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We show that dark solitons in one-dimensional Bose liquids may be created by absorption of a single quanta
of an external ac field, in a close analogy with the Einstein’s photoelectric effect. Similarly to the von Lenard’s
experiment with photoexcited electrons, the external field’s photon energy �� should exceed a certain thresh-
old. In our case the latter is given by the soliton energy �s��q� with the momentum �q, where q is photon’s
wave number. We find the probability of soliton creation to have a power-law dependence on the frequency
detuning �−�s /�. This dependence is a signature of the quantum nature of the absorption process and the
orthogonality catastrophe phenomenon associated with it.
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I. INTRODUCTION

The existence of dark solitons �DS� is among the most
spectacular manifestations of the role played by weak inter-
particle interactions in one-dimensional �1D� cold atomic
gases �1�. Such solitons are macroscopically large areas of
partially, or even completely depleted gas, which propagate
coherently without any dispersion. It is natural to interpret
these objects as localized solutions of the semiclassical
Gross-Pitaevskii equation �2�. Correspondingly, the means to
create DS, employed so far, required a macroscopic classical
perturbation applied to the atomic cloud. An example of the
latter is the phase imprinting technique �3,4�, where a finite
fraction of the 1D atomic cloud is subject to an external
potential for a certain time. Once the potential is switched off
and the gas is allowed to evolve, the DS is formed around the
place with the maximal gradient of the potential.

Drawing an analogy with the electronic field emission
from a metal: A pulse of a strong external electric field may
lead to creation of free electrons outside of the metal surface.
It is well-known, however, from the time of von Lenard and
Einstein �5,6� that this is not the only way to excite electrons.
Indeed, a weak ac field results in a photoelectric current, as
long as the energy of its quanta exceeds the threshold given
by the work function of the metal. The difference between
the field emission and the photoelectric effects is that the
latter essentially utilizes the quantum nature of the electro-
magnetic radiation. Is there an analog of the photoelectric
effect for excitation of DS? Namely can the DS be created by
a weak ac radiation with the frequency exceeding a certain
threshold?

In the framework of the Gross-Pitaevskii equation the an-
swer on these questions is negative. Indeed, a weak external
field may lead to excitation of the linear waves, if its wave
number and frequency satisfy Bogoliubov dispersion rela-
tion, but not to creation of DS. However, treating the Bose
liquid beyond the semiclassical Gross-Pitaevskii approxima-

tion reveals that creation of DS in response to an absorption
of a single quanta with an above-the-threshold energy is ac-
tually possible. In analogy with the photoelectric effect we
call this phenomenon the photosolitonic effect. The threshold
energy is given by the energy of DS �s�p� with the momen-
tum p=�q, where q is the photon wave number. Creation of
DS requires an ac field with frequency ����s�p�. Notice
that no comparison of the external frequency � and the DS
energy �s ever appears in the Gross-Pitaevskii treatment.

In this paper we consider a linear response of a 1D Bose
liquid to an external ac potential with the wave number q and
frequency �. In experiments, the effective ac potential with
independently tunable � and q may be created by illuminat-
ing Bose liquid with two laser beams having wave vectors q1
and q2 and frequencies �1 and �2 �Bragg scattering tech-
nique, �7,8��. Following Refs. �9,10�, we treat Bragg scatter-
ing experiment as a response to an external space and time
dependent potential. The effect of the stimulated light scat-
tering from atoms is equivalent to a moving potential with
amplitude V0, wave vector q=q1x−q2x, and frequency �
=�1−�2 acting on the liquid �here x denotes components of
vectors along the direction of the 1D liquid�. Throughout the
paper we shall refer to a linear response on such a potential
as an absorption of a single quanta �or a photon� of the field
with an arbitrary relation between q and �. A reader should
have in mind that such a process is actually associated with a
two photon event �one being absorbed, while another emit-
ted� in terms of real photons of the electromagnetic radiation.
The limits of applicability of the linear response to V0, in
terms of the laser beams intensity are discussed at the end of
the paper.

