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Quantum spectroscopy with single two-level systems has considerably improved our ability to detect weak
signals. Recently it was realized that for classical signals, precision and resolution of quantum spectroscopy is
limited mainly by coherence of the signal and the stability of the clock used to measure time. The coherence time
of the quantum probe, which can be significantly shorter, is not a major limiting factor in resolution measurements.
Here, we address a similar question for spectroscopy of quantum signals, for example, a quantum sensor is used to
detect a single nuclear spin. We present and analyze a novel correlation spectroscopy technique with performance
that is limited by the coherence time of the target spins and the stability of the clock.
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I. INTRODUCTION

Quantum metrology and quantum sensing [1,2] are ex-
tremely promising research directions which use quantum me-
chanics to reach the ultimate limits of measurement accuracy.
One of the major goals of this field is the measurement of
magnetic fields. State-of-the-art magnetometry often relies on
dynamical decoupling where fast pulses or continuous fields
drive a quantum-mechanical system [3–9]. The role of these
fields is to decouple the system from the environment, and
thus to enhance the coherence time (T2), while at the same
time retaining the ability to sense a signal that is on resonance
with the pulse rate.

Characterizing the time dependence of signals, either quan-
tum or classical [10–13], has become one of the central goals
of quantum sensing in the last few years. The interest in
this research stems from the ability to sense frequencies with
increased resolution. In particular, in recent years correlation
spectroscopy has been extensively used in the field of nitrogen-
vacancy (NV) centers in diamond [14–21]. Notably, one of
these schemes [19,22,23] utilized a classical clock rather than
a quantum memory. We now present a study based on this
work, which exploits the ability to manipulate classical data in
order to construct a protocol that targets quantum signals with
improved sensitivity.

We address the problem of a quantum probe that interacts
with a target system aiming to estimate its energy gaps. When
such energy gaps arise from local couplings in the quantum
system (e.g., chemical shifts), their estimation provides de-
tailed information about the physical structure of the system.
We address two issues: (1) Given that only one nearby quantum
system has a frequency in a certain range, we seek to estimate
this frequency. We refer to this task as precision. (2) Knowing
that there are a few nearby quantum systems with similar
frequencies, we aim to resolve their energy gaps. We term this
task, resolution. In this manuscript, we present and analyze a
scheme in which the precision and resolution are limited by the
coherence time of the target system and not the coherence time
of the probe. Although our protocol is general, we focus on the

case of NV centers in diamond. The NV center is coupled to
nearby 13C nuclear spins in diamond [Fig. 1(a)], and our goal is
to estimate the Larmor frequency of some of these nuclei. The
main limitation is that these nuclear spins cannot be measured
or polarized directly, and the only way to apply these operations
is through the NV center [24].

II. SIMPLIFIED MODEL

The main idea of the protocol is best explained by the
following simplified model, which is very similar to the
effective Hamiltonian in the NV scenario:

HS = ωlIZ + g̃σzIX, (1)

where IK is the Kth component of the nuclear spin and σz is
the z component of the electron spin. We wish to estimate ωl,

the Larmor frequency of the nuclear spin. We first address
the relevant case in which g̃ � ωl, and the nuclear spin
is completely unpolarized, i.e., its initial state is ρn = 1

21.
Therefore in order to obtain information about ωl, the nuclear
spin must first be polarized. Then it should be allowed to rotate
due to ωlIZ, and eventually a measurement should be applied.
Note that the measurement and polarization are both obtained
through the interaction term g̃σzIx while the rotation is due to
ωlIZ. The protocol is therefore divided into three parts: two
detection periods in which g̃σzIx should be dominant, one for
initialization and one for measurement, and a rotation period
in which ωlIz should be dominant. In order to make g̃σzIX

dominant in the detection periods, an external drive is applied
to the electron spin. The standard choice would be a train of π

pulses with a spacing as close as possible to ωl, and thus the
Hamiltonian in the detection periods reads

HS2 = ωlIZ + g̃σzIX + �(t )σx. (2)

�(t ) consists of a set of sharp π pulses, approximated as δ

functions, with a spacing of τ = π
ωe

, where ωe is our estimation
of ωl. To show that this effectively reduces ωl, let us consider
the interaction picture with respect to these pulses and ωeIz,
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FIG. 1. (a) The central problem. A quantum sensor which is based
on an NV center aims to resolve two quantum systems with very close
Larmor frequencies in the presence of classical noise, either inside the
bulk diamond or an external spin. (b) Conventional quantum sensing
uses pulse sequences with different frequencies to track the desired
Larmor frequencies. |�〉 denotes the initial state and U stands for the
time evolution of the NV. The resolution of this method is limited by
the T2 of the NV. The method we propose is based on the observation
that correlations exist already in measurements outcomes and thus
the quantum state does not need to be stored in a memory qubit. This
method is thus limited by the coherence time of the signal, namely, the
nuclear spin, or the clock stability. (c) All methods use a dynamical
decoupling sequence, denoted above as U1,2, which reduces the effect
of noise and probes a frequency which is close to the frequency of the
pulse sequence.

where we obtain

HS2I = δIZ + g̃h(t )σz[IX cos(2ωet ) + IY sin(2ωet )], (3)

where h(t ) is the square wave,

h(t ) =
{−1 2ωet (mod 2π ) ∈ (

π
2 , 3π

2

)
1 else.

(4)

Observe that

h(t ) = 4

π

∑
odd n

1

n
cos(2nωet ). (5)

Since g̃ � ωl, and assuming that δ := ωl − ωe � ωl, we can
neglect all the fast rotating terms (those with rotation frequency
that goes as ωl). Using Eq. (5) it can be seen that we are left

with

HS2I ≈ 2

π
g̃σzIX + δIZ. (6)

Given that δ � g̃, the interaction is more dominant than the
rotation; in fact, in the limit of δT2 � 1, we can approximate

HS2I ≈ 2

π
g̃σzIX. (7)

This is exactly the Hamiltonian required to measure the nuclear
spin along the x axis [25,26]. The NV center is initialized to
|↑y〉e and measured in the σX basis. It should be noted that if the
coherence time of the probe is short (compared to the coupling),
only a weak measurement can be performed. This scheme of
measuring the nuclear spin weakly through the electron spin
was in fact already analyzed and implemented in an experiment
[27]. Between these two detection periods, the system
evolves freely according to HS = ωlIZ + g̃σzIX ≈ ωlIZ;
therefore the nuclear spin is rotated with frequency of
ωl. This is basically a standard Ramsey experiment in
which only weak initialization and measurement are
possible. It can be then seen that the probability for
positive (negative) correlation is given by P+ = 1

2 +
1
2 sin (2gτ )2 cos (2ωlt ) (P− = 1

2 − 1
2 sin (2gτ )2 cos (2ωlt )),

where g = 2g̃

π
and τ is the duration of the detection period,

from which the Larmor frequency can be estimated.

