates the scattering for the simplest case when
the spin density matrix. In the Summary a scheme of a spi(*<0)=0. The conservation of the projection of the mo-
filter device that creates two beams of electrons of a verynentum on the interface together with &) determine the

high level of spin polarization is presented. angles of the transmitted and reflected be#8rell's law):
Py SiN ¢ = pso Sin ¢, (4)
Il. SPIN-DEPENDENT SCATTERING AT THE LATERAL wherepy is @ momentum of an electron in the N region and
INTERFACE Pso are the momenta in the SO region after passing through

Consider a two-dimensional electron gas confined in theghe interface.
9 From Eqgs.(3) and (4) it follows that the SO region is

xz plane by a potential well in the semiconductor hetero- e . S
. more “optically” dense for the- mode(i.e., it has a smaller
structure. Generally, the potential well has the shape of an

S . -~ . ~“wave vector and less dense for the mode. Correspond-
asymmetric triangle, and, consequently, there is a directior .
- ) ~ingly, the + mode is refracted to larger angles than the
of asymmetry|, perpendicular to the electron gas plane. Thisyne  and therefore the mode exhibits a total internal re-
leads to the appearance of theAspecmc spin-orbit interactiofection with a critical angleg®. As to the— mode it has a
tern? in the Hamiltonian,a(p X 1)a. We will consider the limited aperture in the SO region for outgoing anglés:
case when the parametervaries along thes direction. The < 6<m/2.
direction ofl is chosen a$=-y. Generally, the Hamiltonian ~ Remarkably, the angle interval where only themode
has the form can penetrate is not narrow as its width has a square root
dependence ofa. It_follows from Snell's law that(w/2
1, 1, 1A - 6°) =~ (m/2-¢°) =\ 2a. Actually, one can reduc#® even
Hr= o Pt 5P+ B() + E(l X o)la()p +pa(x)]. further. With the gates acting selectively on the different re-
gions of the electron gasiB=B(-«)-B(+x)# 0, one can
alter the position of the bands relative to the Fermi level in
() alter the position of the bands relati he Fermi level i
the N and SO regions. A simple analysis shows that with an

Here B(x) describes the varying bottom of the conducuonincrease oféB (i.e., loweringpe in the normal regionthe

band which may be controlied by gates. The current Operato:;rmgle interval(7/2-6;) grows and reaches\Z. Starting
corresponding to this Hamiltonian contains a spin tedm: from this moment the angle interval suitable for spin filtra-

=p/m+a(x)(I X o). The presence of spin in the current op- tion narrows and eventually becomegy, instead of~a.
erator implies that in the process of scattering at the lateral The problem of scattering of electrons at a lateral inter-
interface with varyinga the continuity conditions for the 5ce petween the two regions with different magnitudes of
wave function involves the spin degrees of freedom of thgpe Bychkov-Rashba term has been considered in Ref. 1 for
electrons. This makes the electron scattering at the interfagge two limiting cases of a sharp,/d=1, and smooth,
to be spin-dependent. M d<1, interface, whera is an electron wavelength amtl

To diagonalize the Hamiltonian with the Bychkov-Rashbajg 4 effective width of the interface. Here a qualitative de-
term in the regions of constantone has to choose the axis s¢ription of the analysis of the spin-dependent scattering at
of the spin quantization along the directidn< p). Then for  the interface will be presented only.
the two chiralitiereferred to below as+" and “—" mode9 A scattering state of an electron coming from the N region
the dispersion relations are given by in the statedP**P2 1 is given by
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idly oscillating functions. Consequently, the transmission
amplitudes presented in Fig. 2 have almost rectangular shape
for a smooth interface.

Summarizing the results obtained in Ref. 1 for the cases
of the sharp and smooth interface one can state that for both
the discussed cases an electron in a state of a definite chiral-
ity propagates along the classically allowed trajectory for
this chirality, while a change of the chirality is very ineffec-
/4 (pc /2 tive.

The case of the N-SO interface described so far was taken
mostly for illustration. Actually, any interface with a change
of a results in splitting of the trajectories that can be used for
the purposes of spin polarization and filtration. In the analy-

o O o o
N > oy 00 B

FIG. 2. (Color online The intensities per unit outgoing angle of
the electrons transmitted without change of their chirality
~(d#*/de) Yt,.|? and ~(dg/de) Yt__|?> per unit angle as a func-
tion of an angle of incidence for shaisolid line) and smooth

(dashed linginterfaces(Ref. 13. sis above, one should .re_platze by the difference o_f the
strength of the spin-orbit interactiofgg across the inter-
iDyXy* + ~ipyxXy + Py~ <0 face.
Gt = gz ETXN T € XM+ T € XN M-4, X
- .p+X + ‘p_X _ y
ePNscter + €PNy, X >0 l1l. KINETIC EQUATION, ELECTRONEUTRALITY, AND
(5) BOUNDARY CONDITIONS