The probability to absorb the radiation in the linear re-
sponse regime is proportional to �V0�2. The corresponding
absorption coefficient at zero temperature, according to the
fluctuation-dissipation theorem, is proportional to the dy-
namic structure factor �DSF� defined as the density-density
correlation function

S�q,�� =� dxdtei�qx−�t����x,t���0,0�� , �1�

where ��x , t� is the density operator. Rewriting DSF in the
Lehman representation in terms of exact many-body eigen-
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states of the system �n� with energies �n, one finds

S�q,�� = 	
n

��n��q�0��2���n − �0 − ��� , �2�

where �q is the Fourier component of the density and n=0
corresponds to the ground state. Since the momentum is a
good quantum number, only the many-body states with the
total momentum p=�q contribute to the sum on the right-
hand side �rhs� of Eq. �2�.

For the model with the short-range repulsive interactions
the many-body spectrum has been evaluated exactly using
the Bethe ansatz �BA� method �11�. Lieb has identified two
characteristic modes in the excitation spectrum of the model
�11�, known as Lieb I and II modes with the dispersion rela-
tions �1,2�p�, Fig. 1. The two are given correspondingly by
the particle and hole excitations in the set of the BA quasi-
momenta. The holelike mode �2�p� is shown to be the lower
bound of the many-body spectrum with a given momentum
p. According to Eq. �2� absorption is only possible if ��
��2��q�. Employing a numerical implementation of the al-
gebraic BA �12�, Caux and Calabrese �13� have shown that
DSF is indeed nonzero for all energies in excess of �2��q�
and is peaked at the particlelike mode ��=�1��q�. In the
limit of the weakly interacting gas the latter approaches the
Bogoliubov dispersion relation �11,14�

�1��q� → ��B�q� = vB�q
1 + ��q/2mvB�2, �3�

where vB is the Bogoliubov sound velocity and m is the
boson mass.

This observation offers a way to interpret absorption in a
vicinity of the Lieb I mode, �1�p�, in terms of weakly inter-
acting Bogoliubov quasiparticles. Consider, e.g., a photon
with some wave vector q and energy �� slightly below the
value �1��q�, i.e., ����1��q�, see point A in Fig. 1�a�. The
energy and momentum conservation laws allow for such
photon to create two Bogoliubov quasiparticles, ��=�1��q
− p�+�1�p�. In the limit �1��q�−��	mvB

2 , one of the two
particles has small momentum and may be viewed as a
“soft” phonon. For smaller initial photon energies, the result-
ing two quasiparticles split the photon momentum more
evenly, until the photon energy reaches the limiting value
��=2�1��q /2�. If the photon energy is decreased below this
threshold, a creation of more than two quasiparticles is
needed to satisfy the conservation laws. Upon further lower-
ing ��, more quasiparticles are created in the process of
photon absorption. Once the photon energy �� approaches
the line �=vB�q, Fig. 1, the energy and momentum of the
absorbed photon is split between infinitely many soft
phonons.

Below this line the described process of dividing the en-
ergy and momentum between the quasiparticles does not
work any more. Nevertheless the many-body spectrum per-
sists down to the lower value �2��q�
vB�q and the alge-
braic BA calculations �13� show that there is a finite absorp-
tion probability in the energy window

�2��q� 
 �� 
 vB�q . �4�

What is the absorption mechanism in this window, where the
conservation laws forbid excitation of any number of quasi-
particles or phonons?

The clue to answer this question appeared in the 1976
paper of Kulish, Manakov, and Faddeev �15�, who noticed
that the holelike Lieb II mode approaches dispersion relation
of DS in the weakly interacting limit

�2�p� → �s�p� . �5�

It means that the many-body states with the energy in the
vicinity of �2 must be viewed as quantized DS particles.
Correspondingly the photon absorption in the energy win-
dow �4� necessarily involves excitation of DS along with
Bogoliubov quasiparticles and/or phonons. Consider, e.g., a
photon with the energy immediately above the Lieb II mode,
�2
����2+mvB

