
Examples of Dirichlet Problems

The boundary value problem we are dealing with is to find the potential Φ(x) satisfying

∇2Φ(x) = −ρ(x)

ε0
,x ∈ V, Φ(x) = Φ0(x) ,x ∈ S (1)

where V is a given volume (finite or infinite), and S is the surface bounding the volume V . The surface may or
may not include infinity and may or may not have infinite pieces. The charge density, ρ(x) and the potential on the
surface, ΦS are prescribed functions on in a volume and on a surface.

One method to solve (1) is to find the Green function first. The Green function, G(x|x′) is itself a solution of a
particular Dirichlet problem,

∇2Φ(x) = −4πδ(x− x′) ,x,x′ ∈ V, Φ(x) = 0 ,x ∈ S (2)

which physically corresponds to placing the point charge of a magnitude Q = 4πε0 at a location x′ in a volume V
and grounding the surface electrodes.

Once the Green function defined by (2) is found the solution to any Dirichlet problem is obtained as follows,

Φ(x) =
1

4πε0

∫
d3x′ρ(x′)G(x|x′) +

1

4π

∮
S

da′Φ(x′)∂n′G(x|x′) (3)

In this note I show some examples of finding and using the Green functions to solve the Dirichlet problems. In
some instances the comparison is made with other approaches.

I. GREEN FUNCTION FOR THE WHOLE SPACE

In this case the volume V is the whole space. And the surface, S is at infinity. The solution of (2) that vanishes at
infinity is provided by a Coulomb law,

G(x|x′) =
1

4πε0

Q

|x− x′|
=

1

|x− x′|
(4)

and as a result the solution of (1) that is finite and regular at infinity reads,

Φ(x) =
1

4πε0

∫
d3x′

ρ(x′)

|x− x′|
(5)

as expected. Observe that the Green function (4) is symmetric in x and x′ interchange as is generally true. We now
turn to slightly more complicated cases.

II. DIRICHLET PROBLEM IN THE REGION x > 0

In this section we study the Dirichlet problem in the half-space which is next simplest case after the whole space
considered above. I find the Green function in the region x > 0 employing different approaches. This is meant to
demonstrate how these different strategies are applied.

The section is structured as follows. I start with finding the Green function for the region x > 0 by the method of
images in Sec. II A. Next, I find the Green function by the method of direct integration in Sec. II B. Then in Sec. II C
I write down the general solution using the Green function computed previously. I next check that what we got by
the method of Green function is indeed a solution in Sec. II C 1. And finally I solve the problem by following the
alternative method of separation of variables in Sec. II D.

A. Green function by the method of image charges

As the half-space is rather simple we can try to solve the boundary value problem (2) by the method of images.
What we have here is an elementary problem of finding the potential in a half-space bounded by an infinite grounded
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plane once a point charge is placed somewhere in the half-space. We now how to solve this problem by the method
of images,

G(x|x′) =
1

4πε0

[
Q

|x− x′|
− Q

|x− x′I |

]
, (6)

where the image charge is located at

x′I = (−x′, y′, z′) (7)

Then by symmetry G(x|x′) = 0 for x′ = 0 and as image is outside of the region of interest, x > 0 we have (2) satisfied.
The relation (6) in explicite form reads

G(x, y, z|x′, y′, z′) =
1√

(y′ − y)2 + (z′ − z)2 + (x− x′)2
− 1√

(y′ − y)2 + (z′ − z)2 + (x+ x′)2
(8)

B. Green function by the method of direct integration

We now illustrate how to use the method of direct integration to obtain Green function. After all the Green
function is just a solution to one very specific boundary value problem. This method can therefore be viewed as a
modification of the separation of variables approach to the particular boundary condition as well as to the singular
source as inhomogeneity. So, whenever the separation of variables works (i.e. when the geometry is simple enough)
it could be used to find analytical expressions for the Green function in the form of an integral or infinite series or
sometimes both. And that is what we do now for the half-space problem. The Green function satisfies