In this section we discuss the kinetics of the two-
dimensional(2D) electron gas near the boundary between
the diffusive and ballistic regions. We show that within the
linear response approximation the equation determining the
current distribution function and the equation determining
dhe density and potential profiles are decoupled, except for
boundary conditions. This analysis justifies the concept in-
troduced by Landauéf:to determine the transport properties
it is enough to consider noninteracting quasiparticles that

. X . ; ropagate without interaction, i.e., ignoring any effects re-
sect|on.al aredwidth) O.f a beqm._The intensity2® of the I%te% t% the redistribution of the poten%ial du% to t¥1e Coulomb
trans_m|tted flux onaNglven Ch_”as'gy can be found from the interaction of electrons. The problem requires, however, fix-
rglatlon |TS‘%N(QD).| le COS‘PQQD_IE. cosédd. Here the co- ing up the boundary conditions, which we perform below for
sme_factors_ take into consideration the change of the Crossg particular geometry.
sectional width of the beam as a result of the scattering, ‘e yinetic equation describing a stationary flow of elec-
while | Zso_n(@)[2=|t|?(v°/vy) (we use the fact that for the trons by a distribution function,(x) is
two chiralities the velocities are the samEinally, the inten- P
sity of the refracted flux relative to the incident one is equal
to dey(r) any(r) _ dey(r) any(r)
gp o a

wherexy,so are spinors corresponding to thechiral modes
in the N and SO regions, andandt are the amplitudes of
the reflected and the transmitted waves. In &.the inter-
face is atx=0 and for simplicity we limit ourselves to the
case of the interface between the N and SO regions. A simil
expression holds also foP~ which evolves from the inci-
dent stateyy.

The flux of particles impinging on the interface at a given
angle ¢ can be defined akdededs, whereds is the cross-

= St{np(r)}. ()

139N = (derde) (wSYuN)[tf2. (6)
) ) The electron flow is forced by the electric fielde,(r)/or
For a sharp interface the amplitudes can be found from =eVad(r). Correspondingly, Eq(7) should be supplied by

the continuity conditions, while for a smooth interface oney, o pgisson equation which when limited to the 2D plane is
can conduct the analysis of the refraction using a small pa-

rameter »=(da/dx)/ aps~N/d<<1. In the latter case the

electron spin adjusts itself adiabatically to the momentum A® = - 4mepypdly). (8)
keeping its polarization in the direction perpendicular to the
momentum. Here the Laplacian acts in 3D space, whilg is the devia-

It has been shown in Ref. 1 that in the course of refractiortion of density of the 2D electron gas from the equilibrium
at the interface witfv<<1 transitions between states of dif- value. Therefore Eq8) should be supplemented with the 3D
ferent chirality are strongly suppressed. For that reason, theonditions ond that will take care of the 3D environment of
drop of the intensities of the transmitted electrons withoutthe 2D electron gas. This introduces an element of nonuni-
change of their chirality,, andt__, see Fig. 2, occurs prac- versality into this problem. Fortunately, in the linear response
tically only due to the reflection which becomes decisiveapproximation the situation is much more tractable and the
only for ¢=¢° In particular, for a smooth interface the problem of the current flow of the 2D gas becomes self-
probability of the reflection outside the region of the total contained(see, e.g., Ref. 15
internal reflection is almost entirely suppressed because the In the linear response approximation one keeps terms lin-
matrix elements describing reflection are integrals of the rapear inV®(r) and ony(r) only:
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&éhg(r)_ ﬂg_ \\
VET eV a(r)ve e = Sf{on}, 9 % ~
where dn,(r)=n,(r)-n2 andng is the Fermi-Dirac equilib-
rium distribution.(We assume throughout the paper that the .
spatial variation of the Fermi-energy level as well as other % / .
parameters of the electron liquid such as the density of states |
and the screening length occurs on distances greatly exceed- ot s N2 \
ing the wavelength and the mean free path. For that reason,diffusion*’._’. . S ) ST |
the spatial variation of the parameters characterizing the i
electron liquid is ignored beloyv.In the presence of the ~
electron-electron interaction there is an additional force that “
originates from the interaction of the quasiparticles. This ef- /
fect has been accounted for by a substitution of the local 7/
equilibrium distribution&Tp(r) in place ofdny(r) in Eq. (9), /
see Ref. 16.

Following Refs. 17 and 15, one can shift the distribution
function by a local value of the potentidi(r) introducing a L
displacement functioffi(r , ¢)

FIG. 3. The physical setup which leads to E24) as a bound-
_ &ng ary condition for the kinetic equation. The diffusive region has a
on(r) = &—e[fb(r) -f(r,9)], (10) geometry of a stripe that runs into a ballistic basin. The current
€ density vanishes inside the ballistic region at a typical distdnce
where the direction of the momentupris given by the angle <I;,. Trajectories that start from a terminal on the ballistic side of
o. In terms of the displacement functid(r , ¢) the system of  the device and reach the diffusive stripe are shown by dashed lines.

