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Contents

I. Wave-Equation in Lorentz gauge 1
A. Discrete charges as a source 2
B. Energy conservation and Poynting Theorem 3

1. Steadily radiating systems 3

II. Green functions for the wave equation 4
A. Lorentz invariance 6

1. An example 7
B. Boundary Values Problem 8

1. Source that is harmonic in time 8
2. Asymptotic scaling of solutions far from the sources 8

C. Solution of the wave equation, (33) of electrodynamics 9
1. Another example: Field of a moving charge revisited 9

III. Dipole approximation 10
A. Fields in radiation zone, kr � 1 11
B. Radiation Intensity 12
C. Some examples 12

1. Oscillating dipole 12
2. Rotating dipole 12

D. Harmonic fields 13
1. Radiation zone, power per unit solid angle 14
2. Near (static) zone, kr � 1 15

IV. electric quadruple and magnetic dipole approximations 16
A. Radiation zone 17
B. Example of a quadrupole radiation 18
C. Example of the magnetic dipole 19

V. Estimates of relative importance of different contributions 19

VI. Larmor formula and cyclotron radiation 20

A. Polar coordinates 20

B. Vector Analysis Identities 20

I. WAVE-EQUATION IN LORENTZ GAUGE

Starting with the set of Maxwell equations,

∇ ·D = ρ, ∇×H = J +
∂D

∂t

∇ ·B = 0, ∇×E +
∂B

∂t
= 0 (1)

The vector and scalar potentials,

B = ∇×A, E = −∇Φ− ∂tA (2)
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In vacuum, B = µ0H, D = ε0E, and with c−2 = ε0µ0, and

∇ ·E = ρ/ε0, ∇×B = µ0J + c−2 ∂E

∂t

∇ ·B = 0, ∇×E +
∂B

∂t
= 0 (3)

∇ ·E = ∇(−∇Φ− ∂tA) = −∇2Φ− ∂t∇A (4)

and therefore,

∇2Φ + ∂t∇A = ρ/ε0 (5)

∇×B = ∇× (∇×A) = ∇(∇ ·A)−∇2A (6)

∂tE = ∂t(−∇Φ− ∂tA) = −∇∂tΦ− ∂2
tA (7)

So that

∇(∇ ·A)−∇2A = µ0J + c−2(−∇∂tΦ− ∂2
tA) (8)

and the Lorentz gauge condition,

∇A+ c−2∂tΦ = 0 (9)

gives rise to a inhomogeneous wave equations,

∇2Φ− c−2∂2
t Φ =− ρ/ε0

∇2A− c−2∂2
tA =− µ0J (10)

A. Discrete charges as a source

For discrete set of charges labeled by index i,

ρ(x, t) =
∑
i

eiδ(x− xi(t)) , J(x, t) =
∑
i

eiδ(x− xi(t))ẋi(t) . (11)

The dipole moment of the discrete charge distribution,

p(t) =

∫
d3x′ρ(x′, t)x′ =

∑
i

eixi(t) (12)

The useful relation, ∫
d3xJ(x, t) = ḋ(t) (13)

is immediately evident for the case of the set of discrete charges, i.e. definitions, (11). For the general distribution of
charges and currents, continuous or discrete it follows from the continuity relation,

ṗ(t) =
d

dt

∫
d3xxρ(x, t) =

∫
d3xx

∂ρ(x, t)

∂t
= −

∫
d3xx∇ · J(x, t) (14)

which in components tells us

[ṗ]l(t) =−
∫
d3xxl∂kJk(x, t) = −

∫
d3xxl∂kJk(x, t) = −

∫
d3x∂k[xlJk(x, t)] +

∫
d3x[∂kxl]Jk(x, t)

=

∫
d3xδk,lJk(x, t) =

∫
d3xJl(x, t) . (15)
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B. Energy conservation and Poynting Theorem

Here we review the concept of the energy flux, or Poynting vector. This concept is particularly important in the
discussion of radiation. Lets start with the derivation of the Poynting theorem. The change in the mechanical energy,
WLF
mech due to the fields applying the Lorentz force on charges in a volume V is

dWLF
mech

dt
=

∫
V

d3xρ[E + v ×B]︸ ︷︷ ︸
Force on d3x

·v =

∫
V

d3xE · J (16)

Exclude the current density using the second (Ampere-Maxwell) of (3),

dWLF
mech

dt
=

∫
V

d3xE · 1

µ0

[
∇×B − ε0

∂E

∂t

]
(17)

Now write, using Faraday law, fourth of (3)

∇ · (E ×B) = B · (∇×E)−E · (∇×B) = −B · ∂B
∂t
−E · (∇×B) (18)

So that,

dWLF
mech

dt
=

∫
V

d3x

[
− 1

µ0
∇ · (E ×B)− 1

µ0
B · ∂B

∂t
− ε0E ·

∂E

∂t

]
(19)

which then gives the Poynting theorem,

d

dt

∫
V

d3x
ε0
2

[
E ·E + c2B ·B

]
= −dW

LF
mech

dt
− 1

µ0

∫
V

d3x∇ · (E ×B) . (20)

The energy stored in the EM field,

Wfields =

∫
V

d3x
ε0
2

[
E ·E + c2B ·B

]
(21)

Introducing the Poynting vector, or radiation flux vector,

S = E ×H =
1

µ0
E ×B (SI) , S =

c

4π
E ×B (CGS) (22)

we obtain the statement of the total energy, Wtot conservation in an isolated systems of charges and fields created
by these charges,

dWtot

dt
=

d

dt
(WLF

mech +Wfields) = −
∮
Surf

dan · S (23)

which is straightforwardly interpreted as the decrease in the total energy is accounted for by its flow out of the volume
V through the surface Surf . In the isolated system, the energy transforms from the mechanical to the field energy
but the total energy is conserved. In this case when the volume V inflates to infinity and so does the surface Surf
enclosing V the right-hand side in (23) should drop to yield the total energy conservation in the whole volume,

d

dt
(WLF

mech +Wfields) = 0 (24)

1. Steadily radiating systems

In the system radiating steadily the energy is imparted into the system by the external agents. One could think of
them as “electricity company” broadly understood. Let us imagine having the periodic driving force and consider the
steady state. Then average (23) over a period. Such averaging is denoted by the line put above an averaged quantity,

d

dt
(WLF

mech +Wfields) = −
∮
Surf

dan · S (25)
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The state of steady radiation is characterized by the condition,

lim
V→∞

∮
Surf

dan · S 6= 0 (26)

exactly because the total energy in the system, Wtot in the whole space is not conserved thanks to the work performed
by the “electricity company”. On the other hand, in the steady state,

d

dt
Wfields = 0 (27)

and by definition (16) ∫
d3xE · J = − lim

Surf→∞

∮
Surf

dan · S (28)