∇2
x′G(x, y, z|x′, y′, z′) = −4πδ(x− x′)δ(y − y′)δ(z − z′) , G(x, y, z|x′ = 0, y′, z′) = 0 (9)

G(x, y, z|x′, y′, z′) =

∫
dky
2π

∫
dkz
2π

eikyy
′+ikzz

′
ḡ(x, y, z|x′, ky, kz) (10)

∫
dky
2π

∫
dkz
2π

eikyy
′+ikzz

′
(−k2y − k2z + ∂2x′)ḡ(x, y, z|x′, ky, kz) = −4πδ(x− x′)

∫
dpy
2π

∫
dpz
2π

eipy(y
′−y)+ipz(z′−z) (11)

which holds for all y′ and z′, therefore,

(−k2y − k2z + ∂2x′)ḡ(x, y, z|x′, ky, kz) = −4πδ(x− x′)eiky(−y)+ikz(−z) (12)

Define

ḡ(x, y, z|x′, ky, kz) = g(x, y, z|x′, ky, kz)eiky(−y)+ikz(−z) (13)

such that

G(x, y, z|x′, y′, z′) =

∫
dky
2π

∫
dkz
2π

eiky(y
′−y)+ikz(z′−z)g(x, y, z|x′, ky, kz) (14)

(−k2y − k2z + ∂2x′)g(x, y, z|x′, ky, kz) = −4πδ(x− x′) (15)

It follows that ḡ is independent of y and z. We can take the corresponding derivatives of (15) to show that. Hence
g(x, y, z|x′, ky, kz) ≡ g(x|x′, ky, kz), and

(−k2y − k2z + ∂2x′)g(x|x′, ky, kz) = −4πδ(x− x′) (16)

g has a cusp discontinuity as a function of x′ at x = x′, which by integration,

∂x′g(x|x′, ky, kz)|x′=x+ε − ∂x′g(x|x′, ky, kz)|x′=x−ε = −4π (17)
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The contineous solution satisfying the boundary condition reads with k =
√
k2y + k2z

g(x|x′, ky, kz) = A(k) sinh(kx<)e−kx> =

{
A(k) sinh(kx′)e−kx 0 < x′ < x

A(k) sinh(kx)e−kx
′

x′ > x
(18)

Eq. (17) gives

A(k)[−ke−kx sinh(kx)− k cosh(kx)e−kx] = −4π (19)

A(k) =
−4πekx

−k sinh(kx)− k cosh(kx)
=

4π

k
(20)

Eq (14) gives

G(x, y, z|x′, y′, z′) =

∫
dky
2π

∫
dkz
2π

eiky(y
′−y)+ikz(z′−z) 4π

k
sinh(kx<)e−kx> (21)

Polar coordinates,

G(x, y, z|x′, y′, z′) = (2π)−2
∫ 2π

0

dφ

∫ ∞
0

kdkeik(y
′−y) cosφ+ik(z′−z) sinφ

(
4π

k

)
1

2
(e−kx>+kx< − e−kx>−kx<)

G(x, y, z|x′, y′, z′) = 4π(2π)−1
∫ ∞
0

dkJ0[k
√

(y′ − y)2 + (z′ − z)2]
1

2
(e−kx>+kx< − e−kx>−kx<) (22)

Use the integral ∫ ∞
0

dζJ0(ζa)e−ζb =
1√

a2 + b2
(23)

G(x, y, z|x′, y′, z′) =
1√

(y′ − y)2 + (z′ − z)2 + (x> − x<)2
− 1√

(y′ − y)2 + (z′ − z)2 + (x> + x<)2

=
1√

(y′ − y)2 + (z′ − z)2 + (x− x′)2
− 1√

(y′ − y)2 + (z′ − z)2 + (x+ x′)2
(24)

In agreement with the charge and its image.