Egs.(9) and(8) acquires the form
o o) which the potential® in the left-hand side of Eq(12)
) SHf}, (11) changes are much longer than the screening Ie@hCor—
or respondingly, |V®|<|kop(f(r,@)),l, |xp®(r)|, and the
Poisson equation reduces to the condition of the electroneu-
AD = 2kpP(r) y) = = 2kp(f(r, @) Aly),  (12)  trality:

wherek,p=2m€?dn/ du is the inverse screening length of the

2D electron gas, which in the Thomas-Fermi approximation Spap(r) =05 (f(r, @), = ®(r). (15

is equal to 2°m; (f(r, ¢)),=/(de/2mf(r,¢) is f(r,¢) av- Now we turn to the discussion of the boundary conditions.
eraged over directions of momentum. Thus, although(8q. Let us assume that the diffusive region has a stripe geometry
together with the Poisson equati@) constitutes a system of with the x axis directed along the stripsee Fig. 3 In the

two coupled equations, the potentilr) drops out from Eq.  diffusive region the collision term is controlled by the elastic
(11) governing the functiorf(r,¢). Given boundary condi- relaxation timer,, and the kinetic equation acquires the form
tions, the displacement functiditr ,¢) determines the cur-

rent distribution without any feedback from Ed.2): af(r, o)
VpE———

VE

_ o) = (f(r.o),
or - S‘{f}elastic_ Tol .

(16)

2
j(r)= 28[ g pva&]p(r) = 292V20<VF(€D)f(ry§D)>(p,
(2m Here we assume that the impurity scattering is of short range
(13 nature.(The angular dependence of scattering of electrons by
the impurities does not influence the distribution function of

s electrons deep inside the diffusive region, but is important
=m /2. - . . or the angular profile of the diffuse emissipnVith the
When one is interested in the connection of the curren[ '

density with the distribution of the potential and density inﬁ:ﬁzgg g]iaar:ic]:rneia%ag‘e:?g\j\?lritliﬁdinatse?mingf ?;éegi?;r;’ntsr;gn_
the 2D electron gas, Ed12) should to be involved along q

with the relation connecting,p with ®(r) andf(r, ¢): less variableg=x/1:

where v, is the density of states per one spin specigg,

2
Spap(r) =2 f Qd—qump(r) = (kop/2mO)[(f(r, @)}, — P(r)]. - cos<o§§f(§, @) + (L, ) = (F(r, ¢)),. 17

(14) Here the minus sign in the first term containify{ appears
For good enough conductors the Poisson equation reduces lb@causep is chosen as an angle formed by a momentum with
the condition of the electroneutralty(which is valid in any  the direction % (note that X directs inwards the diffusive
dimension. Under these circumstances typical distances omegion.
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In the current carrying state electrons deep inside the difmomentum directed along at the moment=0; see dashed
fusive region are distributed according to the Drude formlines in Fig. 3. We assume that the current carrying area

Correspondingly, at a distand¢eounted from the interfage
exceeding few Eqg. (17) has a solution:

for(¢ @) == JInYcosg + {). (18)

Here the factors are fixed in such a way that the curdéft
defined as

J(0) = - 2m{cosef(,9)), (19

is equal toJ for the distribution functiorfp, (£, ¢). With the
use of Eq. (13 the physical current j=j,=
—2€2V2DUF<COS(pf(§,(p)>¢ can be related to the curredtde-
fined in Eq.(19) as follows:

j = pe(e?/272)]. (20)

To obtain the relation between the currg¢rand the elec-
tric field let us apply a gradient to the both sides of Eigl)
with the distribution functionfy, used forf(r,¢). Then, to-
gether with the fact that the electric fieltk=-V ®, one gets
the relation:

j=0E~DeV (edpsp), (21)

where the conductivityr=2e?v,p(12/27) while the diffusion
coefficient of charge densitld., corresponds to the Einstein
relation, D= (du/ an) o/ €2. Under the condition of the elec-
troneutrality Sp,p(r)=0 andj=¢E. [Actually Eg.(21) does
not require the Drude fornfp,, of the distribution. It holds

in the diffusion approximation when the distribution function

has only two first harmoniclx, ¢) =@ (x) - fP(x)cos¢ and
the functionsf@(x) and f®(x) vary on scales much exceed-
ing the mean free path]

To proceed further with Eq.11), one has to specify the

distribution of particles incident from the terminals located
on the ballistic side of the device under discussion. Gener
ally, this distribution is not universal as it depends on a par
ticular geometry. For definiteness, we consider the case wh
the diffusive region that has stripe geometry runs into a bal-

listic basin, see Fig. 8a stripe is wide enough allowing the
transverse quantization of electrons to be ignpréollow-

widens sharply on the ballistic side of the setup. Correspond-
ingly, the current density vanishes inside the ballistic region
at a typical distancé. Under the conditioh <I;,=vg7,, the
integral in Eq.(23) is accumulated at distances where elec-
trons are at the equilibrium and the potentldl) is equal to

its equilibrium value at a terminal deep inside the ballistic
region, d(+w). Then, it follows from Eq.(23) that for in-
coming directiond (r , ¢p_.q) =P (+0). This provides us with
the boundary condition to be imposed at the interface),

on the incoming part of the function:

f(x=0,pp_q) = P(+=). (24)

The obtained boundary condition is isotropic. This remark-
able feature is a consequence of the choice of the proper
geometry.