The expression on the right hand side of (16) is the average mechanical work done by the field on a radiating system.
Clearly, however the total mechanical energy of the system in the steady state when averaged over the period remains
constant. The point is that the “electrical company” works against those fields to compensate for their deceleration
action on charges in the radiating system. In other words the average power supplied by the “electrical company”, P
must satisfy, (in steady state!),

P +

∫
d3xE · J = 0 (29)

Combining (28) and (29) we finally arrive at the expression we will normally use,

P = lim
Surf→∞

∮
Surf

dan · S , (30)

where it is often convenient to consider the surface being the surface of a sphere of a radius, r, so that (30) takes the
form,

P = lim
r→∞

r2

∮
dΩn · S , (31)

where dΩ os the elementary solid angle on a unit sphere. Continuing in (SI), according to (22) the power radiated
per unit solid angle,

dP

dΩ
= lim
r→∞

r2n ·E ×H . (32)

One may think of a kind of “radiation friction”: you try to accelerate charges yet in response they create fields
(radiation) and then this field acts on charges back to oppose your initial intent to accelerate them. Note that in
reality the “electricity company” expends most of its power on other kind of friction, i.e. Ohmic losses.

II. GREEN FUNCTIONS FOR THE WAVE EQUATION

Each component satisfies the scalar inhomogeneous wave equation,

∇2Ψ(x, t)− 1

c2
∂2
t Ψ(x, t) = −4πf(x, t) (33)

where f(x, t) is the source distribution. By definition the Green function in a free space satisfies, G(x−x′, t) satisfies

∇2G(x− x′, t− t′)− 1

c2
∂2
tG(x− x′, t− t′) = −4πδ(x− x′)δ(t− t′) (34)

and defines the wave excited by the sudden and localized perturbation. Consider the Fourier Transformation,

G(x− x′, t− t′) =
1

2π

∫ ∞
−∞

dωe−iωtGω(x− x′) , Gω(x− x′) =

∫ ∞
−∞

dteiω(t−t′)G(x− x′, t− t′) . (35)
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Multiply (34) by eiω(t−t′) and integrate over all times t (by parts in the second term on the right). Then using the
definitions (35) one obtains,

∇2Gk(x− x′) + k2Gk(x− x′) = −4πδ(x− x′) , (36)

where k ≡ ω/c, Gω(x−x′) ≡ Gk(x−x′) and ω > 0. The solution to (36) must be isotropic to respect the rotational
symmetry of the space, G(x − x′, t) = G(R, t), where R = x − x′ and R = |x − x′|. And as a result, writing the
Laplacian in spherical coordinates transforms (36) into

1

R

d2

dR2
[RGk(R)] + k2Gk(R) = −4πδ(R) (37)

Lets write (37) in the dimensionless form, with the dimensionless variable ξ = kR, ξ = kR, and the function
fk(ξ) ≡ k−1Gk(ξ/k). As we will see shortly the function, fk(ξ) is in fact independent of k so that we write, f(ξ)
instead of fk(ξ) below. Divide (37) by k3 and notice that,

d

dR
=

(
dξ

dR

)
d

dξ
= k

d

dξ
, k−3δ(R) = δ(kR) = δ(ξ) . (38)

With (38), the equation (37) divided by k3 takes the form,

1

ξ

d2

dξ2
[ξf(ξ)] + f(ξ) = −4πδ(ξ) (39)

As (39) does not contain k, fk(ξ) ≡ f(ξ). Consider (39) away from the origin, ξ 6= 0,

1

ξ

d2

dξ2
[ξf(ξ)] + f(ξ) = 0 , ξ 6= 0. (40)

The function h(ξ) ≡ ξf(ξ) satisfies the simple ordinary homogeneous equation,

d2

dξ2
[h(ξ)] + h(ξ) = 0 , ξ 6= 0. (41)

The general solution of (41) is trivial,

h(ξ) = Ae+iξ +Be−iξ , ξ 6= 0 , (42)

and therefore,

f(ξ) = A
e+iξ

ξ
+B

e−iξ

ξ
, ξ 6= 0 , (43)

where the constants A and B are not yet specified. These can be determined by direct substitution of (43) into (39),
but now in the whole space (including the origin, ξ = 0). Start with

∇2[
e±iξ

ξ
] =

1

ξ
∇2[e±iξ] + 2[∇e±iξ] · [∇1

ξ
] + e±iξ∇2[

1

ξ
] (44)

then, with the unit vector, ξ̂ = ξ/ξ,

1

ξ
∇2[e±iξ] =

1

ξ2

d2

dξ2
[ξe±iξ] = 2(±i)e

±iξ

ξ2
− e±iξ

ξ
(45)

2[∇e±iξ] · [∇1

ξ
] = 2[(±i)e±iξ]ξ̂ · [− 1

ξ2
]ξ̂ = −2(±i)e

±iξ

ξ2
(46)

And finally, as was shown in few different ways in the discussion of electrostatics,

∇2[
1

ξ
] = −4πδ(ξ) (47)
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Substitution of (45), (46) and (47) into (44) gives

∇2[
e±iξ

ξ
] = −e

±iξ

ξ
− 4πe±iξδ(ξ) = −e

±iξ

ξ
− 4πδ(ξ) (48)

Therefore for f(ξ) given by (43) to be a solution it has to satisfy the restriction,

A+B = 1 (49)

The choice A = 1, B = 0 (A = 0, B = 1) defines the retarded (advanced) Green function for the wave-equation,

G±ω (R) = k
e±ikR

kR
=
e±ikR

R
(50)

By taking the inverse Fourier transform, τ = t− t′,

G(±)(R, τ) =

∫ ∞
−∞

dω

2π
e−iωτ

e±iω(R/c)

R
=
δ(τ ∓R/c)

R
(51)

In summary, the two Green functions we have introduced are

G(±)(x− x′, t− t′) =
δ(t− t′ ∓ c−1|x− x′|)

|x− x′|
=
δ(t′ − t± c−1|x− x′|)

|x− x′|
=
δ(t′ − tr/a)

|x− x′|
, (52)

where the retarded (advanced) time tr/a = t∓ |x−x′|/c. This describes the initial disturbance propagating at speed
of light as a spherical shock-wave. Note that

G(+)(x− x′, t < t′) = 0 , G(−)(x− x′, t > t′) = 0 , (53)

and as a result G(+) describes the light cone pointing down (if the time axis is going up) that appears first at t = t′+0+

and x = x′ and opens up towards the future. This retarded light cone exists at times t > t′. Such a light cone is
Lorentz invariant. To the contrary, G(−) describes the (advanced) light cone pointing down which exists for times t
that are in the past relative to t′. Both cones have a common vertex at the flash event located at (x = x′, t = t′) in
space-time. They otherwise are disjoint.