2 �point B in Fig. 1�b��. Drawing the
“sound cone” with the slope vB down to the intersections
with �2�p�, one finds the range of the possible momenta of
DS,

p− 
 ps 
 p+, p� = p��q,�� �6�

which satisfy the conservation laws. Indeed, DS with the
momentum p− accompanied by a phonon, propagating in the
direction of the external momentum �q, obviously satisfies
the energy and momentum conservation. Similarly, DS with
the momentum p+ must be accompanied by the counter-
propagating phonon. Any other soliton from the momentum

0 pq�� n��2q�

2�

p

1�

A

p
1� qvB�

0 �p �p n��2q�

�� 2�

p

1�

B
qvB�
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�
��

�

FIG. 1. Momentum-energy plane for excitations. A photon is
represented by a solid dot. �a� Absorption of a photon �dot marked
by A� with energy and momentum slightly below the quasiparticle
spectrum �1�p�, leads predominantly to creation of two quasiparti-
cles with momenta q− p and p �the latter is determined by the
shown geometrical construction�. As A approaches the line �=vBp,
the number of excited quasiparticles increases. �b� Once photon
energy momentum �dot marked B� falls below the line �=vBp, its
absorption involves creation of a soliton. Other excitations created
in the course of absorption may be treated as phonons if B is close
to the boundary �2�p�. The shown “sound cone” with Bogoliubov
velocity vB determines the range of possible momenta of a gener-
ated dark soliton, p−
 ps
 p+.
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window �6� requires excitation of a certain superposition of
the forward and backward propagating phonons.

In this paper we evaluate probability Wq��ps� to excite DS
with the momentum ps in the range �6� upon absorption of a
photon with the wave number q and frequency �
��2��q� /�. We show that such a probability is heavily
shifted towards the lower boundary of the interval ps
= p−�q ,��, i.e., DS is preferentially excited along with the
forward moving phonon. At larger photon energies, while
still in the interval �4�, DS is excited with highest probability
along with the forward moving Bogoliubov quasiparticle. Its
energy and momentum may be found geometrically by plot-
ting the replica of the Bogoliubov dispersion curve which
starts at the some point along the Lieb II mode, �2�p�, and
passes through the point ��q ,��� representing external pho-
ton. We also show that the total probability to excite any DS
scales as a power of the blue detuning from the energy
threshold, �dpsWq��ps�
 ���−�2��2. The exponent �2
=�2�q� is a function of photon wave number and the strength
of interactions between the bosons. In the relevant limit of
the weakly interacting gas, the exponent is large �2�1, sig-
nifying the relative smallness of the photosolitonic effect. As
we explain below, such a smallness is associated with the
quantum orthogonality catastrophe phenomenon �16�.

The rest of this paper is organized as follows. In Sec. II
we reproduce a derivation of DS solution of the Gross-
Pitaevskii equation to introduce notations and terminology.
In Sec. III we evaluate the probability to excite a specific DS
upon absorption of a photon. Section IV is devoted to evalu-
ation and discussion of DSF, i.e., the total photon absorption
rate, resulting in DS formation. Finally in Sec. V we discuss
ways to observe the effect experimentally along with the
limitations of our theory.

II. DARK SOLITONS

To establish notations let us briefly discuss the localized
solutions of the nonlinear Gross-Pitaevskii equation �17�.
Quasiclassically, this equation is obeyed by the condensate
wave function,

i�t� +
1

2m
�x

2� + c�n − ���2�� = 0, �7�

where n=N /L is the average concentration and L is the
length of the system. Hereinafter we switch to the units with
�=1. The interaction strength c determines �11� the dimen-
sionless parameter �=mc /n whose smallness �	1 is the
criterion of the weak interaction.