Together with the current distribution deep in the diffu-
sive region given by Eq(18), the relation(24) constitutes
the full set of the boundary conditions needed for the solu-
tion of Eq.(16). Two remarks are now in order to complete
the discussion of the boundary conditions.

(i) Notice thatd(x=0) # ®(+). The point is that due to
the abrupt change in scattering the solutign, ¢) of Eq.

(16) has a singular derivative near the interface. Under these
circumstances, one cannot neglect the té&wn in Eq. (12),

and therefore the condition of the electroneutrality is violated
in the vicinity of the interface in a strip of a widthx,y ™.

The deviation of the density distributiofp,p(r) from the
equilibrium at the interface leads to the variation of the po-
tential, and henc@(x=0) differs from ®(+x).

(i) As Eq. (16) can be satisfied by(r,e)=const, any
solution of Eq.(16) can be shifted by a constant with no
consequences for the physical quantitfes any measure-
ment of the current one registers the difference between
fluxes of incoming and outgoing particles and the isotropic
art of f(r, ¢) is cancelled odt It follows from Eq.(10) that
Re distribution of particles impinging onto the diffusive
region at the interfacebﬁpb%&(:O), is not affected by
a global shift of the potentialéh%w(x=0)=(ﬁn2/o76)e[<1)(x

ing Ref. 15, we use the method of characteristics to deter=0) ~®(+%)]. This is in full accord with the fact that one is

mine a distribution of particles that impinge onto the diffu-

sive stripe from the ballistic regioftorresponding family of
anglese will be denoted aspy,_.q).

In the ballistic region the collision term is controlled by
the inelastic relaxation time,,, and the kinetic equation ac-
quires the form

of(r, f(r,p)—®
((I;r ®) = SH{f}inelastic= ~ %n(r)

Vg (22)

The solution of Eq(22) for the directionsp,,_.4 is given by

0 et/1'in
f(r.) = j dt=— O [F (D), ],

T

(23)

whereT (1), , is the trajectory(the characteristigsof an elec-

free to shift the potentia® by a constant.

In Sec. IV and V we choosé(+»)=0 and correspond-
ingly usef(x=0,¢,_4) =0 as the boundary condition for the
function f(r,¢) at the interface between the diffusive and
ballistic regions.

IV. DIFFUSE EMISSION PROBLEM

In this section we present a solution of the classical prob-
lem of the diffuse emissiofMilne problent™1? (see Fig. 4
in the form convenient for the subsequent analysis of Sec. V.
It is given for an arbitrary dimensioth, but we are interested
in the particular case ad=2.

Let us specify the notation for angle used throughout
Sec. IV and V: for each of the two regions, diffusive and

tron that starts at the remote past from a terminal on thdallistic, ¢ is chosen as an angle formed by the momentum

ballistic side of the device and reaches the pointith the

of an electron with a normal to the interface directed inwards
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The Green’s functiorS(w, ') satisfies a nonlinear inte-
gral equation which can be derived as follows. Differentiate
Eq. (25 with respect toZ, express the derivativegg/
through the kinetic equatiofl?), and use Eq(25) to elimi-
nateg(Z,—u) in favor of g(Z, +u). In result one gets

f dQ’S(,u,,u’)(i, + l)Q(éﬂ +u')
+ v

1
= gH(,U«)f dQ'H(u")g(¢, +u'), (28
. T where§; is a total solid angle im-dimensions. As this rela-
. ¢ tion holds for an arbitrary incident distribution the equation
. for the Green’s functior8(u, u') follows:
Diffusion Ballistics L1\ 1
S(M,M’)<—,+—) = H(wH(w"). (29
woopm) S

FIG. 4. (Color online Milne problem. The diffusive region is to )
the left of the interface/<0. The ballistic region is to the right, The counterflow does not carry current and therefore it sat-

>0. isfies

to the corresponding region. Correspondingly, forcose f dOQ[ug(+ w) — ug(-= u)]=0. (30
we adopt the conventid that for electrons propagating +
away from the interface.>0 (denoted as g in what fol-
lows), while ©<0 (denoted ) corresponds to electrons
propagating towards the interface.