C. General solution of the Dirichlet boundary value problem in half-space with Green function

Having obtained the Green function we can write the general solution of the Dirichlet boundary value problem in
half-space. From (3) we obtain (omitting the volume density first term and keeping only the second for clarity),

∇2Φ(x, y, z) = 0, x > 0; Φ(x = 0, y, z) = Φ0(y, z) (25)

then reads

Φ(x, y, z) =
1

4π

∫
dy′dz′Φ0(y′, z′)

[
∂

∂x′
G(x, y, z|x′, y′, z′)

]
x′=0

(26)

Here the ′′−′′ in front got cancelled as ∂/∂n′ = −∂/∂x′.

Φ(x, y, z) =
1

2π

∫
dy′dz′Φ0(y′, z′)

x

(x2 + (y − y′)2 + (z − z′)2)3/2
(27)
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1. Direct check of the solution (27)

Let us directly check that (27) solves the Dirichlet problem in the half space. As we have no charges in the region
of interest in this case (27) has to satisfy the Laplace equation anywhere in the region x > 0. Let’s check this,

∇2
xΦ(x, y, z) = ∇2

x[
1

2π

∫
dy′dz′Φ0(y′, z′)

x

(x2 + (y − y′)2 + (z − z′)2)3/2
]

= −∇2
x

∂

∂x
[

1

2π

∫
dy′dz′Φ0(y′, z′)

1

(x2 + (y − y′)2 + (z − z′)2)1/2
]

= − ∂

∂x

1

2π

∫
dy′dz′Φ0(y′, z′)∇2

x[
1

(x2 + (y − y′)2 + (z − z′)2)1/2
]

= (4π)
∂

∂x

1

2π

∫
dy′dz′Φ0(y′, z′)δ(x)δ(y − y′)δ(z − z′) = 0 (28)

because x 6= 0 everywhere in the region x > 0, and therefore δ(x) = 0.
Now the boundary conditions are also satisfied by (27) thanks to the representation of the two-dimensional δ-

function,

δ(x)δ(y) =
1

2π
lim
ε→0

ε

(x2 + y2 + ε2)3/2
(29)

Indeed the function (29) is peaked at x = y = 0, and integrates to one,

1

2π

∫
dxdy

ε

(x2 + y2 + ε2)3/2
=

1

2π

∫ 2π

0

dφ

∫ ∞
0

rdr
ε

(r2 + ε2)3/2
=

∫ ∞
0

dx
x

(x2 + 1)3/2
= 1 (30)

Thanks to the property (29)

lim
x→0+

Φ(x, y, z) =

∫
dy′dz′Φ0(y′, z′)δ(y − y′)δ(z − z′) = Φ0(y, z) (31)

Eqs. (28) and (31) show that (27) is the solution to the Dirichlet problem.

D. Solution by separation of variables without finding Green function

Certainly, the problem in the half space is simple enough to be solvable by a standard separation of variables in
Cartesian coordinates. Here we bring the solution for illustration and comparison purposes.

Φ(x, y, z) =

∫
dky
2π

∫
dkz
2π

Φky,kze
ikyy+ikzze−kx (32)

where k =
√
k2y + k2z and

Φky,kz =

∫
dy′dz′e−ikyy

′−ikzz′Φ0(y′, z′) (33)

Φ(x, y, z) =

∫
dy′dz′Φ0(y′, z′)

∫
dky
2π

∫
dkz
2π

eiky(y−y
′)+ikz(z−z′)e−kx (34)

∫
dky
2π

∫
dkz
2π

eiky(y−y
′)+ikz(z−z′)e−kx = (2π)−2

∫ 2π

0

dφ

∫ ∞
0

kdkeik(y
′−y) cosφ+ik(z′−z) sinφe−kx

= (2π)−2(2π)

∫ ∞
0

kdkJ0(k
√

(y − y′)2 + (z − z′)2)e−kx (35)
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Employ the relation ∫ ∞
0

dηηJ0(ηs)e−ηw =
w

(s2 + w2)3/2
(36)

to obtain ∫
dky
2π

∫
dkz
2π

eiky(y−y
′)+ikz(z−z′)e−kx =

1

2π

∫ ∞
0

kdkJ0(k
√

(y − y′)2 + (z − z′)2)e−kx

1

2π

x

(y − y′)2 + (z − z′)2 + x2)3/2
(37)

Substituting (37) in (34) reproduces the solution (27) which was obtained by the method of Green functions.