The two solution are time reversal partners, (52)

G(−)(x− x′, t− t′) = G(+)(x− x′,−(t− t′)) (54)

The presence of the two partner solutions (54) follows as the original equation, (34) is of the second order in time
derivatives and has a time reversal invariant source (indeed δ(t − t′) = δ(t′ − t)). [Note parenthetically that the
Schrödinger equation is time reversal invariant as well even though its first order in time derivatives. But that is
because the wave function in quantum mechanics is complex and the first derivative comes with the complex i].

A. Lorentz invariance

The separation into the two kinds of the Green functions is Lorentz invariant concept. This is nothing but the
statement of the concepts of past and future being absolute for two causally related events that we have discussed in
the framework of relativity. Lets assign the superscript K(K̄) to the quantities in the two reference frames. Imagine,
tK − t′K − c−1|xK − x′K | = 0 so that tK − t′K > 0, i.e. the event (ctK ,xK) lies on the upper light cone originating

at the event, (ct′K ,x′K) in K. In any other frame K̄ we are assured that (tK̄ − t′K̄)2 − c−2|xK̄ − x′K̄ |2 = 0 as the

interval between the events is Lorentz invariant. Let us also show that the sign of tK̄ − t′K̄ is the same as the sign of
tK − t′K . Lets say the two frames share a common coordinate axes, and K̄ moves along x̂ with a velocity, V . Then
denoting tanh η = V/c, −∞ < η <∞ the Lorentz transformation reads,

ctK̄ = ctK cosh η − (x1)K sinh η

(x1)K̄ = −ctK sinh η + (x1)K cosh η

(x2,3)K̄ = (x2,3)K (55)
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with the same relationship between the primed quantities. We then have

ctK̄ − t′K̄ = c(tK − t′K) cosh η − [(x)K1 − (x′)K1 ] sinh η ≥ c(tK − t′K) cosh η − |[(x)K1 − (x′)K1 ]| sinh η

≥ c(tK − t′K) cosh η − |xK − x′K | sinh η = c(tK − t′K) [cosh η − sinh η] = c(tK − t′K)e−η > 0 . (56)

So we have proved that on a light cone, the relative past and future are Lorentz invariant concepts. This observation
allows us to prove the Lorentz invariance of the Green function itself. Here to simplify the discussion, we focus on the
scalar wave equation (34). In the EM it is slightly more complicated as the Green function describes the response of
one 4-vector (4-potential, Aµ) to the the other 4-vector (4-current, Jµ) and as such is (gauge dependent!) 4-tensor,
Gµν(x− x′, t− t′) that happens to be diagonal in the Lorentz gauge.

Lets get back to the case of the scalar wave equation (33) with f being a scalar function. Consider the two kinds
of Green functions, (52) written in equivalent way as follows,

G(±)(x− x′, t− t′) =
δ(t− t′ ∓ c−1|x− x′|)

|x− x′|
=
θ±(t− t′)
|x− x′|

δ

[
(t− t′ ∓ c−1|x− x′|)(t− t′ ± c−1|x− x′|)

(t− t′ ± c−1|x− x′|)

]

=
θ±(t− t′)
|x− x′|

δ

[
(t− t′ ∓ c−1|x− x′|)(t− t′ ± c−1|x− x′|)

(±2c−1|x− x′|)

]

=
θ±(t− t′)
|x− x′|

δ

[
(t− t′)2 − c−2(x− x′)2

(±2c−1|x− x′|)

]

=
θ±(t− t′)| ± 2c−1|x− x′||

|x− x′|
δ
[
(t− t′)2 − c−2(x− x′)2

]
= 2cθ±(t− t′)δ

[
c2(t− t′)2 − (x− x′)2

]
, (57)

where θ±(x) ≡ θ(±x), and θ(x) is the usual step-function and we used the property of the delta function, |a|δ(ax) =
δ(x). It follows from (57) that the Green functions are product of the two Lorentz invariant factors: 1) the step
function, θ±(t− t′) is Lorentz invariant because the order of times t and t′ cannot be flipped thanks to the Eq. (56).
2) The second factor is the delta-function of the interval, and is Lorentz invariant by definition.

1. An example

To make the discussion less abstract consider the special case of the two events on a single light-cone, (x, t) and

(x′, t′) as before, but with (x2,3)K− (x′2,3)K = (x2,3)K̄− (x′2,3)K̄ = 0. In other words we consider both the initial flash
and the subsequent observation of the signal to occur on the x-axis in both reference frames. Take for definiteness,
t1 > t′1 and x1 > x′1 in K̄. For this particular case, denoting c−1[(x1)K − (x′1)K ] = ∆xK and (t)K − (t′)K = ∆tK with
the same definitions in the K̄ frame. Then (52) gives

[G(±)]K̄(xK̄ − x′K̄ , tK̄ − t
′
K̄) = c−1 δ[∆t

K̄ −∆xK̄ ]

∆xK̄
= c−1 δ[∆t

K cosh η −∆xK sinh η − (∆xK cosh η −∆tK sinh η)]

∆xK cosh η −∆tK sinh η

=c−1 δ[(∆x
K −∆tK)(cosh η + sinh η)]

∆xK cosh η −∆tK sinh η
= c−1 δ[(∆x

K −∆tK)(cosh η + sinh η)]

∆xK(cosh η − sinh η)

=c−1 δ[(∆xK −∆tK)]

∆xK(cosh η − sinh η)(cosh η + sinh η)
= c−1 δ[(∆xK −∆tK)]

∆xK(cosh2 η − sinh2 η)
= c−1 δ[(∆x

K −∆tK)]

∆xK

=[G(±)]K(xK − x′K , tK − t′K) (58)

The last equality is expected: the Dalambertian, � ≡ c−2∂2
t −∇2 is Lorentz invariant, as well as the delta function.

