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Direct Excitation of High-Amplitude Chirped Bucket-BGK Modes
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For the first time, high amplitude (�n=n � 40%), high Q (up to 100 000) Bernstein, Greene, and
Kruskal modes have been controllably excited in a plasma. The modes are created by sweeping an
excitation voltage downwards in frequency, thereby dragging a phase space ‘‘bucket’’ of low density
into the bulk of the plasma velocity distribution. The modes have no linear limit and differ markedly
from plasma waves and Trivelpiece-Gould modes.
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FIG. 1 (color online). (a) Penning-Malmberg trap geometry.
The pure-electron plasma column is confined axially by the
large negative end potentials, and radially by a 1500 G mag-
netic field. Typical plasma densities are �107 cm�3, lengths
�27 cm, and radii �1 cm, and the plasma is confined in
cylinders with radius 1.905 cm. (b) Density fluctuations due
to the BGK mode at the column end, and (c) near the column
center. The positive fluctuations correspond to electron holes.
Because the BGK mode must pass through the center twice
(approaching and leaving) each time the pulse reaches the end,
there are twice as many pulses in (c) as in (b). As expected for
differ markedly from TG modes. For instance, TG modes
an open-ended reflection, the mode is larger at the end (b) than
near the center (c).
Plasma waves [Trivelpiece-Gould (TG) waves in finite
geometry [1] ] are easy to generate and ubiquitous in
nature. However, plasma waves are Landau damped,
often quickly. At first glance this damping seems unavoid-
able, so it was quite surprising when Bernstein, Greene,
and Kruskal (BGK) predicted that there exists a broad
class of waves that do not damp. These BGK modes [2]
are undamped because the distribution of the particles in
the wave is already in the Landau relaxed form.

BGK modes underpin much of kinetic wave theory, but
experimental verification of the existence of undamped
BGK modes has proved difficult. It is easy to create
transient large-amplitude waves or structures, but the
waves are typically short-lived or unstable. For instance,
waves created by Wharton, Malmberg, and O’Neil [3]
were unstable due to a sideband instability. More recent
work has not been much more successful [4,5]. Long-
lasting structures can be created by continuous drives;
driven double layers, which are closely related to BGK
modes, have been observed in the earth’s auroral zone [6].
Danielson [7] recently reported that plasma waves even-
tually decay into low amplitude, but long-lasting, BGK
modes.

Here we report that we can excite very high amplitude
BGK modes that differ markedly from the more common
TG modes. The modes are excited by an oscillating volt-
age applied to one end of a pure-electron plasma column
confined in a standard Penning-Malmberg trap [8] [see
Fig. 1(a)]. The resulting density fluctuations are detected
by monitoring the image charge on another cylinder,
typically at the opposite end of the trap. When the plasma
is cold, TG waves are observed as expected. A typical
spectrum is shown in Fig. 2. But as the plasma tempera-
ture T is increased, the TG waves become so heavily
damped that they essentially disappear. Nonetheless, un-
damped waves can be excited in hot plasmas by low
amplitude drives that sweep downward from some fre-
quency fs to some lower frequency fe. Typical response
curves are shown in Fig. 3. Large-amplitude waves are
excited for a very broad range of fs and fe.

We believe that these new waves are BGK modes. They
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exist only when the plasmas are sufficiently cold, while
our BGK modes exist only when the plasmas are suffi-
ciently hot; there is only a small overlap region. The TG
modes occur at distinct frequencies; even when thermally
broadened, the TG modes possess a well-defined linear
limit. In contrast, the BGK modes have no linear limit. As
can be seen in Fig. 3, they can be excited over a broad
range of frequencies. The TG modes are typically excited
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FIG. 2 (color online). Observed response from a pure 50 mV
drive, for three different plasma temperatures. Also shown is
the background noise from external sources. The spectrum
follows the TG dispersion relation, !2

mH � !2
m � 3v2

thk
2, where

!m � �a2k2!2
p=�1� a2k2�	1=2 are the cold TG mode frequen-

cies, a is the radial geometric constant, k � �m� 1��=L is the
wave number, m is a non-negative integer, L is the plasma
length, !p is the plasma frequency, and vth is the electron
thermal velocity.
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by single frequency drive. The BGK modes can only be
excited by a swept frequency drive. Using a swept fre-
quency drive, Yamazawa and Michishita [9] determined
that TG modes possess a hard nonlinearity: as their
amplitude increases, their frequency increases slightly
(<5%). BGK modes have a soft nonlinearity: as their
amplitude increases, their frequency decreases by nearly
50%. Even for cold plasmas, the Q’s (!=
, where 
 is the
damping rate) for undriven, low amplitude TG modes are
never much higher than 600, and the Q’s get very low for
hotter plasmas. Once excited by a swept frequency drive,
FIG. 3 (color online). Response to 50 mV, 1 GHz=s swept
frequency drives. Each curve plots the envelope of the response
as a function of time, and, hence, frequency, as the sweep
progresses downward from each plot’s individual start fre-
quency fs. Along each curve, the response is phase locked to
the drive. As the drive is swept past the peaks at 2.4 and 5 MHz,
phase locking is lost and the mode amplitude collapses.