III. DIRICHLET PROBLEM IN THE REGION IN BETWEEN THE TWO CONCENTRIC SPHERES:
SOLUTION BY THE METHOD OF DIRECT INTEGRATION

Consider the region of interest being set by a < r < b. We have to find the solution of the following problem,

∇2
xG(x,x′) = −4πδ(x− x′) , & G(x,x′) = 0, |x| = a, b (38)

Look for the Green function in the form,

G(x,x′) =
∞∑
l=0

l∑
m=−l

Alm(r| r′θ′φ′︸ ︷︷ ︸
x′

)Ylm(θφ) (39)

where x′ is a parameter.
Write

δ(x− x′) =
1

r2
δ(r − r′)δ(φ− φ′)δ(cos θ − cos θ′) (40)

Use completeness, (C7),

δ(x− x′) =
1

r2
δ(r − r′)

∞∑
l=0

l∑
m=−l

Y ∗lm(θ′φ′)Ylm(θφ) (41)

Apply Laplace operator to (39) and use the property (C3)

∞∑
l=0

l∑
m=−l

1

r

∂2

∂r2
[rAlm(r| r′θ′φ′︸ ︷︷ ︸

x′

)Ylm(θφ)]− l(l + 1)

r2
Alm(r| r′θ′φ′︸ ︷︷ ︸

x′

)Ylm(θφ) = −4π
1

r2
δ(r − r′)

∞∑
l=0

l∑
m=−l

Y ∗lm(θ′φ′)Ylm(θφ)

(42)
The expansion of G in Ylm(θφ) is unique, therefore for all values of l and m in (42),

1

r

∂2

∂r2
[rAlm(r| r′θ′φ′︸ ︷︷ ︸

x′

)]− l(l + 1)

r2
Alm(r| r′θ′φ′︸ ︷︷ ︸

x′

) = −4π
1

r2
δ(r − r′)Y ∗lm(θ′φ′) (43)

The functions Y ∗lm(θ′φ′) form the complete set as well as Ylm(θ′φ′) because of the property (C2). Therefore the
expansion of Alm(r| r′θ′φ′︸ ︷︷ ︸

x′

) for any given l,m contains only one term,

Alm(r| r′θ′φ′︸ ︷︷ ︸
x′

) = glm(r, r′)Y ∗lm(θ′φ′) , (44)

where the expansion coefficient satisfies the differential equation,

1

r

d2

dr2
[rglm(r, r′)]− l(l + 1)

r2
glm(r, r′) = −4π

r2
δ(r − r′) (45)
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It follows from (45) that glm(r, r′) is the same for all values of m = −l, . . . ,+l, and we write glm(r, r′) ≡ gl(r, r′). The
general solution of (45) reads,

gl(r, r
′) =

{
Arl +Br−(l+1), r < r′

A′rl +B′r−(l+1), r > r′
(46)

In the Dirichlet problem we must impose the condition,

gl(a, r
′) = gl(b, r

′) = 0 (47)

So (46) becomes,

gl(r, r
′) =

A
(
rl − a2l+1

rl+1

)
, r < r′

B′
(

1
rl+1 − rl

b2l+1

)
, r > r′

(48)

The functions gl(r, r
′) with r′ being a parameter and r an argument that are continuous at r = r′ can be written as

gl(r, r
′) = C

(
rl< −

a2l+1

rl+1
<

)(
1

rl+1
>

−
rl>
b2l+1

)
(49)

where as usual, r> ≡ max{r, r′}, and r< ≡ min{r, r′}.
It remains to fix the constant C in (49). To this end apply the operation, limε→0