The general solution of Eq17) can be written as a sum
of the current carrying Drude flowsee Eq.(18)] and the /-L:f dQ'S(u,u') (31)
currentless “counterflow”g(¢, w), i.e., f(&,u)=fp (¢, n) *
+d(£, ). At a distance about a few mean free paltthe  that can be verified with the use of E@9) along with the
counterflow g(£,u) approaches an isotropic distribution relation [,dOH(u)=S;.
(generally, a nonzero constanEor currentless counterflow  As it has been explained in Sec. Ill the geometry of the
particles injected into the diffusive region eventually returndiscussed setup is such that the distribution function in the
back to the interface. Hence the distribution function of par-allistic region does not contain a component describing par-
ticles emitted by the diffusive regiom(-u), should be de- ticles propagating towards the interface, i.80, +u)=0.
termined completely by the distribution function of the in- Therefore, in the solutiorf(¢, u)=fp (¢, w) +9p(£, 1) One
jected particlesg(+u). Due to the linear nature of EqL7),  has to counterbalance the pégt(0, +u) by a proper choice
the g(xu) parts of the distribution function are related of g, (0, +u)=~f,(0, +u). Then the emission outside the

This implies that Green'’s functio®(«, ') should satisfy the
condition

linearly'* by the angular Green’s functio®(u, u'): diffusive region consists of the two contributionfs,(O,
1 —u) from the Drude_ flow, andyp,(0,-u) which priginates

—w==| d'Su u’ ). 25 from the compensating counterflow. 8g,(0, +u) is known,

9&-m) ,uﬁ Spep )0+ 1) @3 the latter contribution can be found with the help of EZp).

As a result, the emission in the Milne problem is given by
Hered()’ stands for the angular integrationdndimensions, the expression
while the subscriptt- in the integral indicates that the inte-
gration is limited to the directions for which’ > 0. With the
use of Eq.(25 one can reexpress the densiiy({) corre-
sponding tog(¢{, u) through the incoming part of the distri-
bution only: which can be simplified using Eq$29) and (31) together

with the relation [,dQuH(uw)=Sy/Vd. Finally, the angular

d 1
fM(Oa_M):\]_|:/—L+_J dQ’M’S(M,M’)], (32)
S TN

_ distribution of the particles emitted from the interface into
py(d) = . dQH()9(&, + ) (26) the clean region is given by
Vd
where fm(0,— ) :JgH(,u). (33
H(w) = {1+f dQ'S(’u—':“)} (27) This result coincides with the one presented in Ref. 11 for
+ M the cased=3.
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now depends on the direction of spin of the incoming elec-

£(8=0)| —— tron. On the other hand, electrons after a sequence of random
B scattering in the diffusive region return to the interface pre-

serving their spin(see Fig. 6, as the impurity scattering of

0.4 electrons in the diffusive region is assumed to be spin-
independent.
To describe such scattering, one should introduce a spin
0.2 density matrixggg/. In the diffusive region each component

of the spin density matrix satisfies the kinetic equatib)
because in the normal region the Hamiltonian is spin-

7_(/ 4 JT/ 2 independent. _Consequently,_ one can apply the same angular
Green’s functionS(u, 1’) as in Eq.(25).
FIG. 5. (Color onling The angular distributiori(cos¢), of the We have to describe the counterflow at the interface in the
diffuse emissior(red line as compared to the Drude flow distribu- presence of the reflection. For clarification purposes, let us
tion (blue ling for J=1. The functionH(cos¢) #0 at =1/2. imagine an auxiliary line{=-0, separating the diffusive re-

gion from the N—SO interface(Actually, for a real device
¢there can be a physical, not auxiliary, interval between the
diffusion region and the beginning of the interface whare
andB start to vary) Similarly to the discussion of the Milne
problem it is assumed that the electron distribution is given
by a sum of the Drude flow and a counterflow. The incoming
art of the counterflow consists of two contributions: one,
(¢=-0, +u), counterbalances the incoming part of the
Drude flow, v ({=-0, +u)=—gp({=-0, +u), while the
other, v¢7({=-0, +w), is determined by the flow incident
V. DIFFUSE EMISSION IN THE PRESENCE OF SPIN- onto the line{=-0. As it has been explained is Sec. Ill and
DEPENDENT SCATTERING AT THE N/SO INTERFACE has been already used in E§2) we assume that there are
) ) . ) _no electrons incident onto the-NSO interface from the SO
In this section we generalize the solution of the Milne region. In the absence of electrons incident from the SO side
problem to the case of spin-dependent reflection at the intekf the interface the flow incident onto the lide—-0 comes
face. We are mainly concerned with the influence of theonly as a result of the reflection at the-NSO interfacdthe
strong reflection at the angles tangential to the interface otatter circumstance explains our choice of a subscript for
the distribution of the emitted electrons. We show that they;({=-0, +u)]. Therefore the overall distribution of par-
effect of flattening of the angular distribution is the robustticles coming from the interfac@qyerai({==0, +1) = v (L
property of the solution of the Milne problem which be- =-0, +u).
comes even stronger in the presence of such a reflection.  As a result of scattering inside the diffusive regiag(¢
We now concentrate on the calculation of the diffuse=-0, +u) transforms into a part of the outgoing counterflow
emission in the presence of the spin-orbit interaction at they,(f=-0,-u). Together with the Drude flow it yields the
ballistic side of the junction. As compared to the consider-following contribution to the outgoing distributiogy,({=
ation in the previous section the scattering at the interface0,-u)=J(\d/Sy)H(u) oo, Whereoy is the 2x 2 unit matrix.
The overall distribution of particles emitted from the line
{=-0 and incident onto the N-SO interface is given by