III. DESCRIPTION OF THE SCHEME FOR NV CENTER

A. Single nucleus

We consider the case of a single NV center coupled to nearby
13C nuclear spins in diamond [Fig. 1(a)], and the objective
is to estimate the Larmor frequency of one of these nuclei.
Heuristically, thanks to the coupling between the NV and
the 13C, measurement of the NV electronic spin induces a
measurement of the 13C nuclear spin [25,26]. We investigate
the scenario where the nuclear spin is far from the NV center,
such that the coupling is short compared to the coherence
time of the NV. The protocol then consists of two weak
measurements: one at the beginning and one at the end. The
first measurement creates a small coherence (polarization) in
the 13C, and after a period of τ a second measurement provides
information about the rotation frequency. As the quantum
sensor, the NV center, plays no role during the time τ, this
scheme is limited only by the coherence time of the nuclear
spin and stability of the clock.

In the following we explain the protocol in more detail. The
Hamiltonian of the system is

H = DS2
z − γeBzSz −

∑
j

γn,jBzIz,j + 1

2

∑
jk

AzkSzIk,j , (8)

where Sz is the z component of the spin one of the NV center,
Ik,i is the k component of the spin of the j th nucleus, D is the
NV zero field splitting, γe, γn,i are the gyromagnetic ratios of
the NV and the j th nuclear spin, respectively, and Azk is the
hyperfine coupling between the NV and the nuclei. In Eq. (8)
the index j runs over the nuclei and k over the directions.
Due to the external magnetic field and the zero field splitting,
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Sz = 0 andSz = −1 states can be coupled while leavingSz = 1
untouched. Therefore the Sz = 1 state becomes irrelevant and
the above two states form a qubit with energy levels described
by ω0SZ = ω0

1
2 (σz − 1), where ω0 = D − γeBz. Hence, we

describe the above two coupled states as the eigenstates of the
spin half operator SZ = 1

2 (σz − 1).
In Eq. (8) we have made the secular approximation and

neglected all the terms containing Sx,y . Furthermore, we have
omitted the noise terms due to magnetic field fluctuations
operating on the NV center and the nuclei. These terms limit
the coherence times, T2 and T n

2 , of the NV (after dynamical
decoupling) and the nuclei, respectively.

The Hamiltonian, with an appropriate choice of axes and
assuming a single nuclear spin, reads

H = ω0SZ + ωlIz + g̃SzIx + ASzIz. (9)

The protocol is again divided into three parts: two detection
periods, one for initialization and one for final measurement,
in which g̃SzIx should be dominant, and a rotation period in
which ωlIz should be dominant.

Let us focus first on the two detection periods. Typically
ωl � g̃, and therefore in order to make g̃SzIx dominant, we
must apply an additional drive: a sequence of π pulses (XY8
sequence, for example). Note that due to the term of ASzIz,

the Larmor frequency is shifted, and the spacing between the
π pulses should correspond to this shifted frequency. The
Hamiltonian in these two detection periods is therefore

H = ω0SZ + �(t )σX cos(ω0t ) + ωlIz + g̃SzIx + ASzIz. (10)

The XY8 sequence �(t ) consists of a set of sharp π pulses,
approximated as δ functions, with a spacing of τp = π

ωe
from

one another, where ωe is our estimation of ωl − A
2 . We claim

that, like in the simplified model, this should effectively
reduce ωl. Moving to the interaction picture with respect to
ω0Sz and assuming �(t ) � ω0, we get in the rotating wave
approximation:

HI = �(t )σX + ωlIz + g̃SzIx + ASzIz. (11)

Moving now to the interaction picture with respect to the
pulses we get

HII = ωlIZ + g̃

2
[h(t )σz − 1]IX + A

2
[h(t )σz − 1]IZ

=
(

ωl − A

2

)
IZ + g̃

2
[h(t )σz − 1]IX + A

2
h(t )σZIZ,

(12)

where h(t ) is the same square wave function as in Eq. (4).
We assume that ωe is very close to ω′ = ωl − A

2 , i.e., δ =
ω′ − ωe � ω′.

Moving to the interaction picture with respect to ωeIz we
get

HIII = δIz + g̃

2
[h(t )σz − 1][IX cos(2ωet ) + IY sin(2ωet )]

+ A

2
h(t )σZIZ, (13)

and since g̃, A � ωe, we can neglect all the fast oscillating
terms (those that oscillate like ω′, ωe) and stay with

Heff = δIZ + gσzIX ≈ gσzIX, (14)

where g = g̃/π .
We therefore obtained the required Hamiltonian for the two

detection periods, and in between these two periods we would
like the nuclear spin to rotate. To that end we should change our
control, such that the rotation would be dominant. This can be
achieved by applying π pulses with a frequency ωc such that
ωc, ω′ − ωc � g̃, A, in which case the effective Hamiltonian
is given by

Heff = ωIZ + gσzIX ≈ ωIZ, (15)

where ω = ω′ − ωc. We can now conclude, and the protocol
reads as follows:

The Protocol:

First detection period: Initialize the electron spin to | ↑Y 〉e.

Apply a sequence of π pulses with a spacing of π/ωe, where
ωe is the estimation of ω′. The obtained effective Hamiltonian
is the one in Eq. (14). After a period of τm, measure the
electron spin in σx basis.

Rotation period: Change the frequency of the pulses to ωc. The
obtained effective Hamiltonian is now the one in Eq. (15). The
initial state of the electron spin bears no importance. The
length of this period, denoted as τ , is limited only by the
coherence time of the nuclear spin.

Second detection period: The same as the first detection period.

Given these approximations, it can be seen that the prob-
ability for a positive (negative) correlation between the first
measurement outcome and the second measurement outcome
is given by

p± = 1
2 [1 ± sin2(2φ) cos(2ωτ )], (16)

where p+ (p−) denotes positive (negative) correlation, τ is the
length of the rotation period, and the dimensionless coupling φ

stands for φ = gτm. The latter can be understood as follows: if
ωτ = π the nuclear spin gets back to its original state and there
is a high correlation, while the contrast is set by the coupling
strength. A more detailed explanation of the probability is the
following: A measurement of the NV at the first detection
period projects the NV to the state |↑x〉e and thus the nucleus
collapses to

ρn = 1
2 [1 − sin(2φ)]|↓x〉n n〈↓x |
+ 1

2 [1 + sin(2φ)]|↑x〉n n〈↑x |, (17)

i.e., an imbalance between the |↑x〉n and |↓x〉n states, see
Fig. 2. The second measurement builds on this imbalance to
achieve correlation with the first measurement. The outcome
of the second measurement depends on the state of nuclear
polarization. Given that the nucleus is in the |↑x〉n state,
the NV is measured in the |↑x〉e state with a probability of
1
2 [1 + sin (2φ) cos(2ωτ )]. For the opposite nucleus polariza-
tion the NV is measured in the |↑x〉e state with probability
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FIG. 2. The explanation of the operation principle of the protocol. Description of the complete measurements cycle. Upon initialization the
NV spin (red) is polarized along | ↑y〉e and the 13C nucleus is in a state of identity density matrix. In the first detection period (U1), half of the
NV population precesses clockwise and the other half counterclockwise around the z axis. Measuring in the σx basis of the NV induces a finite
polarization of 13C along x̂. During the rotation period, after time of τ = nπω−1 the polarization of 13C acquired at the first measurements
causes the electron spin to precess more clockwise than counterclockwise. This imbalance is revealed by a second measurement in the σx basis
of the NV. In contrast, if the time interval between the two measurements is τ = (n/2 + 1/4)πω−1, the precession of NVs is determined by
nuclei polarization along ŷ. Since an equal amount of 13C is polarized along |↑y〉e and |↓y〉e, there is no excess polarization of the NV in this
case.