Looking for a localized solution traveling with a certain
velocity vs, one substitutes

��x,t� = �s�x − vst� = 
n�ei� �8�

in Eq. �7� and finds two equations for the phase ���� and the
normalized amplitude ����, which are functions of �=x
−vst. The first of these equations acquires the form of the
continuity relation

��2��� − mvs��� = 0, �9�

where primes denote derivatives with respect to �. Using the
fact that far from the soliton �����=1 and ������=0, one
finds ��=mvs�1−1 /�2�. Employing this relation, the equa-
tion for the amplitude may be written in the form

�� = −
�U���

��
, �10�

where the effective potential U���, see Fig. 2, is given by

U��� =
m2vs

2

2
� 1

�2 −
vB

2

vs
2
�1 − �2�2, �11�

with the Bogoliubov velocity vB=
cn /m.
For vs�vB the potential has the minimum at �=1 and the

only physically acceptable solutions of Eq. �10� are small
oscillations around this minimum. In a vicinity of �=1 the
potential �11� may be approximated as U�2m2�vs

2−vB
2��1

−��2 and therefore the small oscillation solutions have the
form �−1�cos�q�x−vst�� with q=2m
vs

2−vB
2 . Rewriting

the last expression as vs=vB

1+ �q /2mvB�2, one may recog-

nize it as the phase velocity of the Bogoliubov mode. Corre-
spondingly, the oscillation frequency qvs=�B�q� coincides
with Eq. �3�. We thus conclude that the only solutions of GP
equation which travel with a supersonic velocity are Bogo-
liubov quasiparticles.

The situation is more interesting for vs
vB. In this case
the potential �11� exhibits a maximum at �=1, a minimum at
a smaller amplitude and a turning point at �=vs /vB
1. The
solution with the proper boundary conditions, �����=1, is a
trajectory which stays at the maximum and then exhibits a
bounce down to the turning point and back to the maximum.
This is the DS solution. To find it analytically, one may no-
tice that Eq. �10� admits an integral of motion which for DS
solution reads as

1

2
����2 + U��� = 0. �12�

Integrating this equation, one finds �18� for the wave func-
tion �8�

1

0

1

0

(b)(a) UU

χχ

FIG. 2. Effective potential U��� as given by Eq. �11� for �a�
vS�vB; �b� vS
vB. The double-arrowed line designates the inter-
val of variation of the normalized amplitude � for physically al-
lowed solutions of Eq. �10�.
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�s = 
n�cos
�s

2
− i sin

�s

2
tanh� x − vst

ls

� , �13�

where

cos��s/2� = vs/vB �14�

with �s being the change of phase of the wave function
across the soliton. The soliton length ls is given by

ls
−1 = mvB sin��s/2� = m
vB

2 − vs
2. �15�

The number of particles pushed away from the soliton
core is

Ns =� dx�n − ��s�2� =
2K

�
sin

�s

2
, �16�

where the “quantum parameter” K=�n / �mvB� depends on
the interparticle interaction strength via the thermodynamic
compressibility which defines the velocity vB. Notice that the
particle number may be very large, Ns�1, in the limit of the
weakly interacting gas �K�1�. The energy of the soliton is
given by

�s =� dx� 1

2m
��x�s�2 +

c

2
�n − ��s��2
 =

4nvB

3
sin3 �s

2
.

�17�

The calculation of DS momentum requires some care. The
soliton core momentum, defined by the wave function �13� is

psc = Im � dx�
s
*�x� = − n sin �s. �18�

However, one should take into account the periodic boundary
conditions which ensure that DS phase shift �s is uniformly
spread over the length of the entire system L, Fig. 3. Al-
though this does not change the energy of the system in the
thermodynamic limit �indeed the corresponding contribution
to the energy scales as n�s

2 / �mL��, it produces a finite con-
tribution n�s to the momentum. As a result the total �core
plus the rest of the condensate� momentum of the DS state is

ps = psc + n�s = n��s − sin �s� . �19�

Equations �17� and �19� give an implicit form of DS disper-
sion relation �s�ps�. The maximum of the soliton energy cor-
responds to �s=�, where both the soliton velocity and core
momentum vanish vs= psc=0. The total momentum, how-
ever, is finite ps=�n and is uniformly spread across the en-
tire condensate. This is the true DS, in a sense that the den-
sity vanishes in its center and the particle depletion reaches
its maximal value Ns=2K /�. Away from the point �s=�

soliton’s velocity is finite vs�0 as well as the density at any
point. Because of the latter such solitons are sometimes
called grey. Their velocity approaches sound velocity vB
when the total momentum approaches zero or 2�n, while the
energy and Ns both decrease. Clearly the concept of the clas-
sical soliton loses sense when the number of particles pushed
away from the core is comparable to one, Ns�1. This takes
place when �s�1 /K	1, and therefore at �ps � �n /K3, and in
intervals of the same width around the point p=2�n.