—_
I

/d 1
Qoverall{=—0,—u) = J\_H(M)UO"' _f dQ'S(u, u")
S M

+

In Fig. 5 the functiorH(«) and the angular dependence o
the Drude flow distribution~cos¢, are plotted, both nor-
malized toJ=1. As compared to the Drude flow, the diffuse
emission distribution in the Milne problem has a qualita-
tively different behavior at large angles. Namely, the distri-
bution flattens and a considerable part of the distribution i
transferred to the large angles.

Xten(¢==0, +u'). (34

The second term in this equation is generated by the incident
part of the distributionye;({=-0, +u), which in turn is
determined by the reflection 0fyyera({=-0,-u) at the
N—SO interface. The relation between the incident and re-
flected parts of the distribution should be found from the
solution of the scattering problem at the normal side of in-
terface

Uer({==0, + 1) = R(w) Qoveral( { = = 0,—,u,)'RT(,u,),
(39

FIG. 6. (Color onling Milne problem in the presence of the Where byR we denote a X 2 block of the scattering matrix
spin-dependent scattering at the interface. The SO interaction in theorresponding to the reflection at the normal side of the in-
diffusive region({<0) is suppressed. terface.
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After substituting Eq.(35) in Eqg. (34) one obtains a 1 cos¢®  dp’
closed equation fopgyeraf 1) S(-pi)==2 f T—3Amu')
HijJoo Nl-p
Conwal= ) =02 H(or+ - [ 60/t X O DS - )
overal \\“”277 0 wl. ’ X M !J 20'” Iu‘ll X M !J
XR(1)Qoverall = )R (1'). (36) X [$(= ') + %= w',))]. (40)

To analyze the effect of the reflection at the interface OnRemarkany all components® are determined by a single
the f f the diff ission, tud 6) for th AT : . . .
e form of the diffuse emission, we study E6) for the combination f(~z.j) =g, ]) + S(—p.]). The combina-

case of a smooth interface. In this limit the kinematical as-- . ) _ o .
pect of the scattering at the interface is most pronounced ariP"S =, )£ (~p ,J) describe the probability for an in-
not masked by unnecessary complications. Namely, we a§-'de+nt electron to be in the chiral state. The representation
sume that for electrons of the chirality the probability of ~ ©f fx ass’s’ is a consequence of the choice of the axs
the transmission is 1 at all angles, while for electrons of thetlong the direction of the spin polarization of an electron in
+ chirality the probability of the transmission is 1 far the state of thet chirality. The fact that the right-hand sides

< ¢° and 0 otherwise; see Fig. 2 and the related discussion & Eds. (39) and (40) depend solely orfy(-u',j) has a
the smooth interface. simple physical reason: electrons of this chirality only are
We will use a notatiory*(+4,i)) for spinors. The sign of reflected at the interfacéin Eq. (40) the componens! is

the first argument indicates the sign of the projection of thedetermined byfi(-u',j) without any feedback, ansf van-
momentum of a scattering electron on the direction perpenishes identically in the chosen parametrizatjon.

dicular to the interface, whilé=+1 is the sign of the mo- ~ To proceed further ~we have to calculate
mentum component along the interface; the superscript {x"(+1',])|30-n%(=x,i)|x*(+x',)) for bothi,j==1. With
denotes the chirality. Also in what follows the integration the use of the relation that determines the direction of the
over ¢ will be performed agde=3_,;/ (du/\1-?). In  polarization of a spinokx™(+u’, Dlolx"(+1',}))=N e j),

this notation the reflection part of the scattering matrix forthe discussed expression is reduce(%m%m/,j)-n“(—,u,i).

the smooth interface is given by Then Eqgs(39) and(40) can be rewritten in the form:

R=0, ¢<¢°

+ . 1 1 COSKPC d/'l’, ’
R B e N] W S 00

mlo  N1-pf

For each direction & we introduce the orthogonal basis X l{[1 —coge’ @) |fy(—u', +1)
n%-uw,i) in such a way than! is parallel to the incident 2
momentump; n? is perpendicular to the electron gas plane, +[1-cog- ¢ + @)ffi(- ',~ D}, (41)

n?lll; andn® is directed along the vector of the polarization
of the + chirality. For the analysis of Eq.36) it will be
convenient to use the four-component Bloch vedts,s)
related to the matrix as follows:

where anglesp and ¢’ are defined in Fig. 7. For the differ-
encedsfy(—u)=fy(-u, +1) - fy(-u,—1) one gets a homoge-
neous equation

$- i) = 5T o0 (= i),

b L[esd dut N o
n(— ) = ML V,l_M,ZS(M,M )2[ codo’ + ¢)
S (= i) = }Tr(n“o-)g(— wi), +coge’ — @)]ofN (- u'). (42)