1
2 [1 − sin (2φ) cos(2ωτ )]. This leads to the correlation func-
tion presented in Eq. (16). The periodicity in ωτ can be simply
understood. Note that the precession direction of the electron
spin is determined by the nuclear spin state. For ωτ = nπ

the nuclear spin polarization returns to its state after the first
measurement, and thus a positive correlation is more likely. For
ωτ = (2n + 1)π

2 , however, the excess polarization generated
by the first measurement is now at the opposite direction, which
means that negative correlation is more likely. This is illustrated
in Fig. 2.

Given the probability in Eq. (16), one obtains an uncertainty:

�ω =
√

1 − sin4(2φ) cos2(2ωτ )

2 sin2(2φ)τ | sin(2ωτ )| . (18)

This result can be simply understood. In the relevant regime of
weak coupling, φ � 1, we get for ωτ = (2n + 1)π

4 ,

�ω = 1

8φ2τ
. (19)

Therefore a 1
τ

scaling is achieved, just like in a standard Ramsey
experiment [28,29]; however, since the measurement is weak,
there is an additional small dimensionless prefactor φ2, which
reduces the precision. The standard Ramsey scaling is retrieved
for larger φ, i.e., φ = (2n + 1)π

4 , where we get �ω = 1/(2τ ).
Note that τ, the length of the rotation period, is limited only by
the coherence time of the nuclear spin (T N

2 ). The coherence
time of the electron spin (T2), on the other hand, appears
only in φ. Therefore T2 does not play a crucial role in the
strong-coupling regime, and it is noteworthy that prolonging T2

beyond π
4g

does not improve the sensitivity, which is analogous
to the fact that in a regular Ramsey measurement stronger laser
power does not improve precision. We can thus conclude by
saying that in the strong-coupling regime we achieve a standard
Ramsey experiment with a length of T n

2 (coherence time of
nuclear spin), while in the weak-coupling regime, using only
two weak measurements we have

�ω = 1

8φ2T N
2

√
N

, (20)

where N is the number of experiments performed.

B. Several nuclei

In order to study resolution we can consider two nuclei.
In this case we have a single NV center which interacts with
two nuclei having two different detunings from the NV drive:
ω1 = ω1

l − ωc, ω2 = ω2
l − ωc. The probability for a positive

(negative) correlation reads

p± = 1
2 ± 1

2 cos(2ω1τ ) sin2(2φ1) cos2(2φ2)

± 1
2 cos(2ω2τ ) cos2(2φ1) sin2(2φ2), (21)

where φ1, φ2 are defined as g1τm, g2τm, respectively. The
cos2(2φi ) terms are due to interference of the contributions
of the two nuclei. We observe that in the weak-coupling limit
(φ1, φ2 � 1) the signals are independent,

p± = 1
2 ± 2φ2

1 cos(2ω1τ ) ± 2φ2
2 cos(2ω2τ ). (22)

This expression implies that the resolution goes as 1/τ, which
is limited by the coherence time of the nuclear spin (T n

2 ). This
can be understood in the following way: We can repeat the
correlation experiment with different values of τ , where the
longest corresponds toT n

2 . A Fourier transform of the outcomes
will yield peaks at ω1, ω2, each one with a linewidth of 1/T n

2
and thus a resolution of 1/T n

2 . The coherence time of the
NV appears only in the parameters φ1,2, which determine the
signal to noise ratio (SNR). In Fourier analysis the SNR of
this experiment is given by φ2

i

√
N, where N is the number of

measurements, namely, peaks will appear only if φ2
i

√
N > 1.

By taking a large enough N, we can guarantee this condition
holds. Therefore the NV coherence time does not serve as a
fundamental limitation on resolution.

Equation (22) is readily generalized to the case of n nuclei,

p± = 1

2
± 2

n∑
k=1

φ2
k cos(2ωkτ ). (23)

Correspondingly, our estimates of the resolution apply to the
general case.
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There are a few important points that should be noted about
the scheme. First, the NV may inflict noise on the nuclei by two
different mechanisms. The T1 process of the NV will induce a
random field on the nuclei. This could be countered by driving
the NV with a microwave as described previously in [30,31]
or the defect ionization as in [32–35]. Another option is to
weakly irradiate the NV and thus constantly initialize the NV
in the ms = 0 state [36]. The nuclei may also be subjected to
noise during the measurement and initialization process. This
effect could be reduced by driving both the excited and the
ground state in a correlated manner by extending the protocol
described in [30].

An additional point concerns the first measurement in
the scheme. As already described, the only objective of this
measurement is to polarize the nuclear spin in a given direction
at the X-Y plane. In some cases it is possible to polarize the
nucleus coherently at the beginning [37], which has several
advantages over measurement-based state preparation. First,
it requires much less scattering of photons, which will result
in less noise on the nuclei. Second, since no correlation is
measured, all the classical noise is averaged to zero. It also has
the advantage that the initial measurement process does not
subject the nuclei to noise.

IV. ENHANCING PRECISION BY REPETITIVE
MEASUREMENTS

So far we have addressed the case of a single measurement
at the beginning and a single measurement at the end. For
small φ, these are weak measurements which provide less
information than a standard strong measurement. Indeed, as
φ gets smaller, the precision drops as sin (2φ)2 [Eq. (18)].
This should imply that for small φ it could be preferable to
make further measurements, i.e., a sequence of measurements
in every detection period. In that case the protocol reads
(detection)n1 -evolution-(detection)n2 , i.e., n1 measurements in
the first detection period, followed by free evolution of the
nuclear spin and n2 measurements in the second detection
period. Multiple measurements indeed increase precision, as
can be observed in Fig. 3. This observation raises questions
about the optimal number of measurements and the limits of
the precision.

The precision analysis of this case is a bit more involved
and requires use of the Cramér-Rao bound. According to the
Cramér-Rao bound, the variance of any unbiased estimator of
ω is lower bounded by the inverse of the Fisher information
Var(ω̂) � I−1, where I denotes the Fisher information (FI).
We thus use the FI to quantify the precision, which makes the
analysis as general as possible. The FI of ω is defined as I =
〈(∂ω ln (p))2〉 = ∑

p

(∂ωp)2

p
, where p denotes the probability

for a certain outcome, and the sum is over all the possible
outcomes. Thus in our scheme, one should sum over all the
possible results of the NV measurements.

Let us denote the total time of the experiment by T such
that given a total number of measurements n we have T =
τ + nτm. The Fisher information of a single experiment is
bounded by 4T 2, which is achieved in a standard Ramsey
experiment. This limit is obtained for large enough g such
that φ = π

4 is achievable, when strong measurements can be

FIG. 3. Different precision levels achieved with a different num-
ber of measurements. The figure presents histograms of the estimator
of δ, achieved from simulating the scheme with parameters of
T = 30 [g−1], φ = 0.2, δ = 0.1 [g]. The green (upper) histogram
obtained with 15 measurements at each detection period (n1 = 15,

n2 = 15), and the red (lower) histogram obtained with two mea-
surements at each detection period (n1 = 2, n2 = 2). Maximum
likelihood was used to estimate the frequency. The variance of these
histograms, which quantifies the precision, is indeed 1/I , where I is
the Fisher information.

applied. However, in the weak-coupling regime multiple mea-
surements should be applied, and finding the optimal number
of measurements requires further investigation. Intuitively,
increasing the number of weak measurements should provide
better initialization and final detection. However, repeated
measurements also reduce the accumulation of the phase (as
the rotation period is shortened), and thus there is a tradeoff
between these two effects. Numerical values of the FI for
different numbers of measurements are shown in Fig. 4. As
expected, Fig. 4 illustrates that as the coupling strength is
decreased, the optimal number of measurements increases and
the FI decreases.