Therefore all observer must solve exactly the same equation, (34) but each one using its own coordinate notations.
As a result all observers will come up with the same solution, as is explicitly demonstrated by (58).
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B. Boundary Values Problem

We are going to complement the wave equation (33) by the physically motivated boundary conditions. The physical
situation of interest is the case when the sources are non-existent at remote past,

f(x, t = −∞) = 0. (59)

In this case we require that at t = −∞ the solution is

Ψ(x, t→ −∞) = Ψin(x, t) , (60)

where Ψin(x, t) is a given solution of the homogeneous wave equation. In this situation the solution satisfying the
boundary conditions and the differential equation reads,

Ψ(x, t) = Ψin(x, t) +

∫
d3x′

∫ ∞
−∞

dt′G(+)(x, t;x′, t′)f(x′, t′) (61)

The boundary condition, (59) is satisfied by (62) in virtue of the properties, (53). Normally, we would be interested
in the special case, Ψin(x, t) = 0. In this case using the result (52) and performing the t′ integration gives,

Ψ(x, t) =

∫
d3x′

f(x′, tr)

|x− x′|
=

∫
d3x′

f(x′, t− c−1|x− x′|)
|x− x′|

(62)

1. Source that is harmonic in time

Here we consider the sources that are harmonic functions of time, and are hence characterized by a fixed frequency
ω and the corresponding wave-number, k = ω/c. In other words now ω is a fixed parameter. This is particularly
important type of source of the radiation,

f(x, t) = f(x) cos(ωt− θ) = Re[fω(x)e−iωt] , fω(x) = f(x)eiθ , (63)

where f(x) is a real function, θ is an arbitrary phase, and fω(x) is a complex source amplitude. Substitute (63) in
(62),

Ψ(x, t) =

∫
d3x′

Re{fω(x′)e−iωt+ik|x−x
′|}

|x− x′|
(64)

Define the complex amplitude of the solution,

Ψ(x, t) = Re{Ψω(x)e−iωt} (65)

Comparison of (64) and (65) gives

Ψω(x) =

∫
d3x′fω(x′)

eik|x−x
′|

|x− x′|
(66)

2. Asymptotic scaling of solutions far from the sources

The choice of the retarded rather than the advanced Green functions makes the asymptotic (large distance)
dependence of solution (64) on space and time to be OUTGOING rather than INCOMING wave. In other words,
the scaling for the retarded solutions is cos(ωt−kx) and for the advanced solutions, the scaling is different cos(ωt+kx).

This difference is of fundamental importance. It stems from the underlying difference in the time dependence of
G(+) and G(−), (51). The retarded Green function, G(+) kicks off at t = t′ after which it describes propagation of
energy outwards away from the disturbance, localised at (x′, t′). In contrast, the advanced Green function, G(−)

describes the shrinkage of the wave front from being infinitely large in remote past to a single point of a space-time,
(x′, t′) where the localised disturbance flashes. As a result G(−) describes the energy flux carried with the incoming
wave front, inwards.

The above distinction allows us to treat the stationary situations by choosing among the infinite set of possible
solutions those that are outgoing waves (or their superpositions) at large distances.
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C. Solution of the wave equation, (33) of electrodynamics

For the problems with the sources gradually turned on from (or absent at) t′ = −∞ and with the solution specified
at t′ = −∞ (in this case the latter is a solution of the homogeneous wave equation) the solution at any finite time t
reads,

Φ(x, t) =
1

4πε0

∫
d3x′

|x− x′|
ρ(x′, t− c−1|x− x′|) , A(x, t) =

µ0

4π

∫
d3x′

|x− x′|
J(x′, t− c−1|x− x′|) (67)

Alternatively the choice of the retarded Green function amounts to having the outgoing solutions. Indeed, (67)
becomes a function of the combination t− |x|/c, in other words describe the outgoing wave front.

1. Another example: Field of a moving charge revisited

In this example we compute the potentials due to the moving charge from (67). Lets imagine a point charge, q
moves along the x-axis with velocity v in some given reference frame. Assume for definiteness that it passes the origin
at time t = 0. Then the source charge and current densities read,

ρ(x, t) = qδ(x− vt)δ(y)δ(z) , J(x, t) = qvx̂δ(x− vt)δ(y)δ(z) (68)

It is sufficient to compute the potential Φ as the vector potential requires exactly the same calculation. Denoting

ρ =
√
y2 + z2, β = v/c, x̄ = x− vt, we write (67),

Φ(x, y, z, t) =
q

4πε0

∫
dx′dy′dz′√

(y − y′)2 + (z − z′)2 + (x− x′)2
δ
[
x′ − vt− β

√
(x− x′)2 + (y − y′)2 + (z − z′)2

]
δ(y′)δ(z′)

=
q

4πε0

∫
dx′√

ρ2 + (x− x′)2
δ
[
x′ − vt− β

√
(x− x′)2 + ρ2

]

=
q

4πε0

∫
dx′√

ρ2 + (x̄+ vt− x′)2
δ
[
x′ − vt− β

√
(x̄+ vt− x′)2 + ρ2

]
(69)

Introduce a new integration variable, y = x′ − x̄− vt to write (69) as

Φ(x̄ = x− vt, ρ) =
q

4πε0

∫
dy√
ρ2 + y2

δ
[
y + x̄− β

√
y2 + ρ2

]
(70)

To evaluate the integral (70) introduce y∗ satisfying,

y∗ + x̄− β
√
y2
∗ + ρ2 = 0 (71)

Then, according to the properties of the δ function,

Φ(x̄ = x− vt, ρ) =
q

4πε0

1√
ρ2 + y2

∗

∣∣∣∣ ddy∗ (y∗ + x̄− β
√
y2
∗ + ρ2)

∣∣∣∣−1

=
q

4πε0

1√
ρ2 + y2

∗

>0!︷ ︸︸ ︷
1

1− β y∗√
ρ2+y2∗

=
q

4πε0

1√
ρ2 + y2

∗ − βy∗
=

q

4πε0

β

β
√
ρ2 + y2

∗ − β2y∗

(71)
=

β

y∗ + x̄− β2y∗
=

β

x̄+ y∗(1− β2)
(72)

Lets solve (71),

y2
∗ + 2y∗x̄+ x̄2 = β2(y2

∗ + ρ2) , y2
∗(1− β2) + 2y∗x̄+ x̄2 − β2ρ2 = 0 (73)
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which gives two roots

y∗ =
1

1− β2

[
−x̄±

√
x̄2 − (1− β2)(x̄2 − β2ρ2)

]
(74)

yet only the upper sign + is consistent with (71) which then leads to

y∗(1− β2) + x̄ =
√
x̄2 − (1− β2)(x̄2 − β2ρ2) = β

√
x̄2 + (1− β2)ρ2 (75)

Now substitute (75) in (72)

Φ(x̄ = x− vt, ρ) =
q

4πε0

1√
x̄2 + (1− β2)ρ2

=
q

4πε0

1√
(x− vt)2 + (1− β2)ρ2

=
q

4πε0

1√
1− β2

1√
(x− vt)2(1− β2)−1 + ρ2

=
qγ

4πε0

1√
γ2(x− vt)2 + ρ2

(76)

where the standard notation γ = (1− β2)−1/2 has been used. (76) gives the right answer.