2

One can check that all eigenvalues of the right-hand side of
N =0 0 a N (na this equation considered as a kernel of the transformation are
- 1,1) =L+ D §%(= w,i)(n%0), 38 q .
o mi) 2(;' (- pD)n%) 38) less than 1. Therefore we conclude th#f(-u)=0, i.e.,
fy(=u,i) is @ symmetrical function with respect itoFinally,
whered? is the unit me_ltrix andr are the Pauli_ matrices. In  thjs yields for Eq.(41)
terms of the(s”,s) matrix Eq.(36) can be rewritten as a set
of coupled equations . 1 1 (cose® dy’ ,
c , fu(-w) =3=H(w +— —=Su,n')
o . 1 1 cose”  du , N2 mJo Vi-pu
(- wi) =I=—Hw + =2 T )
N2 mipJo Nl-p

X (1= )N (= ). (43
1 : : Following the same route, it can be found from E4Q)
X = O(_ 1 + o g y
2[5( D)+ p D], (39) the distribution of particles in the- chiral state:
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RN LG B

SO

ballisti : ;
allistics 7_(/4 ec 7T/2

FIG. 8. (Color onling The displacement functiof§(6) of the
“+" (shown in red and “~" (shown in blug¢ polarization compo-
nents of the transmitted elecrrons f@=0.1 as compared with the
solution without reflection@=0 (dashed ling

FIG. 7. (Color onling Angles and directions of spinors involved ) )
in the derivation of Eq(41). For each angle and¢’ there are two  that the two parts of the physical currejitdo not change
possible momentum directions corresponding to a different sign offter passing the interface. To do this notice that in the SO

the p, component. region the chiral components of the physical current are
s+ + e2 +
_ 1 1 (%% du’ , Js0= Pso,, —(c0sdfsd(6)) (46)
fa(=w) =J7H(M) +— ,FS(M,M)
\2m rJo Vi-pu

[for the definition of the physical currents see EG®) and
X (L+pp)fN(=p). (44  (20)]. Having in mind Eq.(45 and the Snell’s law in its

i i differential form,pggcosd6=py cosede, the following re-
Equations(43) and(44) can be analyzed using the smallnessations for the+ chirality current components on the two
of cos¢®, but they can be easily solved numerically. In whatgjjes of the interface can be obtained:
follows we will use th+e results of numerical analysis for the 77/2
dlsgllzumtla(l)tzlfunct|onsf,\[( Q). _ - = Pgoif 46 coSrL(6)

y, we are interested in the distributions on the 272 ),

SO side of the interface. To achieve this goal, we have to
connect the calculated distributiofis to the distributions on
the SO sidefg, It follows straightforwardly from the Liou-
ville's theorem that

fsole, + mg) = fyle,— ), (45)

- i
where u, and -, are two directions connected by the J ZPSOFJ dé cosofsy(6)
Snell's law, Eq.(4). In the subsequent discussion the nota- 0
tions f55(#) and fi(¢) will be used instead ofgq(e, +uy) 2 (2

Py

=S [ de cosef?
—pmﬁfo @ cosefy(e) (47)

and

and fy(e,—,); notice that we return to the definition of de cosefy(e). (48

anglesy and @ as it is given in Fig. 1. Finally, in Fig. 8 our
result for f55(6) is presented. For the+ chirality component it has to be taken into consid-
We observe that the distribution of particles of the eration that the current of the particles impinging on the
chirality emitted from the diffusive region into the clean oneinterface in the interval of angleg®< ¢< /2 is canceled
is flat even in the presence of the spin-dependent reflection aut by the flow of the reflected particles.
the interface. Moreover, at large angles the funcfigy( 6) is Thus we arrive at the conclusion that the two parts of the
noticeably increased. physical currenf* do not change after passing the interface,
As a result of the reflection at the interface there is ai.e., j§=jso Together with the fact of the current conserva-
redistribution of the population of the particles of theand  tion in the N region this implies that the total current in the
— chiralities. Consequently, the two chiral components of theballistic SO region is equal to the current deep inside the
current,j*, change in the vicinity of the interface, and we are diffusive region.
faced with the question of the conservation of the total cur- So far we limit ourselves to the diagonal elements of the
rentj=j"+j”. (We assume for a moment the width of the density matrix. This was possible because in the N region the
diffusive stripeW to be unity, and until the end of this sec- density matrix is diagonal in momentum space, while the
tion will not distinguish between the density of current andcurrent operator is diagonal in spin space. The situation is
the total curren). To check the current conservation we first different in the SO region where the current operator ac-
calculated numerically the currenf$ with the use of the quires the spin structure, see Sec. Il. In addition, the density
distribution functionsfy(e,—u). We get that on the N side of matrix becomes nondiagonal in momentum space as an elec-
the interface the current +j~ is equal to the total current  tron beam splits into two beams as a result of the refraction
deep inside the diffusive region. Further on, it can be showrat the interface with the inhomogeneous spin-orbit interac-

0

125114-9



SHEKHTER, KHODAS, AND FINKEL'STEIN PHYSICAL REVIEW B71, 125114(2009

tion. We will not discuss this problem for the following rea- %
son. As it has been explained in Sec. Il our analysis refers to

the case when the current is registered far away from the

near-field zone of the orifice, i.e., at a distaricenuch ex-

ceeding the width of the diffusive stripe. At such distances

the trajectories of electrons of different chiralities diverge

from each other and therefore the nondiagonal in momentum 2.
space components of the density matrix become nonlocal in / %
N .