Note that at the limit of δ � g and g � ω, we can obtain
a fairly good analytical approximation to the FI by neglecting
the detuning in the detection period, namely, by neglecting n δ

g
,

where n is the total number of measurements, and neglecting
the interaction in the rotation period. This assumption is always
correct towards the final stage of estimation as the uncertainty
in the frequency is decreasing and the frequency of control
(ωe) can be adjusted in an adaptive manner. Given these
approximations, the effective Hamiltonian in the detection
period is just Heff = gσzIX, and the effective Hamiltonian
in the rotation period is just Heff = ωIZ; thus essentially
we have a Ramsey experiment with weak initialization and
weak final measurements. For convenience and simplicity,
let us consider first the case in which the initial state of the
nuclear spin is fully polarized (along the X axis) such that
only final weak measurements are required. It can be seen that
for n weak measurements we have 2n possible trajectories,
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FIG. 4. FI analysis for multiple measurements at the detection
periods. For all plots, T denotes the duration of the experiment
(limited by the coherence time of the nuclear spin), τm = 0.005[T ],
and φ is varied by changing g. (a) FI as a function of total number of
measurements, where the number of measurements at the beginning
equals the number of measurements at the end. The different curves
correspond to (from upper to lower) φ = 0.2, 0.15, 0.1, 0.05. Recall
that the upper bound, achieved with strong measurements, equals 4T 2.

(b) Same as (a), but now assuming a pure initial state (polarized),
so measurements are applied only at the end (second detection
period). The behavior is qualitatively the same as in (a), but better
FI values are achieved. (c) Comparison between the FI achieved with
polarized and unpolarized nuclear spin (optimized over the number
of measurements) for different values of φ. The upper (lower) curve
corresponds to the polarized (unpolarized) case. The difference is
significant for small values of φ, as for φ � 1 the FI of polarized
behaves as φ2, while the unpolarized as φ4 [as can be seen in the
logarithmic plot and Eq. (19)]. (d) FI (optimized over the number
of measurements) as a function of time for the unpolarized case.
The solid blue (upper) line represents the FI as a function of time,
the dashed line is the ultimate limit (4T 2). For g2τT > 1, the FI
starts to converge to the ultimate limit. The solid red line (bottom)
represents the FI with imperfect measurements (a = 0.05, b = 0.7a).
Due to these imperfections, the convergence time to the ultimate
limit is longer, while far from this regime the FI achieved with these
imperfections is much worse than with perfect measurements.

corresponding to 2n possible measurement outcomes; however,
the probability is determined only by the number of times in
which we collapsed into |↓X〉e (and not by the order, which
simplifies the calculation). Thus given that the nuclear spin
is |↑X〉n and that the electron spin is initialized each time to
|↑Y 〉e, the probability for collapsing k times into |↓X〉e, in a
given order, reads

pk = sin(φ + π/4)2k sin(φ − π/4)2(n−k) sin(ωτ )2

+ sin(φ − π/4)2k sin(φ + π/4)2(n−k) cos(ωτ )2. (24)

Let us denote for convenience ck =
sin (φ − π/4)2k sin (φ + π/4)2(n−k) and dk =
sin (φ + π/4)2k sin (φ − π/4)2(n−k) with this notation:

pk = ck cos(ωτ )2 + dk sin(ωτ )2

= 1
2 (ck + dk ) + 1

2 (ck − dk ) cos(2ωτ ). (25)

Note that we can define pmeas = ck−dk

ck+dk
, which is a natural way

to quantify the strength of the measurement, where pmeas = ±1
corresponds to a trajectory in which the state collapsed. The
FI for n weak measurements is thus

I =
∑

k

(
n

k

)(
dpk

dω

)2

pk

= (T − nτm)2 sin[2ω(T − nτm)]2

×
∑

k

(
n

k

)
(ck − dk )2

ck cos[ω(T − nτm)]2 + dk sin[ω(T − nτm)]2
.

(26)

The FI oscillates due to the factor of sin [2ω(T − nτm)]2.
We can get rid of these oscillations and improve the FI by
optimizing this phase. This can be done by changing the
frequency of the pulses in the rotation period (and consequently
changing ω) or by applying a pulse on the nuclear spin. Taking
this phase to be π

4 , we get

I = 2(T − nτm)2
∑

k

(
n

k

)
(ck − dk )2

ck + dk

= 4
〈
p2

meas

〉
(T − nτm)2, (27)

where 〈p2
meas〉 is the average of the measurement strength,

p2
meas, over all possible trajectories. It can be seen that there

is a tradeoff between 〈p2
meas〉, which monotonically increases

with n, and (T − nτm)2, which monotonically decreases with
n. In the limit of a single shot (〈p2

meas〉 = 1) we recover the
regular Ramsey limit.

Let us address now the case in which the nuclear spin
is unpolarized, namely, its density matrix is proportional to
identity. Then in addition to the final weak measurements, one
should apply weak measurements at the beginning in order to
polarize the nuclear spin. A very similar FI analysis applies
to this case. We denote the number of measurements at the
beginning (end) as n1(n2), and n = n1 + n2 stands for the total
number of measurements. The probability now depends on
the number of detections obtained at the beginning and at the
end. The probability for a specific trajectory in which |↑X〉e is
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measured k1(k2) times at the beginning (end) reads

pk1,k2 = 1
2 cos2(ωτ )(ck1ck2 + dk1dk2 )

+ 1
2 sin2(ωτ )(ck1dk2 + dk1ck2 ), (28)

where we have used the same notation as above, namely, cki
=

sin (φ + π/4)2ki sin (φ + π/4)2(ni−ki ), and dki
is defined in an

analogous manner. It would then be natural to define ck1,k2 =
ck1ck2 + dk1dk2 , and dk1,k2 = ck1dk2 + dk1ck2 , such that the FI
now reads

I = (T − Nτ )2
∑
k1,k2

(
n1

k1

)(
n2

k2

)
(ck1,k2 − dk1,k2 )2

ck1,k2 + dk1,k2

= 4
〈
p2

pol

〉〈
p2

meas

〉
(T − nτm)2, (29)

where pmeas = ck2 −dk2
ck2 +dk2

, as before, and ppol = ck1 −dk1
ck1 +dk1

quantifies
the strength of the polarization at the beginning. The average
is over all possible trajectories. Note that this expression is
symmetric with respect to n1, n2 (first and second detection
period), which implies that it reaches a maximum when n1 =
n2 = n/2. Numerical values of these expressions are presented
in Fig. 4.