III. DIPOLE APPROXIMATION

We are going to analyze Eq. (67) under different sets of approximations.
Approximations, d is the typical system dimension:

1. d/r � 1, x = rn, where n = (n1, n2, n3) = (sin θ cosφ, sin θ sinφ, cos θ) is the direction of observation form the
radiating system,

|x− x′| ≈ r − nx′ (77)

1

|x− x′|
≈ 1

r
+
nx′

r2
(78)

Then (67) can be approximated to the leading (zeroth) order in d/r, as

A(x, t) ≈ µ0

4πr

∫
d3x′J(x′, t− c−1|x− x′|) (79)

2. d/λ� 1. Let the typical time scale of variation of J(x′, t) in (67) is T . For the periodic motion of frequency ω,
T ∼ 1/ω. If nx′/c ∼ d/c� T is shorter than this time we have,

J(x′, t− c−1|x− x′|) ≈ J(x′, t− r/c) ≡ J(x′, t′) (80)

to the leading order in d/Tc ∼ ωd/c = kd � 1. Alternatively, d/T ∼ v, so the condition is v/c � 1, i.e. the
motion of particles in the radiating system is non-relativistic.

Dipole approximation is obtained to the leading (zeroth) order in both d/r and kd of (67),

A(x, t) =
µ0

4πr

∫
d3x′J(x′, t′) , t′ = t− r/c (81)

Using (13), (81) becomes

A(x, t) =
µ0

4πr
ṗ(t− r/c) (82)
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A. Fields in radiation zone, kr � 1

Lets find fields in the radiation zone, kr � 1. Start with the magnetic field, following from the approximation (82),

H = µ−1
0 ∇×A = ∇× [

1

4πr
ṗ(t− r/c)]. (83)

When derivatives in (83) act on the 1/r prefactor in (82) terms of the order ∼ d/r2 are generated, while when

derivatives in a curl operator acts on a ḋ prefactor terms of the order ∼ kd/r are obtained. In radiation zone only
these latter terms are important, and as a result (83) simplifies,

H ≈ 1

4πr
∇× ṗ(t− r/c). (84)

Use

∇× F (|x|) = n× dF

d|x|
(85)

to write (x ≡ nr )

∇× ṗ(t− r/c) = n× d

dr
ṗ = c−1p̈× n (86)

Substituting (86) in (84) one gets,

H(x, t) =
1

4πrc
p̈(t− r/c)× n , x ≡ nr (87)

The dipole moment in (87) is evaluated at the time t′ = t − r/c. To find electric field without resorting to a scalar
potential, we can use

∂D

∂t
= ∇×H (88)

in the absence of free charges, which is certainly true at r � d. This way we cannot determine the static part of E.
But this part is not related to radiation. In the radiation zone we find by the same arguments leading to (87) gives
using (85) again,

4πc
∂D

∂t
= ∇× [p̈(t− r/c)× n

r
] = p̈(t− r/c)(∇ · n

r
)− n

r
(∇ · p̈(t− r/c)) + (

n

r
· ∇)p̈(t− r/c)− (p̈(t− r/c) · ∇)

n

r

≈ −n
r

(∇ · p̈(t− r/c)) + (
n

r
· ∇)p̈(t− r/c) (89)

Further using the relationships, recall again x = rn̂,

∂|x|
∂xl

= [n]l , ∇lp̈k(t− r/c) =
∂p̈k(t− r/c)

∂r

∂r

∂xl
= −nl

c

...
pk(t− r/c) (90)

we obtain,

∂D

∂t
=

1

4πrc2
n× (n×

...
p) (91)

Integrating (91) and discarding constant in time component of the displacement write,

E = ε−1
0 D =

1

4πε0rc2
n× (n× p̈) = Z0H × n , Z0 =

√
µ0/ε0

E = cB × n (92)

The dipole moment is evaluated at the time t′ = t − r/c. (92) and (87) specify fields in the radiation zone in the
dipole approximation. In both cases the second derivatives enters so that only accelerating charges radiate, as also is
clear from the relativity principle, since resting charge is not radiating for sure. To recover the static part of electric
field we write to the leading order in v/c ∼ kd, for the Φ part of (67),

Φ(x, t) =
q(t′ = t− r/c)

4πε0r
(93)

is indeed time independent as the total charge q(t) = q is constant. The expansion in kd would give terms of higher
order beyond the leading one. The expansion of potentials is alternative way to obtain the dipole approximation.
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B. Radiation Intensity

According to (32), and with (92),

dP

dΩ
= r2Z0n · [(H × n)×H] (94)

As (H × n)×H = nH2 −H(n ·H), we get n · [(H × n)×H] = H2 − (n ·H)2 = H2 sin2 θ, where θ is the angle
between H and n, but in the dipole approximation (in fact generally in the radiation zone) |θ| = π/2, see Eq. (87),
and

dP

dΩ
= r2Z0H2 (95)

C. Some examples

1. Oscillating dipole

Consider an oscillating dipole moment (charged oscillator),

p(t) = pω cos(ωt) (96)

with real constant vector pω = pẑ. The magnetic field, (87),

H(t) = − ω2

4πrc
p(t− r/c)× n =

ω2

4πrc
n× pω cos(ωt− kr) (97)

since from (96), p(t)× n = cos(ωt)pω × n. The magnetic field, (97) in polar coordinates, from (A6),

H = −φ̂ sin θ
ω2

4πrc
p cos(ωt− kr) (98)

and the polarization, (92),

E = −θ̂ sin θ
Z0ω

2

4πrc
p cos(ωt− kr) (99)

(98),(99) represent a linear polarized wave.
By (95) the power

dP

dΩ
=
r2Z0ω

4

(4πrc)2
(p× n)2cos2(ωt) (100)

With ω = ck,

dP

dΩ
=
Z0c

2k4

32π2
p2 sin2(θp,n) . (101)

The total intensity, < sin2 θ >= 1− < cos2 θ >= 1− 1/3 = 2/3,

P =
Z0c

2k4

12π
p2 =

Z0ε0c
2k4

12πε0
p2 =

ck4

12πε0
p2 =

ω4

12πε0c3
p2 . (102)

2. Rotating dipole

As a next example we consider the rotating dipole. Assume the rotation plane is xy,

p = p [x̂ cos(ωt) + ŷ sin(ωt)] (103)
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Using (A7) in (87) we get for the magnetic field,

H = − ω2p

4πrc
[φ̂ cos θ cos(φ− ωtr) + θ̂ sin(φ− ωtr)] , tr = t− r/c (104)

Then with (92),

E = −Z0
ω2p

4πrc
[θ̂ cos θ cos(φ− ωtr)− φ̂ sin(φ− ωtr)] (105)

Consider a few directions. For n = ẑ, φ = 0, θ → 0, θ̂ → x̂, φ̂→ ŷ, and

H =
ω2p

4πrc
[x̂ sin(ωtr)− ŷ cos(ωtr)] , E = −Z0

ω2p

4πrc
[x̂ cos(ωtr) + ŷ sin(ωtr)] (106)

This is circularly polarized wave: electric field vector rotates in the plane perpendicular to the direction of propagation
n = ẑ and the magnetic field stays perpendicular to it.