265003-2
the Q’s for the undriven BGK modes are remarkably
high: typically around 6000, but occasionally as high as
100 000. Indeed, Q is often a poor measure of the lifetime
of these modes as their amplitude does not decay expo-
nentially. For example, the very-high-Q mode amplitudes
are often nearly flat, except for small fluctuations, fol-
lowed by a sudden collapse. High amplitude TG modes
are unstable; Hart and Peterson [5] and Yamazawa and
Michishita [9] demonstrated that they mode convert
quickly. As one might expect from their high Q’s, the
BGK modes are very stable even when their density
fluctuations exceed 40%. Finally, low amplitude TG
modes have little harmonic content, while the harmonic
content of the BGK modes is rich even at low amplitude.

We identify these modes as BGK modes because of the
method by which they are excited. When the drive is first
applied, electrons whose end-to-end bounce frequencies
are close to the drive frequency will be captured into
a trapping bucket if they have the right phase relative to
the drive; approximately half the resonant electrons
are so captured (see Fig. 4). The untrapped electrons
are perturbed and may form a TG mode, but this TG
mode damps out quickly because of the high plasma
temperature.

As the drive frequency is swept downward to frequency
fe, the resonant electron velocity �vv � 2Lf decreases. To
the first approximation, few electrons can cross the sep-
aratrix between trapped and untrapped electrons if the
sweep is slow; few new electrons enter the trapping
bucket, and few initially trapped electrons leave it.
Thus, the trapped electrons are dragged to lower veloci-
ties, and the density of electrons in the bucket remains
fixed. But for typical distribution functions, the initial
density of electrons is lower at velocity �vvs (the velocity
corresponding to the starting frequency fs) than at �vve
(the velocity corresponding to the ending frequency fe),
and dragging the bucket downward creates a hole in phase
space. Since the spatially localized bucket bounces from
end to end in phase with the drive, the phase space hole
FIG. 4. Cartoon of the spatially averaged distribution func-
tion F �v� showing the evolution of the trapping bucket as the
frequency is swept from fs to fe. The dark and light regions
indicate the trapped and untrapped electrons, respectively.
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oscillates as well. The hole creates an electrostatic per-
turbation, which constitutes the postulated BGK modes.
Because the excitation process involves dragging a bucket
through velocity space, we call the generated waves
‘‘chirped bucket-BGK’’ modes.

Strong evidence for this model comes from experi-
ments which perturb the distribution function. For ex-
ample, a strong, fixed frequency drive at ff will phase
mix the velocities in the region centered around the
velocity �vvf resonant with the drive, effectively flattening
the distribution function there. The flat in the distribution
function increases the number of particles with velocity
slightly greater than �vvf and decreases the number of
particles with velocity slightly less than �vvf. If a sweeping
drive is then initiated, the difference between the flat-
tening frequency ff and the swept drive start frequency
fs will affect the final amplitude of the BGK mode (see
Fig. 5). If ff > fs, the density will have been diminished
at �vvs, so fewer particles will be trapped into the sweeping
bucket, the phase space hole will be proportionally larger,
and the final amplitude will increase. In contrast, if ff <
fs, the density of particles near �vvs will have been in-
creased, and the final amplitude will decrease.

These flattening experiments clearly demonstrate that
the system response depends on the shape of the initial
distribution function. Other experiments, not shown,
show that we can transport particles in velocity space;
for instance, an upwardly sweeping drive will carry
particles to a higher velocity, leaving a hole behind in
the distribution function at the drive’s initial resonant
velocity �vvs. If a downward drive is then initiated starting
from the same initial frequency, the resulting BGK mode
will be larger. Repeating the upward-going drive several
FIG. 5 (color online). Response from a 1 GHz=s, 100 mV
sweep from fs � 3 MHz to fe � 2:2 MHz that is preceded
by a 100 �s long, 500 mV, fixed frequency ff drive. The fixed
frequency drive flattens the distribution function around the
resonant velocity linked to its frequency. Near (a), the fixed
frequency drive is below fs, near (b) it is above fs, and the
dotted line (c) is the response without the fixed frequency
drive.
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times before initiating the downward drive will dig an
ever deeper hole, resulting in ever larger BGK modes. We
can also observe trapping oscillations, proving that par-
ticles are trapped in the potential of the wave.