A natural question would be, given g, τm, and T , what is the
optimal number of measurements that should be applied, and
what is the best achievable FI? To answer these questions, note
that the time required for the weak measurements (gτm � 1)
to converge to a strong measurement goes as (g2τm)−1 (see
Appendix B for a detailed analysis). Therefore the key quantity
that determines the behavior of the FI is g2τmT . For T >

(g2τm)−1
, the FI starts to converge to the ultimate limit of 4T 2,

and the optimal number of measurements goes as (gτm)−2. Far
from the strong measurement regime, for T � (g2τm)−1

, we
have that 〈p2

pol〉, 〈p2
meas〉 � 1, and they grow linearly with the

number of measurements. Therefore, for the unpolarized case,
the optimum would be to dedicate roughly half of the time for
measurements, which yields I ∼ g4τ 2

mT 4. For the polarized
case, the optimum would be to dedicate roughly one-third of
the time to measurements, which yields I ∼ g2τmT 3. (Note
that this behavior coincides with that of a classical signal [19].)

Observe that in the weak measurement regime (g2τmT �
1), the polarized and unpolarized cases differ by a factor of
g2τmT , which is quite significant. In the strong measurement
regime (g2τmT � 1) the FI of both the polarized and the
unpolarized converge to the same value of 4T 2.

It is interesting to compare this method to the NMR method,
which has been recently used for sensing classical signals
[19,22,23,38]. In the NMR method, many synchronized con-
secutive measurements are performed, where the detuning is
kept fixed throughout the entire experiment [39]. The outcomes
of these measurements then undergo a Fourier-transform
analysis or a maximum-likelihood estimation to obtain the
frequencies of the signal. When dealing with classical signals
there is no backaction and thus performing multiple measure-
ments all along the experiment is the optimal thing to do. We
analyzed the FI achieved with the NMR method for sensing
a single nuclear spin, in which backaction effects cannot be
neglected; a detailed analysis is presented in Appendix C. Just
like with our method, the polarized and unpolarized cases
coincide for g2τmT � 1. However, they do not converge to

FIG. 5. A comparison between the FI achieved with the NMR
method (solid curves) and our method (dashed curves). The upper
curves (dashed and solid) correspond to the polarized scenario and the
lower curves to the unpolarized. In both methods, the polarized and the
unpolarized curves coincide after long enough times (g2τmT � 1).
While the FI with NMR method converges to a scaling of T , the FI
with our method converges to the ultimate limit of 4T 2.

the ultimate limit of of 4T 2 but rather to a scaling of T , which
is, of course much worse. The reason for this behavior can be
simply understood. The weak measurements of the nuclear
spin extract information about its state but also perturb it.
The number of weak measurements required to polarize and
measure the nuclear spin strongly goes as (gτm)−2. Therefore
if T � (g2τm)−1

, applying measurements all throughout the
experiment will result in destroying the oscillations without
gaining any further information. In other words, measurements
are needed to extract information, but with too many measure-
ments the backaction induces decoherence that affects the FI.

It can be also observed that as δT → 0 the FI vanishes,
just because the oscillations of the probability start from the
antinode in which the derivative with respect to δ vanishes.
In the regime of δT > 1 and T � (g2τm)−1

, i.e., the weak
measurement regime (accumulative effect of the backaction
is small), the performance of the NMR method coincides
with our method. In fact, in this regime the NMR method
even outperforms our method (typically by a factor of 2),
as can be observed in Fig. 5. However, as already discussed,
for T � (g2τm)−1

, in which the weak measurements start to
converge to strong measurements, our method outperforms the
NMR. A comparison between both methods is shown in Fig. 5.

Imperfect measurements. In all the analyses described
above, we have assumed perfect quantum measurements.
However, in NV centers, as well as in some other experimental
platforms, measurements suffer from severe limitations. In
NV centers, the information obtained from a measurement is
the number of emitted photons. The problem is that photons
are emitted from both the bright and the dark states, both
states collapse to the same state [not a quantum nondemolition
measurement (QND)], and the photodetection efficiency is
poor [40]. This results in a very low efficiency. It is therefore
necessary to compare the FI achieved with these limitations to
the original FI.

The measurement can be modeled as a Bernoulli trial
(photon detected or not detected), with a probability of p =
apb + bpd, where pb (pd ) is the probability of the bright (dark)
state, and a (b) represents the probability to get a photon from
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the bright (dark) state [41]. Applying the protocol of two weak
measurements, one at the beginning and one at the end, then
with the imperfections considered above, the resulting FI reads

I =
[

2(a − b)2

(a + b)(2 − a − b)
sin(2gτm)2

]2

T 2

≈ 16
(a − b)4

(a + b)2
φ4T 2. (30)

Note that this result differs from the result obtained with perfect

measurements [Eq. (19)] by a factor of ( (a−b)2

2(a+b) )
2
. For typical

experimental values of a, b (for example, a = 0.05, b
a

= 0.7),
this yields a difference of 6 orders of magnitude.

Employing multiple measurements can reduce this differ-
ence. The FI with imperfect measurements still converges to
4T 2, given a long enough coherence time of the nuclear spin.
However, the time required for this convergence is roughly

( (a−b)2

a+b
g2τm)

−1
(see Appendixes A and B), which is much

longer than the time required with perfect measurements
[(g2τm)−1]. Again, considering characteristic experimental
values (for example, gτm = 0.1 and same a, b as before),
the imperfect measurements add 2 orders of magnitude (T ∼
104τm) to the time required to reach the strong measurement
regime. Given that we are far away from the strong measure-
ment regime, i.e., (a−b)2

a+b
g2τmT � 1, the optimal number of

measurements, for the unpolarized case, would be N/2 (where
N = T

τm
) and as a result, I ∼ (a−b)4

(a+b)2 g
4τ 2

mT 4. A comparison
between the FI achieved with perfect and imperfect measure-
ments is presented in Fig. 4. More details on the calculations of
the FI for imperfect measurements are found in Appendix A.

Note that since in the weak measurement regime there is not
much difference between the performance of this method and
the NMR method, and since due to the imperfect measurements
almost any reasonable experimental realization is in the weak
measurement regime, then in practice this method and the
NMR method should have similar performance.

V. EFFECTS OF CLASSICAL NOISE

In this section we address our ability to differentiate between
the quantum signal and classical noise. The resolution that
was previously described will be significantly reduced by
classical noise that might have a considerable power spectrum
at the Larmor frequency. The quantum signal is described by
Eq. (13), while the classical signal or noise can be described
by HC1 = gσz[cos(ωnt + ϕ)], where ϕ and g are random
variables which are uniformly distributed. The frequency ωn

should also be a random variable, but we will assume that ωn

is identical to the frequency of the nuclei to make it harder
to distinguish. In the following we present a few methods to
differentiate between the two signals.

As the role of the series of measurement at the beginning
is to polarize the nuclei, it is instructive to see what would be
the role of polarization in differentiating between the signal
and the noise. The nucleus can be polarized at the beginning
using dynamical nuclear polarization [37,42–44]. In that case
the final measurement result gives the average

p↑x
− p↓x

= 2ppol sin(2φ) cos(2ωτ ), (31)

where ppol is the parameter that characterizes the polarization
of the nuclear spin, namely, ppol = 0.5(p|↓x 〉n − p|↑x 〉n ). Re-
garding the classical signal or noise, one can observe that after
averaging over the random phase ϕ, we have that p↑x

= p↓x
,

which allows us to differentiate between the classical and the
quantum signals. The classical noise, however, decreases the
coherence time of the NV, which limits the signal-to-noise
ratio.

