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ABSTRACT

Dynamic autoresonance theory is applied to the problem of thresholds on migration timescales for capture
into resonances in the planar-restricted three-body problem with and slowly migrating massesm k m k m1 2 0

. The thresholds are found analytically, scale as , and yield an order of magnitude longer timescales24/3m (m /m )1, 2 2 1

required for capture of into outer resonance as compared with and other resonances. The differencem 2 : 1 3 : 20

is due to the rotation of the primary mass , affecting the resonance only. This could explain the observedm 2 : 11

small abundance of Kuiper Belt objects in the resonance and could define accurate bounds on the timescales2 : 1
involved in the early evolution of the solar system.

Subject headings: celestial mechanics, stellar dynamics — Kuiper Belt —
planets and satellites: individual (Neptune) — solar system: formation

1. INTRODUCTION

It is widely accepted that Pluto’s peculiar orbit, having large
eccentricity and phase locking in mean motion resonance3 : 2
with Neptune, is the result of Neptune’s orbital passage through
the resonance at a late stage of planetary accretion. According
to this scenario, the passage led to the capturing of Pluto as
well as many other objects in the Kuiper Belt into resonance
(Malhotra 1993). Observations show that many Kuiper Belt
objects (KBOs, so-called Plutinos) are in the resonance3 : 2
with Neptune.1 Early numerical simulations, supporting the res-
onant capture scenario (Malhotra 1995), also predicted a com-
parable number of KBOs trapped in the resonance. How-2 : 1
ever, very few such KBOs are observed. This contradiction
(one of the major remaining questions of the resonant KBO
capture theory; Jewitt & Luu 2000) was discussed in a recent
work by Ida et al. (2000). This study, based on numerical
simulations, suggested that capture into resonance required2 : 1
much longer Neptune migration timescales as compared with
those for resonance. The simulations were supplemented3 : 2
by scenarios yielding sufficiently short migration times for pre-
venting capture into the resonance.2 : 1

In the present work, we use dynamic autoresonance theory
in studying the problem of timescale filtering in the Plutino
problem analytically. The term autoresonance is used in de-
scribing the continuing phase locking in driven nonlinear sys-
tems with slow parameters. The theory of autoresonance was
extended recently to applications in fluid dynamics (Friedland
1999), plasmas (Fajans, Gilson, & Friedland 1999), and non-
linear waves (Friedland & Shagalov 1998). One of the main
predictions of this theory is the existence of a sharp threshold
on the driving frequency sweep rate (the rate of variation of
the angular frequency of Neptune in the Plutino problem) for
capture into resonance. We shall find these thresholds for the
KBO problem and show that the minimum Neptune migration
timescales for capture into or resonances must be3 : 2 2 : 1
longer than 1.7 or 19.7 Myr, respectively. This large difference
of timescales is due to the Sun’s rotation around the center of
mass, affecting 2 : 1 resonance only.

The following section introduces our adiabatic-restricted

1 See data in B. G. Marsden’s Web site (http://cfa-www.harvard.edu/cfa/ps/
lists/TNOs.html).

three-body model, while § 3 deals with the issue of thresholds,
numerical illustrations, and conclusions.

2. ADIABATIC-RESTRICTED THREE-BODY PROBLEM

Our starting point is the planar three-body Hamiltonian

21 p 1 qJ2H p p 1 2 2 , (1)r( )22 r r r1 2

describing a test particle of mass in the gravitational fieldm0

of two dominant masses rotating around their center ofm1, 2

mass on expanding, nearly circular orbits (see Fig. 1) unper-
turbed by the test particle. The distances in equation (1)r1, 2

are and2 2 2 2 2 2r p r 1 r 1 2rr cos (J 2 w) r p r 1 r 21 1 1 2 2

, where and is the rotation2rr cos (J 2 w) m r p m r w(t)2 1 1 2 2

angle of , such that the angular velocity is am dw/dt p q(t)1, 2

slow function of time, i.e., , where22g { q A K 1 A p
. The inclusion of the slow variation of the frequencyFdq/dtF

of is the main difference between the present model (re-m1, 2

ferred to as the adiabatic-restricted three-body problem in the
following) and the conventional circular-restricted three-body
problem with fixed parameters. Another assumption of our the-
ory is that the mass ratio is a small parameterq p m /m2 1

( ). An example of such a system is , , andq K 1 m m m1 2 0

representing the Sun, Neptune, and a KBO, while the slow time
variation of q is due to the migration of Neptune’s orbit at an
early stage of the evolution of the solar system. We shall con-
sider the case in which the test particle starts on a circular orbit
of radius and an angular frequency .3 1/2r p r q ≈ (Gm /r )0 0 1 0