C

space. Since the current operator is local this nonlocality of
the density matrix cannot show up in the current measure-
ments.

SO

diffusion J ballistics

-

VI. SUMMARY

We have analyzed the transport near the interface with the
inhomogeneous spin-orbit interaction in terms of the spin
density matrix. The present analysis has been performed un-
der the assumption that the SO interaction in the diffusive
region is absentsuppressed completglyln fact, a much E
weaker condition is sufficient. It is enough that spin relax-
ation rate in the diffusiye region is controlled by the spin filtered
Dyakanov-Perel mechanisth: 1/7,~ A3 r<1/7, where electrons

Aso=2a(x<0)pe<1/7 is the spin splitting of the ener
so=2a(x=0)p T P! pliting gy FIG. 9. (Color onling A spin filter. Electrons emitted from the

spectrum in the diffusive regiox=0. Under this condition . diffusive stripe at small angles to the interface are spin polarized

the spin rglaxatic_)n of the electrons (_juring the pr(.)pagation. Mnd can be collected for subsequent spin manipulations.
the diffusive region after the reflection from the interface is

negligible. (The other limit AS°=1/7 will be considered . _ _ _
elsewhera. of the currentg®; see expressions under the integrals in Egs.

We have verified that the specific property of the solution(47) @nd(48). Assuming the angular distribution of the emit-
of the Milne problem—the existence of the flat distribution ted electrons to be practically flat, the spln-po!anzed current
with a large portion of electrons emitted at small angles tdhat can be collected by each of the colleptor%|§62/8. As
the interface—still holds in the presence of the reflection aft Nas been explained in Sec. Il the width of the angular
the interface. Moreover, at large angles the distribution funcinterval 86=m/2~-6¢% can be as much as\z. At this point
tion of electrons of thet chirality is noticeably increased, the fraction of spin-polarized current reaches its optimal
see Fig. 8. As it has already been pointed out in Sec. II, theréalue =ja/2. All collected electrons have the same chirality
exists an interval of the outgoing anglé< < /2, where  that res_ults in a very high Iev_el_of spin polarization of the
only the + spin chiral component can penetrate. Together,CU_”e”t in f[he _coII_ectors. A deviation from the perfect Ieve_l of
these observations call upon to exploit the diffuse emissio$Pin-polarization is only due to a small spread of the direc-
for the purposes of spintronics. tion of motion of electrons within an angular intervé.

In Fig. 9 a scheme of a device is presented which can N Ref. 8 a large spontaneous spin splitting has been de-
operate as a spin filter for a current passing through the diftected in a gate controlled electron gas formed at a
fusive stripe confined between nonconducting areas A and BMo.7s58 25 As/INg 7sAlg 25As heterojunction. The reported
Two additional barrierdor gate$ are set at a distance  SPlitting corresponds t@~0.1. For such values Gk one
much larger than the width of the diffusive strigé Within ~ May expect a rather large angular interdl that can be
this geometry each collectoE and 6, gets spin carriers usleor Spin f|Itra_t|on'{50z 86. Unaer the§e condl_tl_ons., the
emitted into the corresponding angular interd. When device proposed in Fig. 9 has the following SpECjIC&tIOﬂSZ a
86< ml2-6,, particles of the+ chirality only can get into  fraction up to 5% of the total current is collected@nand is

the collectors. As a result, the currents inside each of the tw&aImos} fully spin-polarized along the directio while the
collectors are spin-polarized, dominantly along thedirec-  other fraction of 5% is collected i€ and is spin-polarized

tions. along the direction .
In the setup under discussion the orifice of the stripe acts After filtration the spin-polarized current can be manipu-
as a source of a current with an angular distributigg(6).  lated similarly to the polarized light in optical devices. In

The number of electrons of a certain chirality flowing in a particular, one can link the spin filter to the switch of the
direction @ per unit time(i.e., the angular fluxis equal to  spin-polarized current discussed in Ref. 1.

Tso(6)dedd, where the intensityfz () is related tofgy(6)

as Zso=[€%/ (2m)?]psfso( #)cosOW. The factor co¥Ww ap-
pears because we consider the flux of the particles outgoing
from the orifice at an anglé. The angular dependence of  We thank Y. B. Levinson for numerous illuminating dis-
Tso(0) is in full accord with the expressions for the density cussions.
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