As it is clear that polarization makes a clear distinction
between the classical and the quantum signal, it is natural to ask
whether a similar distinction can be made when the nuclear spin
is unpolarized. As already shown, we can induce polarizations
by applying a measurement, but the polarization direction
would be random. Therefore an extra ingredient is needed—the
signals can be differentiated by operating directly on the
nuclei. The first measurement creates a small polarization in
either the x or −x direction. By adding a π pulse on the
nuclear spin in one of these cases a net polarization is created:
ppol = sin (2φ)/2. Thus in the second measurement we get

p↑x
− p↓x

= sin2 (2φ) cos(2ωτ ). (32)

In the classical case, however, the π pulse has no effect, and
thus the second measurement results in a 50% up, 50% down
result. Thus the classical noise will average to zero and the
probability of getting a | ↑〉x result will not change due to
the classical noise. However, also in this case the coherence
time of the NV will be limited by the noise. The difference
between Eq. (32) and Eq. (31) is due to the fact that the
initial polarization is proportional to sin (2φ), which creates
a different dependance on φ.

Instead, by operating directly on the nuclei it is also possible
to induce the operation via the NV by realizing the same
Hamiltonian [Eq. (13)], as by using this interaction it is possible
to rotate the nuclei and induce a π (or less) flip. Thus, the
sequence will be the following: The first measurement creates
a small polarization in either the x or −x direction. In the latter
case a rotation of phase φ1 is realized via Hamiltonian Eq. (13)
around the x axis and thus a small polarization is created. In
that case the correlation functions is

p↑x
− p↓x

≈ 2φ2 sin2

(
φ1

2

)
cos(2ωτ ), (33)

while the classical noise is averaged to zero as in the previous
cases.

VI. CONCLUSION AND OUTLOOK

This manuscript presents a quantum sensing scheme for
detecting the frequencies of quantum systems. Analysis of
the scheme shows that the resolution is limited mainly by the
coherence time of the target system, while the coherence time
of the probe affects only the strength of the initial polarization
and the final measurement. A Fisher information (FI) analysis
of the scheme was presented, and it was shown that for long
enough coherence time of the nuclear spin the FI converges to
the ultimate limit.

The performance of this protocol was compared to that of
the NMR method, which was used for sensing classical signals
[19,22,23,38]. The performance of our method is similar to
that of the NMR method in the weak measurement regime
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and significantly outperforms it in the strong measurement
regime. It should be noted that the NMR method can be further
analyzed, in fact finding analytical expression of the FI of this
method is an open challenge. It would also be interesting to
further investigate the performance of both methods for sensing
multiple target spins.
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APPENDIX A: IMPERFECT MEASUREMENTS

We now consider the realistic scenario in which the pro-
jective measurements cannot be achieved, as there is a finite
detection efficiency, a finite probability to get photons from
the dark state, and both the dark and bright states collapse to
the same state (it is not a QND measurement). This issue was
discussed in the main text; we present here the calculations in
more detail. As in the main text, let us denote the probability
to get a photon from the bright state (|↓y〉e) as a and b,
from the dark state. Note that the information we get from
each measurement is whether or not a photon was emitted.
We can make a similar analysis of the FI, using the same
approximations as in the main text. Let us start again with
the simpler case in which the nuclear spin is initially polarized.
Denoting α = sin (gτm + π/4)2, β = sin (gτm − π/4)2, then
the probability for a detection of a photon in a single measure-
ment reads

cos2 (ωτ )(aα + bβ ) + sin2 (ωτ )(aβ + bα), (A1)

and the probability that no photon was detected reads

cos2 (ωτ )[(1 − a)α + (1 − b)β]

+ sin2 (ωτ )[(1 − a)β + (1 − b)α]. (A2)

It can now be observed that given n measurements, the
probability for a specific trajectory in which k photons are
emitted is

cos2 (ωτ )(aα + bβ )k[(1 − a)α + (1 − b)β]n−k

+ sin2 (ωτ )(aβ + bα)k[(1 − a)β + (1 − b)α]n−k. (A3)

Using the same notation as in the main text, we have

ck = (aα + bβ )k[(1 − a)α + (1 − b)β]n−k

dk = (aβ + bα)k[(1 − a)β + (1 − b)α]n−k. (A4)

We can define pmeas = ck−dk

ck+dk
, just like in the main text, and

then the FI has the same form as in Eq. (27).
Regarding the unpolarized case, in which n1 (n2) measure-

ments are performed in the first (second) detection period, then
the probability for a trajectory in which k1 (k2) photons are

detected reads

0.5 cos2 (ωτ )[ck1ck2 +dk1dk2 ]+0.5 sin2 (ωτ )[ck1dk2 + dk1ck2 ],

(A5)

and then we have

ck1,k2 = 0.5[ck1ck2 + dk1dk2 ]

dk1,k2 = 0.5[ck1dk2 + dk1ck2 ]. (A6)

So the FI has the same form as in Eq. (29). Numerical results
are presented in Fig. 6.

Due to these imperfections, 〈p2
meas〉 is smaller, implying

that the optimal number of measurements is increased and
the FI drops. It is shown in Appendix B that with imperfect
measurements the time required for the FI to converge to the
ultimate limit goes as a+b

(a−b)2 (g2τm)−1
, namely, an additional

prefactor of a+b

(a−b)2 compared to perfect measurements.
In the numerical results, realistic values of a and b were

taken (0.005 and 0.0035) and the FI has been decreased
by 4 orders of magnitude. More concretely, without these
imperfections the precision is about 1/T , whereas with these
imperfections one needs to perform 104 independent experi-
ments to reach the same level of precision.

APPENDIX B: CONVERGENCE TIME
TO STRONG RAMSEY REGIME

In this section we seek to derive the convergence time of
〈p2

meas〉 (and 〈p2
pol〉) to 1. Note that

〈
p2

meas

〉 = 0.5
∑

k

(
n

k

)
(ck − dk )2

ck + dk

, (B1)

where the general ck, dk are given by Eq. (A4). Observe that
the probability to get k photons in this sequence of weak
measurements is given by p(k) = 0.5[p1(k) + p2(k)], where
p1, p2 are binomial distributions given by

p1(k)=
(

n

k

)
ck =

(
n

k

)
(aα + bβ )k[(1 − a)α + (1 − b)β]n−k

p2(k)=
(

n

k

)
dk =

(
n

k

)
(aβ + bα)k[(1 − a)β + (1 − b)α]n−k.