We have analyzed the excitation process using a
Vlasov-Poisson approach. Our model is similar to the
multibeam model presented in Stix [10] and elsewhere,
but takes into account the axial bounce motion of the
electrons in the trap. We express the distribution function
F �I; �; t� in terms of the action �I�-angle ��� variables of
the bounce motion and expand the distribution in a
Fourier series in �: F �

P
Fm�I; t� exp�im��. To find

the bounce-averaged part of the distribution function,
F 0�I; t�, we use a nonperturbative approach based on
simulations of driven electron dynamics, which yield
distributions like those in Fig. 4. These averaged distri-
butions are then used to derive the lowest order Vlasov-
Poisson equations to find the amplitude "m of the mth
harmonic, phase-locked electric field perturbation. The
details of the analysis will be given in a later paper. Here,
we present the main result; the excited mode amplitude
scales with frequency as

������
"m

p
/

�F

1� �!0=!th�
2R��m�

; (1)

where !0 is the fundamental cold TG mode frequency,
!th � �vth=L is the electron bounce frequency, and �m �
!=�

���
2

p
m!th�. The object �F � �F �v� �F �vs�	=2 is the

depth of the hole in F 0�I; t�, and R��m� � 1�
�m�Z��m� � Z���m�	=2 is related to the plasma disper-
sion function Z (see Ref. [10].)

Equation (1) explains many aspects of the observed
excitations. In the cold plasma case, !0 � !th, for ! >
!m one can use the large � limit, where R � �1=2�2.
This yields

���
"

p
/ �F =�1� �!m=!�2	. Thus, the ampli-

tude grows as ! approaches !m from above, but collapses
beyond !m where the right-hand side becomes negative.
But in the cold case, the resonant bucket is in the tail of
FIG. 6 (color online). Peak signal for a 3 ! 2:2 MHz sweep
as a function of sweep rate, for several drive amplitudes.
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FIG. 7 (color online). Maximum sweep rate that generates
bucket-BGK modes as a function of drive strength. The sweep
rates extend from 3 ! 2:2 MHz.
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the distribution function, so �F is exponentially small
and only small excitations are observed. We find that this
situation is characteristic of our experiments below T �
1 eV, i.e., when !th < 0:44� 107 rad=sec, while !0 �
1:2� 107 rad=sec.

In contrast, for !0 �!th (T � 6 eV in our experi-
ments) the denominator in Eq. (1) reaches its minimum
at �0 � 1:5, i.e., at ! � 2:1m!th, where �F is large
because the resonant bucket has moved into the bulk of
the distribution. Since �F in Eq. (1) is a decreasing
function of �, the excited BGK mode amplitudes reach
maxima at somewhat lower frequencies. Such multi-
peaked excitations are indeed seen in Fig. 3, where max-
ima are located at ! � 1:3m!th.

A key assumption in the theory behind Eq. (1) is that
particles do not escape the bucket as the driving fre-
quency is swept. We find (Fig. 6) that this assumption is
correct so long as the sweep rate is neither too slow nor
too fast. If the drive is swept too slowly, particles escape
out of the bucket because of collisions and/or loading in
the external circuitry [7]. Preliminary evidence suggests
that the time scales of these effects are related to the time
scale for the decay of the undriven modes.

If the sweep rate is too high, the bucket-BGK modes
disappear. Using action-angle variables, we find that the
buckets disappear entirely when the sweep rate is too
high; the drive strength must be increased linearly with
the sweep rate for the buckets to exist. This prediction is
proved by experimental measurements (Fig. 7). The
analysis is similar to that for autoresonance for diocotron
modes [11,12].
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In conclusion, we have generated very high amplitude
bucket-BGK modes. The modes have no linear limit and
can be excited over a very broad range of frequencies.
They are very stable, can be produced controllably, and
respond appropriately to changes in the distribution func-
tion. The longevity of the modes is remarkable. Not only
do the mode Q’s reach 100 000, but the modes survive
despite up to 60 000 reflections from the trap ends. We
have developed a simple theory that explains many of the
results. Our chirped bucket-BGK modes live much longer
than the BGK modes found in earlier experiments. The
reason may be related to the fact that most of the previous
experiments used strong, or even impulsive, drives. Our
gentle excitation process allows us to create seemingly
perfect BGK modes.
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