Consider the direction n = x̂. φ = 0, θ = π/2, θ̂ = −ẑ, φ̂ = ŷ. And

H = − ω2p

4πrc
ẑ sin(ωtr) , E = −Z0

ω2p

4πrc
ŷ sin(ωtr) (107)

That is the linearly polarized wave with the polarization vector along ŷ, Note that the plane wave relation holds,

H = Z−1
0 n×E (108)

In both cases the spherical wave looks locally like a plane wave. This is a general feature of radiation field in radiation
zone.

Radiation power from (104), (105) in (32) we get,

dP

dΩ
=

(
ω2p

4πc

)2

Z0
1 + cos2 θ

2
(109)

The total power radiated is then,

P =

∮
dΩ

dP

dΩ
=
Z0c

2k4

6π
p2 (110)

is twice as large compared to (102). It is understood as the rotating dipole can be thought of as a superposition of two
perpendicular oscillating dipoles of the same amplitude but perpendicular and shifted by π/2 phase in time. Consider
the direction n = ẑ. Clearly the electric field of one constituent dipoles is parallel to the magnetic one of the other
and vice versa. So the intensities should simply add up. Indeed the twice of (101) for θn,p = π/2 is (109) at θ = 0.

For n = x̂, (in-plane) on the other hand one (98) and (99) show that one of the oscillators is not producing a field
at all. So the power is supplied only by one of the oscillators that’s why for θ = π/2 in (109) we get the same result
as from (101) with θn,p = π/2.

D. Harmonic fields

In the case of harmonic fields all the quantities vary with time according to ∼ e−iωt with the real part assumed to
be taken at the end of the calculation, so that

ρ(x, t) = ρ(x)e−iωt , J(x, t) = J(x)e−iωt (111)

Quite generally, Substituting (111) in (67) and integrating over t′ we obtain,

A(x, t) = A(x)e−iωt , (112)

where

A(x) =
µ0

4π

∫
d3x′

J(x′)

|x− x′|
eik|x−x

′| , k ≡ ω/c . (113)
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For the harmonic fields we also have,

−iωD(x) = ∇×H(x) (114)

for the (complex) amplitudes.
In the dipole approximation we get

A(x) =
µ0

4π

eikr

r

∫
d3x′J(x′) , (J.D.J.(9.13)) (115)

Using the continuity equation,

iωρ(x) = ∇J (116)

and using the integration by parts∫
d3x′J = −

∫
d3x′x′(∇′ · J) = −iω

∫
d3x′x′ρ(x′) = −iωpω (117)

Then the vector potential,

A(x) = − iµ0ω

4π
pω
eikr

r
, (118)

which allows calculation of the magnetic field, to the leading order in both small parameters, d/r and d/λ both in
near and far zones as well as in between. Computing the curl of (118) and using the (85)

H = µ−1
0 ∇×A(x) =

ck2

4π
(n× pω)

eikr

r

(
1− 1

ikr

)
(119)

Intensity in terms of the harmonic fields, averaged over a period, T = 2π/ω,

S =E ×H = Re[E]× Re[H] =
1

2
(Eωe−iωt +E∗ωe

+iωt)× 1

2
(Hωe−iωt +H∗ωe

+iωt)

=
1

4
Eω ×H∗ω +E∗ω ×Hω =

1

2
ReEω ×H∗ω . (120)

Note the extra factor of 1/2 which has the same origin as the 1/2 from averaging of cos2(tr) that we had before.

1. Radiation zone, power per unit solid angle

In radiation zone things are simpler as the magnetic field fixed by (83), in which we only act with the derivatives
of a curl on the exponent eikr so that via (85),

∇× pω
eikr

r
≈ ik e

ikr

r
n× pω. (121)

The same applies to the curl operation in (88) which now reads,

−iωε0Eω = ∇×Hω (122)

This leads to the following expression for fields in the radiation zone,

Hω(x) =
eikr

4πr

ω2

c
n× pω , Eω(x) =

eikr

4πr

ω2

ε0c2
[n× pω]× n (123)

With the notations ω = ck and Z0 =
√
µ0/ε0 = 1/cε0 (123) is (9.19) of J.D.J. Indeed, we have ω2/c = ck2,

and [ ω
2

ε0c2
]/[ω

2

c ] = 1/(cε0) = Z0. Now the radiated power averaged over a period, according to (120), in dipole
approximation

S = S · n =
1

2
ReEω ×H∗ω · n =

1

2

Z0

(4πr)2

ω4

c2
n · Re {[(n× pω)× n]× [n× p∗ω]} (124)
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n · Re {[(n× pω)× n]× [n× p∗ω]} = n · Re {[−n(n · pω) + pω]× [n× p∗ω]} (125)

And since

n · Re {[n(n · pω)]× [n× p∗ω]} = n · Re {(n · pω) [n(n · p∗ω)− p∗ω]} = 0, (126)

and

n · Re {[pω]× [n× p∗ω]} = n · [n|pω|2 − p∗ω(pω · n)] = |pω|2 − (p∗ω · n)(pω · n) (127)

which is the same as

|(n× pω)× pω|2 = [pω − (pω · n)n] · [p∗ω − (p∗ω · n)n] (128)

we obtain, the expression for intensity averaged over a period as given by J.D.J.,

dP

dΩ
= Sr2 =

Z0

32π2

ω4

c2
|(n× pω)× pω|2 =

c2Z0k
4

32π2
|(n× pω)× pω|2 =

c2Z0k
4

32π2

{
|pω|2 − (p∗ω · n)(pω · n)

}
(129)

For the case when all the components of the complex amplitude of the dipole moment pω have the same phase, the
result (129) reduces to

dP

dΩ
=
c2Z0k

4

32π2
|pω|2 sin2 θ (130)

where according to the assumption of equal phase, α for all the components of pω there exists a real vector p′ω =
pωe

−iα, and θ is the angle between this vector p′ω and n. Certainly in this case, |pω|2 = |p′ω|2 = (d′ω)2 where d′ω is
the length of the real vector p′ω. Equation (130) agrees with (101) as expected. Let’s now reexamine the intensity
of the radiation by the rotating dipole. In this case for the rotation in the positive sense and such that the dipole is
aligned with x-axis at the time t0, and with real and positive amplitude, d0,

p(t) = d0[x̂ cos(ω(t− t0)) + ŷ sin(ω(t− t0))] = Re[d0(x̂e−iω(t−t0) + iŷe−iω(t−t0)))] = Re[pωe
−iωt] , (131)

where the complex amplitude of the dipole moment reads,

pω = d0e
iωt0(x̂+ iŷ) (132)

The overall phase is irrelevant, and we have in spherical coordinates,

|p|2 = d2
0(x̂+ iŷ) · (x̂− iŷ) = 2d2

0 , pω · n = d0(sin θ cosφ+ i sin θ sinφ) = d0 sin θeiφ, (133)

Substitution of (133) in (129) yields for the averaged over a period intensity of radiation emitted by a rotating dipole,

dP

dΩ
=
c2Z0k

4

32π2
d2

0(2− sin2 θ) =
c2Z0k

4

32π2
d2

0(1 + cos2 θ) (134)

in agreement with (109) as it should.