In the limit of the weak interactions �	1 �i.e., K�1� the
DS dispersion relation given by Eqs. �17� and �19�, ap-
proaches the Lieb II mode, plotted in Fig. 1. The conver-
gence is not uniform and the two significantly deviate from
each other in the narrow intervals of momenta near zero
�ps � �nK−3/2 and similarly near 2�n ��19��. Notice that at the
boundaries of this interval the number of particles pushed
away from the soliton core is still large Ns�
K�1. It is this
condition, rather than the weaker one Ns�1, which deter-
mines the validity of the soliton approach. We shall return to
this observation in Sec. IV.

III. EXCITATION OF DARK SOLITONS

Consider a Bose gas subject to a weak space and time-
dependent external potential V0 cos�qx−�t�. According to
the golden rule �cf. Eq. �2��, the system may absorb quanta
of this field if its many-body spectrum possesses excited
states with the momentum q and energy �. It follows from
the exactly solvable model �11� that such states form a con-
tinuum whose energy is bound from below by the Lieb II
mode �2�q�. As argued in the Introduction absorption of
quanta with the energy in the range given by Eq. �4� is as-
sociated with creation of DS along with the phonons or qua-
siparticles.

To evaluate the probability of such a process it is conve-
nient to think of it in terms of the space-time evolution of a
state resulting from the photon absorption by the system ini-
tially in the ground state. To this end we notice that the
photon absorption first creates a virtual state of the conden-
sate with a local perturbation of the condensate wave func-
tion. Since the photon carries momentum q and no extra
particles, so does the initial local perturbation. Subsequently
this perturbation evolves and eventually takes a form of a
superposition of real excitations, i.e., conserving overall en-
ergy � in addition to the momentum q. We expect that such
a final state contains a soliton with the momentum ps�q and
core energy �s�ps�
�. The small excess energy �−�s�0 is
carried away by phonons, propagating with the sound veloc-
ity vB.

The initial separation of the soliton core from a bunch of
phonons takes a short time, which may be estimated as �s
= ls /vB. The soliton core is the density depletion, which car-
ries momentum −n sin �s �which is very different from ps
�q� and −Ns particles. At times t��s the core propagates
without dispersion and behaves as a free particle with the
energy �s. The remaining momentum q+n sin �s� ps
+n sin �s=n�s, cf. Eq. �19�, and Ns particles, initially local-
ized on a scale �ls, must be carried away and spread over
the entire system at t��s by the phonons. As explained

�( )x �s
x

n x( )

L0

FIG. 3. �Color online� Density n�x� and phase ��x� profiles of a
soliton in a system of length L. Note that the density perturbation is
local, while the perturbation of phase is not.
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above, despite the fact that the phonons must carry away a
large number of particles Ns and large momentum n�s, their
final energy is small, �−�s	vBn�s. Therefore, this is the
low-probability event, or the “under-barrier” process, which
should be described as the imaginary time evolution �20,21�
of the phonon system �22�.

To develop such a description we start from the imaginary
time � action for the interacting Bose field

S =� d�dx��̄��� −
1

2m
��x��2 + cn���2 −

c

2
���4
 .

�20�

It is convenient to parametrize the complex field as �
=
n+ ��x� /��ei�, where ��x ,�� and ��x ,�� are two real
fields describing density and phase fluctuations correspond-
ingly. Assuming small density fluctuations �x�	�n and lin-
earizing the resulting action, one finds

S =� d�� i

�
� dx�x���� − Hsw
 , �21�

where the hydrodynamic Hamiltonian of the sound waves is
given by �23�

Hsw =
vB

2�
� dx�K−1��x��2 + K��x��2� . �22�

We have omitted terms ���x
2��2 in the Hamiltonian, which is

equivalent to restricting the spectrum of Bogoliubov quasi-
particles to the phonon branch only. This approximation is
sufficient for treating photon absorption close to the soliton
threshold.