∫ r′+ε
r′−ε drr to (45). which gives the

matching condition, {
d

dr
[rgl(r, r

′)]

}
r′+ε

−
{
d

dr
[rgl(r, r

′)]

}
r′−ε

= −4π

r′
(50)

Using (49) we compute the derivatives appearing in (50). For r = r′ + ε, r > r′,{
d

dr
[rgl(r, r

′)]

}
r′+ε

=C

(
(r′)l − a2l+1

(r′)l+1

)[
d

dr

(
1

rl
− rl+1

b2l+1

)]
r→r′

=− C

r′

[
1−

( a
r′

)2l+1
][
l + (l + 1)

(
r′

b

)2l+1
]

=− C

r′

(
l − (l + 1)

(a
b

)2l+1
)

+
C

r′
l
( a
r′

)2l+1

− C

r′
(l + 1)

(
r′

b

)2l+1

(51)

In the same way, {
d

dr
[rgl(r, r

′)]

}
r′−ε

= C

[
d

dr

(
rl+1 − a2l+1

rl

)]
r→r′

(
1

(r′)l+1
− (r′)l

b2l+1

)
= C

[
(l + 1)(r′)l + l

a2l+1

(r′)l+1

] [
1

(r′)l+1
− (r′)l

b2l+1

]
=
C

r′

[
(l + 1) + l

( a
r′

)2l+1
] [

1−
(
r′

b

)2l+1
]

=
C

r′

(
(l + 1)− l

(a
b

)2l+1
)

+
C

r′
l
( a
r′

)2l+1

− C

r′
(l + 1)

(
r′

b

)2l+1

(52)

Subtract (52) from (51) and substitute to (50),

−C
r′

[
(2l + 1)− (2l + 1)

(a
b

)2l+1
]

= −4π

r′
(53)

Then,

C =
4π

(2l + 1)
[
1−

(
a
b

)2l+1
] (54)
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Substitute (54) in (49) to get,

gl(r, r
′) =

4π

(2l + 1)
[
1−

(
a
b

)2l+1
] (rl< − a2l+1

rl+1
<

)(
1

rl+1
>

−
rl>
b2l+1

)
(55)

Substituting (55) in (44) and finally to (39)

GD(x,x′) = 4π

∞∑
l=0

l∑
m=−l

Y ∗lm(θ′φ′)Ylm(θφ)

(2l + 1)
[
1−

(
a
b

)2l+1
] (rl< − a2l+1

rl+1
<

)(
1

rl+1
>

−
rl>
b2l+1

)
(56)

Appendix A: Some properties of the Legendre polynomials

There are different ways to introduce these polynomials and we follow [? ]. Consider the two vectors, r = rr̂ and

r′ = r̂′r′. For r′ < r define r′/r = ρ, |ρ| < 1. Then,

1

|r − r′|
=

1

r

∞∑
l=0

ρlPl(cos γ) (A1)

where cos γ = r̂ · r̂′. Lets identify few first polynomials, using the Taylor expansion,

1√
1 + x

= 1− x

2
+

3x2

8
− 5x3

16
+ . . . (A2)

1

|r − r′|
=

1

r

1√
1− 2ρ cos γ + ρ2

=
1

r

[
1− (1/2)(−2ρ cos γ + ρ2) +

3

8
(−2ρ cos γ + ρ2)2 − 5

16
(−2ρ cos γ + ρ2)3 + . . .

]
(A3)

So that we read off,

P0(x) = 1 , P1(x) = x, P2(x) = −1

2
+

3

2
x2, P3(x) = −3

2
x+

5

2
x3 (A4)

By construction the functions, r′lPl(cos γ) must be the polynomial solutions to the Laplace equation,

∇2
r′ [r′lPl(cos γ)] = 0 that have an additional property of being symmetric relative to the r−r′

|r−r′| spatial direction.