2. Near (static) zone, kr � 1

Here instead of (121) we write,

∇× pω
eikr

r
≈ −e

ikr

r2
n× pω. (135)

and to find the electric field write

∇× [
eikr

r2
n× pω] ≈ eikr∇× [

n

r2
× pω]. (136)

By J.D.J vector identities, first page,

∇× [
n

r2
× pω] = −pω(∇ · n

r2
) + (pω · ∇)

n

r2
. (137)
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Now the combination n/r2 is the electric field of the point charge located at the origin, r = 0. For that reason the
first term of (136) vanishes as certainly r � d. The second term should be for the same reason the electric field of
the dipole. Indeed,

(pω · ∇)
n

r2
=

1

r3
(pω − 3n(pω · n)) (138)

Combining (83), (118) and (135) we get

H =
iω

4πr2
n× pω (139)

where eikr ≈ 1 in near zone. So the magnetic field vanishes in the static limit ω → 0 and its time evolution is shifted by
π/2 phase relative to the charges and currents oscillation. Now combining (122), (136), (138),(139) we find similarly

E =
1

4πε0r3
[3n(n · pω)− pω] (140)

This is the field of the dipole as if it is static at every moment. It is physically clear as the time it takes for
electromagnetic disturbance to propagate from the radiation source is Tprop ∼ r/c is much smaller than the time over
which the charges and current appreciably changes, Tchange ∼ 1/ω. Indeed, Tprop/Tchange ∼ rω/c = rk � 1 in the
near zone.

IV. ELECTRIC QUADRUPLE AND MAGNETIC DIPOLE APPROXIMATIONS

We expand (67) to the next (first) order in kd � 1. Lets limit discussion to the radiation zone, kr � 1, then
d/r � kd and we are allowed to stay at the zeroth order in d/r, namely start with (79). This limitation can be
relaxed (see J.D.J.).

A(x, t) =
µ0

4πr

∫
d3x′J(x′, t− c−1|x− x′|) ≈ µ0

4πr

∫
d3x′J(x′, t− r/c) +

µ0

4πrc

∂

∂t

∫
d3x′(r − |x− x′|)J(x′, t− r/c)

(141)

and now to the leading order in d/r from (77),

A(x, t) =
µ0

4πr

∫
d3x′J(x′, t− c−1|x− x′|) ≈ µ0

4πr

∫
d3x′J(x′, t− r/c) +

µ0

4πrc

∂

∂t

∫
d3x′(nx′)J(x′, t− r/c) (142)

For the set of discreet charges (142) gives

A(x, t) ≈ µ0

4πr

∑
i

eiẋi(t
′) +

µ0

4πrc

∂

∂t

∑
i

eiẋi(t
′)(xi(t

′)n) , t′ ≡ t− r/c , ∂t = ∂t′ (143)

By simple transformation with r ≡ xi, v ≡ ẋi, (see L.L.)

v(r · n) =
1

2

∂

∂t
r(n · r) +

1

2
v(n · r)− 1

2
r(n · v) =

1

2

∂

∂t
r(n · r) +

1

2
[r × v]× n (144)

A(x, t) =
µ0

4πr
ṗt′ +

µ0

8πrc

∂2

∂t2

∑
i

eixi(t
′)(xi(t

′)n) +
µ0

4πrc
ṁ× n (145)

m =
1

2

∫
d3x′x′ × j(x′) =

∑
i

ei
2
xi × ẋi (146)

Addition to A of the function nφ(r) doesn’t change the magnetic field, as ∇× nφ(r) = 0. It in principle adds some
longitudinal component to the electric field but it is of little concern as to find electric field from potentials we have
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to consider also the scalar potential anyway. To avoid this complication we find the electric field from (88) instead.
Therefore in (145) make a substitution,∑

i

eixi(t
′)(xi(t

′)n)→ 1

3

∑
i

{
3eixi(t

′)(xi(t
′)n)− n[xi(t

′)]2
}

(147)

quadruple moment tensor,

Dαβ =
∑
i

ei

{
3xαi x

β
i − x

2δαβ

}
(148)

Vector D,

Dα = Dαβnβ (149)

∑
i

eixi(t
′)(xi(t

′)n)→D/3 (150)

(145),

A(x, t) =
µ0

4πr
ṗ+

µ0

24πrc
D̈ +

µ0

4πrc
ṁ× n (151)

A. Radiation zone

Magnetic field,

H(x, t) =
1

4πrc
p̈× n+

1

24πrc2
...
D × n+

1

4πrc2
[m̈× n]× n

=
1

4πrc

[
p̈× n+

1

6c

...
D × n+

1

c
[m̈× n]× n

]
(152)

In the radiation zone, (88),(152) give

E = Z0H × n , Z0 =
√
µ0/ε0 (153)

For harmonic fields D(t) = Dωe
−iωt and the quadrupole contribution to the magnetic field,

H =
1

24πrc2
...
D × n (154)

can be rewritten using

...
D(t′) = (−iω)3e−iωteikrDω (155)

as

Hω = − ick
3

24π

eikr

r
n×Dω (156)

(156) is (9.44) of JDJ. Intensity of quadrupole radiation, from (32), (153), (154)

dP

dΩ
= r2Z0(

1

24πrc2
)2(

...
D × n)2 (157)

The direction dependence of (157) is in general complicated, but with the definition (149) the total intensity is simpler.

(
...
D × n)2 = (

...
D)2 − (

...
D · n)2 =

...
Dα,β

...
Dα,γnβnγ −

...
Dα,β

...
Dγ,δnαnβnγnδ (158)

Using relations

〈nβnγ〉 =
δβγ
3

〈nαnβnγnδ〉 =
1

15
(δαβδγδ + δαγδβδ + δαδδβγ) (159)
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Therefore, ∮
dΩ(

...
D × n)2 =

4π

3

...
Dα,β

...
Dα,β −

4π

15
(
...
Dα,α

...
Dβ,β +

...
Dα,β

...
Dα,β +

...
Dα,β

...
Dβ,α) =

4π

5

...
D

2

α,β , (160)

where we used the fact that the tensor D is symmetric and traceless, and introduced the notation,
...
Dα,β

...
Dα,β ≡

...
D

2

α,β .
Therefore, the total radiated power is

P = Z0(
1

24πc2
)2 4π

5

...
D

2

α,β =
Z0

720πc4
...
D

2

α,β . (161)

Note the extra factor of 1/2 in JDJ always added for the Poynting vector with harmonic fields.