Taking the variations of the imaginary-time action over �
and �, one finds the semiclassical equations of motion

��x
2 � + ivBK�x

2� = �Ns���x����� − ��x − x̄���� − �̄�� ,

��x
2 � + i

vB

K
�x

2� = �s���x����� − ��x − x̄���� − �̄�� .

The right-hand sides of these equations contain sources
which describe the feedback of DS creation at the point x
=�=0 and its subsequent destruction at the point x= x̄, �= �̄.
As discussed above, such creation �destruction� of DS is as-
sociated with practically instantaneous and local injection
�removal� of Ns particles and momentum n�s into �out of� the
phonon modes. The sources on the rhs of the equations of
motion do just that. The equations of motions are straightfor-
wardly solved by the Fourier transformation. Substituting
such a solution back into Eq. �21�, one finds for the imagi-
nary time action

S�x̄, �̄� = �+ ln�1 +
x̄ − ivB�̄

ils

 + �− ln�1 +

x̄ + ivB�̄

ils

 ,

�23�

where we introduced notations

�� =
�K�s � �Ns�2

4�2K
=

K

�2��s

2
� sin

�s

2

2

�24�

and employed Eq. �16� in the last equality on the rhs of Eq.
�24�. Here �s is the parameter of a created DS, it is related to
the DS momentum ps�q through Eq. �19�. The soliton
length ls appears in Eq. �23� as a short distance cutoff. In-
deed, one should understand that the actual spatial �temporal�
extent of the � functions on the rhs of the equations of mo-
tions is the soliton size ls ��s= ls /vB�.

To find a probability of creating DS with the momentum
ps upon absorbing a photon �q ,��, one needs to evaluate the
Fourier transform of the square of the semiclassical matrix
element given by e−S. Specifically,

Wq,��ps� = Re � dx̄dt̄

ls
e−S�x̄,t̄�−i�q−ps�x̄+i��−�s�t̄, �25�

where we took into account that the momentum ps and en-
ergy �s�ps� are carried away by the soliton and therefore
should not be absorbed by the phonons. The analytical con-
tinuation performed in Eq. �25� to the real frequencies i�
→� is accompanied by the time integration contour �Wick�
rotation �̄→ it̄ to ensure convergence.

To evaluate the integral in Eq. �25�, we take into account
that for small energy excess �−�s�q�	mvB

2 the range of the
allowed soliton momenta ps is rather narrow, see Fig. 1�b�,
and centered around the photon momentum q. One may
therefore expand the soliton energy as �s�ps���s�q�+ �ps
−q�vs and find for the boundaries of the possible soliton
momenta, see Eq. �6� and Fig. 1�b�,

p��q,�� = q �
� − �s�q�

vB � vs�q�
, p+ − p− 	 ps. �26�

Adopting these notations and performing the straightforward
integrations in Eq. �25�, one finds

Wq,��ps� 

ls

vB
� p+ − ps

ls
−1 
�+−1� ps − p−

ls
−1 
�−−1

. �27�

Therefore, the soliton creation rate is characterized by the
power-law dependencies on the deviations of the soliton mo-
mentum from the upper and lower kinematic boundaries
p��q ,��, Fig. 4�a�. The corresponding exponents ���−1�,
see Fig. 4�b�, are functions of the soliton parameter �s
=�s�q� and the quantum parameter K as given by Eq. �24�.
Since �−
�+, the probability to excite the soliton is heavily
shifted towards the lower boundary p−, Fig. 4�a�. That is, the
soliton is preferentially accompanied by the forward moving
phonons �in the direction of the photon momentum q�.