There are infinitely many solutions symmetric relative to the specific axis. They can be shown to all be of the form
of the series in r′lPl(cos γ) but with coefficients that can be arbitrary, and not just equal to unity as in (A1). The
polynomials defined in this way, satisfy the condition,

Pl(x = 1) = 1 (A5)

because for cos γ = 1,

1

|r − r′|
=

1

r

1√
1− 2ρ+ ρ2

=
1

r

∞∑
l=0

ρl =
1

r

∞∑
l=0

ρlPl(1) (A6)

It is also clear that the generic term in the expansion (A1) is of the form (ρ cos γ)jρ2k and the polynomials Pl for
even (odd) l are even (odd) functions of their argument,

Pl(−x) = (−1)lPl(x) (A7)

Alternative definition is via the solutions of the differential equation,

d

dx

[
(1− x2)

dP

dx

]
+ l(l + 1)P = 0 (A8)
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that are regular in the interval |x| ≤ 1 (including x = ±1! ) Such solutions to the Legendre equation, (A8) exists
only for l = 0, 1, 2, . . ., and are the Legendre polynomials, Pl(x).

Rodrigues formula,

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l (A9)

Orthogonality and normalization, ∫ 1

−1
dxPl(x)Pl′(x) =

2

2l + 1
δl,l′ (A10)

Appendix B: Associated Legendre Functions

These functions satisfies the differential equation,

d

dx

[
(1− x2)

dP

dx

]
+

[
l(l + 1)− m2

1− x2

]
P = 0 (B1)

For m ≥ 0

Pml (x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x) (B2)

Using the Rodrigues formula,

Pml (x) =
(−1)m

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l (B3)

The polynomials Pml (x) and P−ml (x) are proportional as the defining equation depends on m2 rather than m itself.
Specifically,

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pml (x) (B4)

Appendix C: Some properties of spherical harmonics

• Definition. For a given l = 0, 1, . . ., the allowed m are integers, m = −l,−l+ 1, , . . . , 0, 1, . . .+ l that are 2l+ 1
in number. For 0 ≤ m ≤ l, Ylm(θφ) ∝ Pml (cos θ)eimφ,

Ylm(θφ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ (C1)

The Associated Legendre polynomials are defined for m ≥ 0, and for m ≤ 0 we have

Yl,−m(θφ) = (−1)mY ∗lm(θφ) (C2)

• Differential Equation

1

sin θ

∂

∂θ

(
sin θ

∂Ylm
∂θ

)
+

[
l(l + 1)Ylm +

1

sin2 θ

∂2Ylm
∂2φ

]
= 0 . (C3)

Indeed,

∂2Ylm
∂2φ

= −m2Ylm (C4)

so the above property is equivalent to,

1

sin θ

∂

∂θ

(
sin θ

∂Ylm
∂θ

)
+

[
l(l + 1)− m2

sin2 θ

]
Ylm = 0 (C5)

Which is trivially satisfied again since Ylm(θφ) ∝ Pml eimφ.
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• Normalization and orthonormality∫ 2π

0

dφ

∫ π

0

sin θdθY ∗l′m′(θφ)Ylm(θφ) = δll′δmm′ (C6)

• Completeness

∞∑
l=0

l∑
m=−l

Y ∗lm(θφ)Ylm(θ′φ′) = δ(φ− φ′)δ(cos θ − cos θ′) (C7)

• Addition Theorem

Pl(cos γ) =
4π

2l + 1

m=l∑
m=−l

Y ∗lm(θ′φ′)Ylm(θφ) , (C8)

where

cos γ = n · n′ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) (C9)

is the dot product of the two unit vectors, n = (sin θ cosφ, sin θ sinφ, cos θ) and n′ =
(sin θ′ cosφ′, sin θ′ sinφ′, cos θ′).

• Azimuthally symmetric spherical harmonics, m = 0

Yl0(θ, φ) =

√
2l + 1

4π
Pl(cos θ) (C10)