(B2)

It is now simple to see that 〈p2
meas〉 can be also written as

〈
p2

meas

〉 = 0.5
∑

k

[p1(k) − p2(k)]2

p1(k) + p2(k)
, (B3)

which implies〈
p2

meas

〉 = 0.5
∑

k

[p1(k) − p2(k)]2

p1(k) + p2(k)

�
∑

k

0.5[p1(k) + p2(k)] = 1. (B4)

The inequality is saturated if and only if p1 and p2 are well
separated (no overlap between the distributions). Note that
these binomial distributions become separated if the difference

013844-9



GEFEN, KHODAS, MCGUINNESS, JELEZKO, AND RETZKER PHYSICAL REVIEW A 98, 013844 (2018)

FIG. 6. FI as a function a and b, where a is the probability to
detect photons from the bright state, and b is the probability to detect
photons from the dark state. The optimal case is a = 1, b = 0, which
corresponds to perfect measurements. (a) The FI as a function of
the number of measurement for different values of b. In this figure
a = 0.05, and (1), (2), (3) correspond to contrasts of 0.4,0.35,0.3
(namely, b = 0.6a, 0.65a, 0.7a), respectively. These results can be
compared to the case of perfect measurement, which is presented
in panel (b). Observe that for the imperfect case, the number of
measurements is much larger, and about half of the possible time
is spent over measurements. There is a difference of 4 orders of
magnitude between the perfect and the imperfect scenarios, meaning
that for these imperfect measurements 104 experiments are required
in order to get a precision of 1/T . (c) The optimal FI (optimized over
the number of measurements), as a function of b, for different values
ofa:a = 0.05(upper curve), 0.04(middle curve), 0.03(lower curve).
Clearly the optimal FI drops as a becomes smaller and as the contrast
between a and b becomes smaller. For all plots g = 40 [T −1], τm =
5×10−3 [T ], meaning the ratio between the T2 and the coherence time
of the nuclear spin was taken to be 200.

between the mean values is smaller than the sum of the standard
deviations. This basically sets the condition for convergence
and thus determines the convergence time. Hence this sequence
of measurements converges to a strong measurement when the

FIG. 7. Convergence time to a strong measurement. The scheme
converges to a standard Ramsey measurement as the weak measure-
ments converge to a strong measurement, quantified by 〈p2

meas〉 → 1.

In this plot the convergence of 〈p2
meas〉 is illustrated (for perfect mea-

surements). The convergence time goes as (g2τm)−1
. The distribution

of the outcomes is the sum of two binomial distributions, and the
convergence time is the time required for these two distributions
to be well separated, as is illustrated in this plot. For imperfect
measurements the convergence time goes as a+b

(a−b)2 (g2τm)−1
.

distribution of the outcomes consists of two well-separated
binomial distributions, as is illustrated in Fig. 7.

Let us find this time for perfect and imperfect mea-
surements. For perfect measurements the probabilities of
the binomial distributions are p = cos2 (gτm + π/4), 1 −
p = cos2 (gτm − π/4), which means that the condition is
2
√

p(1−p)√
N

� 1 − 2p. Inserting the expressions for p, we have

that N � cot2 (2gτm). Hence for gτm � 1, we have that N �
1

4(gτm )2 , which implies that the convergence time goes as

T ∼ (g2τm)−1. (B5)

For imperfect measurements the probabilities of the binomial
distributions are p1 = aα + bβ, p2 = aβ + bα, and the con-

dition is then
√

p1(1−p1 )
N

+
√

p2(1−p2 )
N

� p2 − p1. For a, b �
1 (the realistic case) we get that the condition reads N �
a+b+2

√
(a+b)2−sin (2gτm )2(a−b)2

(a−b)2 sin (2gτm )2 . Assuming weak measurements

(gτm � 1) we get that N � 3(a+b)
4(a−b)2(gτm )2 . Therefore the time

required for convergence goes as

T ∼ a + b

(a − b)2 (g2τm)−1. (B6)

APPENDIX C: COMPARISON WITH NMR
TECHNIQUE–CONSECUTIVE MEASUREMENTS

The method we presented in this manuscript consists of
detection periods in which δ is taken to be as small as
possible and measurements are applied, as well as a rotation
period in which the nuclear spin rotates freely with Lar-
mor frequency (and no measurements are applied). Current
nano-NMR protocols, however, usually employ a different
method. A typical nano-NMR experiment consists of many
consecutive measurements, where δ is kept fixed throughout
the experiment. This nano-NMR method is exactly what is
used to sense classical signals [19,22,23] and an ensemble of
nuclear spins. It would be instructive to compare between these
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two methods when applied to sense a frequency of a single
spin.

Our analysis of this method assumes that measurements
are applied one immediately after the other. In principle, one
can set a break between measurements, in which the nuclear
spin evolves freely. This time interval can be modified and
optimized. We will address this point later.

Let us analyze the nano-NMR protocol. In each measure-
ment step, the operators acting on the nuclear spin (after tracing
out the electron spin degrees of freedom) are

C± = 1√
2

[
cos(

√
g2 + δ2τm) − i sin(

√
g2 + δ2τm)

δ√
g2 + δ2

IZ ± sin(
√

g2 + δ2τm)
g√

g2 + δ2
IX

]
,

(C1)

followed by a normalization, where C+ (C−) acts on the
nuclear spin with a probability of Tr(C+ρC

†
+)[Tr(C−ρC

†
−)].

Since we are interested in the limit of gτm, δτm � 1, these
operators can be approximated as

C± ≈ 1√
2

[I + iδτIZ ± gτIX]

≈ [cos (gτm) ± sin (gτm)IX][cos (δτm) − i sin (δτm)IZ],

(C2)

namely, in leading order of gτm, δτm, these operators are just a
rotation by an angle of δτm followed by a weak measurement
of IX (with a strength of φ = gτm).

Let us first focus on the case of a polarized nuclear spin
and examine the behavior of the FI. The information is
extracted from the weak measurement; however, these weak
measurements affect the rotation of the nuclear spin as they
induce backaction. Note that as long as g2τmT � 1, the effect
of the backaction can be neglected, and the oscillations persist
irrespective of the weak measurements. Therefore in the limit
of g2τmT � 1, we can neglect the effect of the backaction,
and thus the probability of collapsing into into | ↑y〉e/| ↓y〉e
reads

p± ≈ cos2

(
gτm ± π

4

)
cos2(δt ) + cos2

(
gτm ∓ π

4

)
sin2 (δt )

= 0.5 ± 0.5 sin (2gτm) cos (2δt ),

as is illustrated in Fig. 8.
Given these probabilities, the FI reads

I ≈
∑

t

4t2 sin (2gτm)2 sin (2δt )2 ≈ 16φ2
∑

t

t2 sin (2δt )2.

(C3)

This expression of the FI is valid only for T satisfying
g2τmT � 1, which is the weak measurement regime.

Note that this is exactly the same FI achieved when sensing
a classical signal (which is not surprising as we neglected
backaction), where g is analogous to the amplitude of the
classical signal. One can see that for very short times, δT � 1,
we have I ≈ 64

5 g2τmδ2T 5. Namely, the FI drops as δ gets
smaller, and in particular when δ → 0 the FI vanishes. This is

FIG. 8. Dynamics of a polarized spin as a function of time for a
given coupling strength and different detunings in the NMR method.
The blue (solid) and the red (dotted) curves correspond to p+, p−
(the collapse probabilities of the electron spin on |↑y〉e/|↓y〉e.).
It is expected that in the limit of weak backaction (small φ), the
nuclear spin is rotated in the σX − σY plane, resulting in oscillations
of these probabilities with a frequency of 2δ. The accumulative
effect of the backaction becomes significant for g2τmt > 1, and
therefore clear oscillations of the nuclear spin can be seen only for
ω > g2τm. (a) Oscillations of the probability for g = δ = 0.05τ−1.