IV. DYNAMIC STRUCTURE FACTOR

Another quantity of interest is the total absorption rate of
photons with a given q and ���s�q�, which results in cre-
ation of a soliton with an unspecified momentum. This quan-
tity is nothing but DSF S�q ,�� of the 1D Bose gas. Integrat-
ing Wq,��ps�, Eq. �27�, over the soliton momenta ps, one
finds for DSF in an immediate vicinity of the lower spectral
boundary ���2�q�,
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S�q,�� = �
p−

p+

dpsWq,��ps� 

1

vB
� p+ − p−

ls
−1 
�2

, �28�

where the exponent is given by �2=�++�−−1. According to
Eq. �24�, the exponent is expressed through the parameters of
the soliton �s, which in turn is related to the soliton momen-
tum through Eq. �19�, where ps=q. As a result

�2�q� =
2K

�2 ���s

2

2

+ �sin
�s

2

2� − 1. �29�

For the true DS �s=� and therefore �2��n��0.70K. Notice
that at q→2�n, Eq. �29� yields �2�2K−1, different from
DSF exponent K−1 established in the framework of the Lut-
tinger liquid theory �23�. The latter is applicable above the
dashed line in Fig. 1.

Employing Eq. �26�, one may rewrite DSF �28� in the
following form:

S�q,�� 

1

vB
�� − �s�q�

��q�

�2�q�

�„� − �s�q�… , �30�

where the cutoff energy is

��q� =
mvB

2

2
sin3 �s

2
�

�s�q�
K

. �31�

Being multiplied by the intensity of the radiation V0
2, DSF

gives a number of solitons excited per unit time and per unit
length of the irradiated 1D gas.

The power-law behavior of DSF near the lower spectral
boundary �2�q���s�q� was derived earlier by the present
authors and Pustilnik in Ref. �24�. There, a mapping between
1D Bose and Fermi systems was used to prove the presence
of the power-law nonanalyticity and evaluate the exponent
�2�q�. However, the method adopted there allowed us to
deduce the exponent only in the limit of strongly interacting
bosons ��1 �since the latter is mapped onto weakly inter-
acting fermions, treated in Ref. �25��. Later a method to ex-
tract the edge exponent �2 for an arbitrary interaction param-
eter from the BA solution was suggested in Refs. �26–28�.

Figure 5 shows comparison between the semiclassical re-
sult Eq. �29� and the numerical solution of BA equations �26�
for the edge exponent �2 as a function of the momentum �in
units of n�. The agreement between the two approaches be-

comes progressively better for weaker interactions �the only
limit where the soliton picture holds, see Sec. I�. Such an
agreement suggests that the interpretation of the photon ab-
sorption near the lower spectral edge as a formation of soli-
tons is indeed consistent with a fully quantum many-body
calculation. The latter �26� does not rely on existence of
solitons at all. We consider it as a strong confirmation of the
thesis that absorption of an ac quanta in the frequency win-
dow �4� results in the formation of DS.

Notice that even in the weakly interacting limit, the semi-
classical prediction �29� deviates from the exact one at very
small momenta, see the inset in Fig. 5�a�. This is to be ex-
pected, since as was discussed in Sec. II, the soliton picture
loses its validity at sufficiently small momenta. Inspecting
Eq. �29�, one notices that the semiclassical exponent be-
comes negative at �s�� /
K, contrary to the exact results,
Fig. 5. Using Eq. �16�, one finds that this corresponds to the
number of missing particles in the soliton core Ns�
K. This
observation collaborates with the discussion presented in the
end of Sec. II, which suggests that the semiclassical treat-
ment loses validity for the very gray solitons with Ns

K,
i.e., �ps�
nK−3/2, cf. Eq. �19�. We stress that the power-law
behavior of DSF at the exact lower spectral boundary �2�q�

W

p− p+h̄q ps

(a)

0 2πn q
1

K
(b)

µ+
µ−

FIG. 4. �Color online� �a� Soliton creation rate as a function of
the soliton momentum ps. �b� Momentum dependence of the expo-
nents �� for K=10.
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FIG. 5. �Color online� Edge exponent �2�q�, cf. Eq. �30�, as a
function of momentum in units of n for �a� �=0.05,K=33; �b� �
=0.4,K=5.2; �c� �=1,K=2.7. The full �blue� line is the semiclas-
sical result �29�; dashed �red� line is the Bethe ansatz solution of
Ref. �26�.
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is valid for any momentum. However, for q
nK−3/2 the
semiclassical approximation for the exponent �2�q� fails. In-
stead, the exact exponent �24,26� scales linearly with mo-
mentum �2�q��K3/2q /n.