B. Example of a quadrupole radiation

Carbon dioxide vibrational mode, CO2, has a configuration, O = C = O Let the charge at C be −2q and the two
charges at O be q. Let the molecule be aligned along z-axis and assume the two charges q perform the harmonic
motion, z1,2(t) = ±(a+ b cosωt), then the quadrupole moment is

Dαβ = D0

−1 0 0
0 −1 0
0 0 2

 , D0 = 2q(a+ b cosωt)2 (162)

where the factor of 2 accounts for two charges at two oxygen atoms.

...
D0(tr) = 4qbω3(a sinωtr + 2b sin 2ωtr) , tr = t− r/c (163)

By (149), (A1) the vector,

D =
...
D0(tr)(−x̂ sin θ cosφ− ŷ sin θ sinφ+ 2ẑ cos θ) (164)

and correspondingly by (A6), (A7)

...
D × n = 3

...
D0φ̂ sin θ cos θ (165)

Note the appearance of the factor of 3. Then (154) gives

H = φ̂

...
D0

8πrc2
sin θ cos θ (166)

and by (153) and (A2)

E = θ̂Z0

...
D0

8πrc2
sin θ cos θ (167)

For a = 0 the radiation is linearly polarized and monochromatic at the frequency 2ω. The radiated power is by (32),

dP

dΩ
= Z0

( ...
D0

8πc2

)2

sin2 θ cos2 θ (168)

has a typical quadrupole angular dependence, ∝ sin2 θ cos2 θ. Averaged over the radiation period, (note sin2(ωt) = 1/2

the same factor of 1/2 must be included explicitly in the harmonic fields formalism), Also note that sin(ωt) sin(2ωt) = 0
so no terms ∝ ab,

dP

dΩ
= Z0

1

2

(
1

8πc2

)2

sin2 θ cos2 θ(4qbω3)2(a2 + 4b2) (169)

This radiation power scales as ω6 unlike the fourth power typical for the dipole radiation.
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C. Example of the magnetic dipole

Consider the current loop in x− y plane concentric with the origin of a radius R with the current, I(t) = I0 cos(ωt)
(
∫
dS is integration over the cross-section of the loop.

m(t) =

∮
dl

∫
dS

e

2
(x× v) · n =

∮
dl
x

2
× I(t) = ẑ

1

2
RI(t)2πR = ẑI0 cos(ωt)πR2 = ẑm0 cos(ωt) (170)

The vector potential (151)

A =
µ0

4πrc
ṁ× n =

µ0

4πrc
πR2I0(−ω) sin(ω(t− r/c))z × n = −µ0m0ω

4πc

sin θ

r
φ̂ sin(ω(t− r/c)) (171)

We actually do not need it since from (152)

H =
1

4πrc2
(m̈× n)× n (172)

using (A2) and (A6)

m̈ = −ω2m0 cos(ωt)ẑ , (ẑ × n)× n = φ̂ sin θ × n = sin θθ̂ (173)

we get

H = −m0ω
2

4πc2

(
sin θ

r

)
cos(ωtr)θ̂ (174)

and from the radiation zone result, Eq. (153),

E = +Z0
m0ω

2

4πc2

(
sin θ

r

)
cos(ωtr)φ̂ (175)

Averaged radiated power, (95),

dP

dΩ
= Z0

1

2

(
m0ω

2

4πc2

)2

sin2 θ (176)

V. ESTIMATES OF RELATIVE IMPORTANCE OF DIFFERENT CONTRIBUTIONS

To compare magnetic dipole to the electric dipole contribution note from the above examples that

Pmag,dipole ∝ Z0m
2
0k

4 (177)

and the electric dipole

Pelec,dipole ∝ Z0c
2k4p2 (178)

so the ratio is typically,

Pmag,dipole
Pelec,dipole

∝ m2
0

c2p2
(179)

Imagine the radiation is due to the point charge q moving along the circular orbit. Then,

m0 ∝ qvR , p ∝ qR (180)

and

m2
0

c2p2
∝
(
qvR

cqR

)2

=
v2

c2
� 1 (181)
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which is indeed an expansion parameter squared which was assumed to be small.
Let us estimate the contribution of the quadrupole. From the above examples,

Pquadr ∝ Z0
q2R4ω6

c4
= Z0q

2R4k6c2 (182)

So that

Pquadr
Pdipole

∝ q2R4k6c2

c2k4p2
∝ R2k2 ≈ (R/λ)2 ∝ (v/c)2 (183)

which is the same smallness as in the case of a magnetic dipole contribution.

VI. LARMOR FORMULA AND CYCLOTRON RADIATION

Consider the non-relativistic point-like charge q moving along the trajectory, r(t). The dipole moment is p = qr(t)
and p̈ = qr̈(t) = a(t). Substitute it to (92) to obtain in the radiation zone,

E =
1

4πε0rc2
n× (n× p̈) =

µ0q

4πr
n× (n× a(t− r/c)) (184)

as a result we get the Larmor relation

dP/dΩ =
µ0q

2|aret|2

16π2c
sin2 θ (185)

For the cyclotron radiation just substitute

a = v2/R = v2/(mv/qB) (186)

to get

P =
q4v2B2

6πε0m2c3
(187)

Appendix A: Polar coordinates

n = (n1, n2, n3) = (sin θ cosφ, sin θ sinφ, cos θ) (A1)

At each direction n̂ triple of mutually orthogonal vectors is defined θ̂,φ̂,n̂ such that

n̂× θ̂ = φ̂ , θ̂ × φ̂ = n̂ , φ̂× n̂ = θ̂ . (A2)

ẑ = n̂ cos θ − θ̂ sin θ (A3)

x̂ = −φ̂ sinφ+ θ̂ cosφ cos θ + n̂ sin θ cosφ (A4)

cosαx̂+ sinαŷ = θ̂ sin θ cos(φ− α) + n̂ cos θ cos(φ− α)− φ̂ sin(φ− α) (A5)

In studies of radiation it is useful to have vector products,

n̂× ẑ = −φ̂ sin θ (A6)

n̂× [cosαx̂+ sinαŷ] = φ̂ cos θ cos(φ− α) + θ̂ sin(φ− α) (A7)

Appendix B: Vector Analysis Identities

For a constant vector C

∇× [C × f(x)] = C[∇ · f(r)]− (C · ∇)f(x) (B1)