These probabilities satisfy p± ≈ 0.5 ± 0.5 sin (2gτm) cos (2ωt ). In
(b), the probability for the same g, and δ = 0.01g = 5×10−4τ−1. In
that regime almost no oscillations can be observed.

simply due to the fact that the oscillations start in the antinodes
so that the derivative according to δ vanishes. Note that this
implies that working with a small δ (compared to 1/T ) leads
to a poor FI and should be thus avoided. In fact, this can be also
solved by applying a pulse on the nuclear spin at the beginning,
which will rotate its polarization to σy basis. Given that its
initial state is in σy basis and we measure weakly in σx basis, the
oscillations now start in the nodes and the FI does not vanish.
For longer times, δT > 1 (but still in the weak measurement
regime) we get I ≈ 8

3g2τmT 3. Recall that the FI of our method
behaves in a similar manner at this regime, as it also goes as
g2τmT 3. In fact, in this regime the NMR method seems to
outperform our method by a factor (which is of order 1). This
behavior of the FI is shown in Fig. 9.

For longer times, g2τmT > 1, the strong measurement
regime, the behavior is changed and the scaling of the FI
converges to T (analytical form is unknown). In this regime,
the FI hardly depends on δ. The crucial point is that in the strong
measurement regime the FI of the NMR does not get close to
4T 2, as the backaction ruins the accumulation of the phase.
Thus in this regime our method significantly outperforms the
NMR method. This analysis is illustrated in Fig. 9.
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FIG. 9. The FI achieved with NMR method for polarized nu-
clear spin, as a function of time, for different detunings. (a)
g = 5×10−3[τ−1

m ], and δ = 5 (blue, upper curve), 0.1 (red, middle
curve), 0.01 (yellow, lower curve) (in units of g). It can be seen that
for short times (δT � 1), I ∝ g2τmδ2T 5. Therefore, in that period,
the smaller the value of δ, the smaller the FI, as seen in the figure.
For δ−1 < T < (g2τm)−1

, I ∝ g2τmT 3, so that in this period the FI
does not depend on δ. (b) For T > (g2τm)−1

, the behavior of the FI is
changed and the scaling converges to T due to the accumulated effect
of the backaction. The dashed red curve corresponds to the FI achieved
with the method described in the main text (optimized over the number
of measurements). For δ−1 < T < (g2τm)−1

, both methods achieve
a similar performance, but for T > (g2τm)−1

, T < δ−1 the method
described in the main text outperforms the NMR method.

Regarding unpolarized nuclear spin, the dynamics is more
involved. The polarization grows due to the measurements
along with the oscillations, as can be seen in Fig. 10. Therefore
for T < (g2τm)−1

, the behavior of the FI is different from
that of the polarized scenario (and of course the FI is much
smaller). For T > (g2τm)−1, the nuclear spin becomes polar-
ized (ppol = 1), and the FI coincides with that of the polarized
case (as can be seen in Fig. 5). As with the polarized scenario,
our method outperforms the NMR in case of a long time
(compared to measurement strength), namely, g2τmT � 1. In
the weak measurement regime, these two methods coincide.

The FI given by the NMR method in the strong measure-
ment regime is damaged due to the backaction induced by
the measurements. The required number of measurements to
polarize and measure the nuclear spin strongly goes as (gτm)−2;
additional measurements just ruin the oscillations and do not
provide further information. Therefore in this regime, gaps
between consecutive measurements (in the NMR method) will
definitely increase the FI. This will reduce the total number
of measurements and the nuclear spin will rotate freely during
these gaps. However, this will still not be optimal. In order to

FIG. 10. NMR method for unpolarized nuclear spin. (a) Dynam-
ics of the nuclear spin as a function of time. The different curves
correspond to p+, p−. For g2τmt � 1 the envelope of the oscillations
grows due to the increasing polarization. For longer times the nuclear
spin becomes fully polarized. The dynamics then coincide with that
of the polarized case, and the FI is also the same as in the polarized
case. (b) FI for different detunings compared to the FI of our method.
The solid yellow (upper), blue (middle), and purple (bottom) curves
correspond to NMR method with δ = 1, 0.1, 0.01 [g], respectively.
The dashed orange curve corresponds to our method.

make the phase accumulation of the nuclear spin more efficient
the best choice is to stick all these gaps together, just as it is
done in the method we propose.

APPENDIX D: DERIVATION OF
THE PROBABILITY FUNCTION

The full result of the probability function can also be derived
without assuming weak coupling. We define the unitaries that
act on the nucleus space conditioned on the NV state of |↑z〉
and |↓z〉 at t = 0 by U± and at t = T by V±:

U± = �N
k=1U±,k, V± = �N

k=1V±,k, (D1)

where

U±,k = cos (Nkτ ) I − i
sin(Nkτ )

Nk

(∓gkIx + δkIz),

V±,k = cos (Nkτ ) I − i
sin(Nkτ )

Nk

{∓gk[Ix cos(ωkT )

+ Iy sin(ωkT )] + δkIz} (D2)

are the unitaries of the individual nuclei, and

N2
k = δ2

k + g2
k . (D3)
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The postselected state of the nuclear spin after getting two ↑x

results is

1
4 (V+ + V−)(U+ + U−)|ψN 〉, (D4)

where |ψN 〉 is the state of the nuclei before the measurement.
Given that the initial state of the nuclei is the identity ma-
trix, the exact expression of the probability function that we
get is

p↑x ,↑x
= 1

2N

1

16

[
2N4 + �N

k=1Tr(V+,kV
†
−,kU

†
+,kU−,k ) + �N

k=1Tr(V−,kV
†
+,kU

†
−,kU+,k )

−�N
k=1Tr(V+,kV

†
−,kU

†
−,kU+,k )�N

k=1Tr(V−,kV
†
+,kU

†
+,kU−,k )

]
,

where the traces are equal to

Tr(V+,kV
†
−,kU

†
+,kU−,k ) = Tr(V−,kV

†
+,kU

†
−,kU+,k )

= 2δ4
k + g4(

δ2
k + g2

k

)2 + g2
k

[
8δ2

k cos2
(

ωkT

2

)
cos(2τNk ) + cos(4τNk )

[
g2

k − (
2δ2

k + g2
k

)
cos(ωkT )

]](
δ2
k + g2

k

)2

− g2
k

[
16δkNk sin(ωkT ) sin3(τNk ) cos(τNk ) + g2

k cos(ωkT ) − 2δ2
k cos(ωkT )

](
δ2
k + g2

k

)2 ,

Tr(V+,kV
†
−,kU

†
−,kU+,k ) = Tr(V−,kV

†
+,kU

†
+,kU−,k )

=
[ −4δ2

kg
2
k [cos(ωkT ) − 1] cos

(
2τ

√
δ2
k + g2

k

)
(
δ2
k + g2

k

)2 + g2
k cos(ωkT )

[
2δ2

k + (
2δ2

k + g2
k

)
cos(4τNk ) − g2

k

](
δ2
k + g2

k

)2

+ 2δk

[
δ3
k + 8g2

kNk sin(ωkT ) sin3(τNk ) cos(τNk )
] + g4

k [cos(4τNk ) + 1](
δ2
k + g2

k

)2

]
g4

k [cos(4τNk ) + 1](
δ2
k + g2

k

)2 . (D5)
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