V. DISCUSSION

We have shown that the absorption of a photon with the
energy above a certain threshold leads to formation of the
DS. In the narrow energy window �s
�
�s+� the total
soliton formation rate per unit length of 1D Bose cloud is
given by S�q ,��V0

2, where DSF is given by Eq. �30� and
V0 cos��t−qt� is the external ac potential applied to 1D Bose
gas. The momentum-resolved rate is given by Eq. �27�, i.e.,
solitons with the momentum in the interval ps�dps /2,
where ps belongs to the window �6�, are created with the rate
Wq,��ps�V0

2dps.
An important question is what are the corresponding rates

for a larger energy of the photon, �s+�
�
vBq. Accord-
ing to the arguments given in Sec. I, absorption of such a
photon should necessarily lead to DS formation. Yet our cal-
culations are not directly applicable in this case. Indeed, we
have used linearized dispersion relation for the quasiparticles
�phonons� excited along with DS. For energies above �s+�
such an approximation is not valid. This is because Bogoliu-
bov quasiparticles with momenta above mvB that take the
excess energy cannot be well approximated by phonons. The
photon absorption is dominated by creation of a DS and
single quasiparticle moving in the direction of the wave vec-
tor q �i.e., moving forward�. Thus, the parameters of the
typical DS may be found by plotting a replica of the Bogo-
liubov spectra which starts at some point along the absorp-
tion edge �=�s�q� and passes through �q ,��. The starting
point prescribes DS momentum and energy. We expect that
the power-law equation �30� saturates at an excess energy of
order ��q�, i.e., at �−�2��. As a result, DS formation rate
per unit length may be estimated as �V0

2 /�2vB�e−��2�q�, with a
numerical factor ��1.

Recalling that for a true DS �2=0.7K=1.1Ns, one realizes
that the photosolitonic rate is exponentially suppressed with
the increase of DS depleted particle number Ns. Physically
the origin of this smallness is in the orthogonality phenom-
enon: The state of the system immediately after absorption of

the photon is almost orthogonal to the state with the soliton
causing a redistribution of density and phase of the conden-
sate in the one-dimensional system. The corresponding ma-
trix element is exponentially small in the parameter Ns. This
fact dictates a rather stringent limitation on the experimental
observability of the photosolitonic effect. Increasing interac-
tions �i.e., decreasing K� makes the exponential factor in the
photosolitonic rate less severe, on the other hand, it simulta-
neously decreases Ns, making it more difficult to observe the
excited solitons.

Finally we make an estimate of the soliton production rate
in a realistic experimental setup. We focus on the stationary
solitons most easily detectable in experiments. As such soli-
tons have momentum ps=�n, we estimate the 1D density n
�4 /�, where � is the wavelength of the laser beams. For the
typical lasers, we obtain n�10 �m−1. Next, we consider the
relatively “light” soliton with Ns=10 corresponding to K
=15. The density n and the Luttinger liquid parameter K
�� /
� fix the radial trapping frequency ��

=�2n� /2maK2. In the last equality we have used the well-
known expression �29�, c=2���a, where a is the three-
dimensional scattering amplitude. In the case of the 87Rb
atoms with a�100 in atomic units we obtain the experimen-
tally accessible value ���2��3 kHz. The chemical poten-
tial cn /��2 kHz sets our estimate for the upper bound on
the effective potential amplitude V0. Using the sound veloc-
ity vB�1 mm s−1 corresponding to the above density, we
obtain 1 event per 0.2 s for soliton production in the system
of the length L�30 �m �8�. We now give an estimate for the
intensity I of the laser beams needed to create the above
effective potential amplitude V0. We use the expression for
the potential amplitude V0= � 2� /6�L��I / Isat� �30�, where  
is the decay rate of the excited atomic level, �L is the detun-
ing from the atomic resonance, Isat is the saturation intensity.
Typically,  �10 MHz, �L�1 GHz, and Isat�1 mW /cm2

�4,8,30�. Under these conditions, we obtain that V0�2 kHz
corresponds to I�0.2Isat.
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