Note that we replaced in equation (1) by unity, equivalentGm1

to using dimensionless time , dimensional radial co-t r q t0

ordinate and normalizing the momenta ,r r r/r p r p r /p0 r r 0 J0

with respect to . Thus, our initial con-2p r p /p p p q rJ J J0 J0 0 0

ditions are and Our goal is tor p 1, J p J p p 0, p p 1.0, r J

study the capture of the test particle into an orbit-orbit reso-
nance as the angular frequency of masses varies in time.m1, 2

As a first step in studying the passage through resonance,
we expand in equation (1) in powers of small parameter1/r1

q and truncate the expansion at . This yields the approx-1O(q )
imate Hamiltonian , whereH ≈ H (p , p , r) 1 qV (r, V) H p0 r J 1 0
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Fig. 1.—Geometry of the adiabatic-restricted three-body problem. The pri-
mary and secondary masses and move on expanding, spiraling orbitsm m1 2

having a slowly varying local angular frequency .q(t) p dw/dt

, and1 2 2 2(p 1 p /r ) 2 1/rr J2

2 2 21/2r V { a cos V 2 a(1 1 a 2 2a cos V) , (2)2 1

with and . We shall focus on outer reso-a { r /r V { J 2 w2

nances; i.e., we assume that . Note that the first term ona ! 1
the right-hand side in equation (2) is due to the rotation of the
primary mass , while the second term represents the interactionm1

with the secondary mass . One can also rewrite equation (2)m2

as an expansion:

`

r V p f cos ( jV), (3)O2 1 j
jp0

where and p(0) 2 (1)f p 2(a/2)b (a), f p [a 2 ab (a)], f0 1/2 1 1/2 j

2 for , while are the Laplace coefficients. We( j) ( j)ab (a) j 1 1 b1/2 1/2

see that the motion of affects the coefficient only inm f1 1

equation (3) and always yields a reduction of this coefficient.
We shall see later that due to this effect (and since the term
with in eq. [3] is responsible for the outer resonance),f 2 : 11

the minimum migration timescale for capture into this reso-
nance increases considerably.

As the second preliminary step for analyzing the passage
through resonance in our problem, we transform to canonical
radial and azimuthal action-angle variables ( , ) and ( , )J V J Vr r J J

associated with the unperturbed Hamiltonian . The actionsH0

are dimensionless and correspond to the normalization ofJr, J

the corresponding dimensional actions with respect toIr, J

; i.e., . We shall see below that capture2I p q r J { I /IJ0 0 0 r, J r, J J0

into resonance in our system is a weakly nonlinear effect in
terms of for the test particle starting on a circular orbitJr

( ). Consequently, we use a small approximation. ThenJ p 0 Jr r

(see Appendix) the problem reduces to studying the following
pair of evolution equations for and phase mismatch1/2D { (2J )r

associated with the resonance:F { jV 1 V 2 jw(t) j 1 1 : jJ r

dD/dt p e sin F, (4)

p 2dF/dt p t 2 D 1 (e/D) cos F. (5)
8

In deriving these equations in the Appendix, we assumed a
linear frequency sweeping throughq(t) p ( j 1 1)/j 2 At j 1

resonance ( being the sweep rate) and introduced1 : j A p dq/dt
a rescaled time . The nonlinearity and coupling1/2t { ( jA) t
parameters in equations (4) and (5) are #2p p 12( j 1 1)

and , where can be expressed via21/2 21/2( jA) e p qh ( jA) hj j

Laplace coefficients at the resonance. We shall also assume that
in the following.2«/p p (qh )/[12( j 1 1) ] K 1j

3. TIMESCALE THRESHOLD PHENOMENON

Now we proceed to the problem of thresholds. The variables
and F described by equations (4) and (5) comprise a2J { D

canonical pair, and the corresponding Hamiltonian is H peff

. Capture into resonance for Ham-2 1/2tJ 2 (p/16) J 1 2eJ cos F
iltonians of this type was studied by Henrard (1982). However,
this study did not cover the limit of initially small J, when
equation (5) is singular. The capture associated with this sin-
gularity and the subsequent autoresonance in the system were
considered in more recent theories (e.g., Friedland 1999). We
shall not repeat the details of this analysis here but mention
the two main conclusions of the theory:

Conclusion A.—If one starts at sufficiently large negative
times t and sufficiently small initial D, then, at some negative
time (still prior the linear resonance point ), the systemt p 0
phase locks with the drive, i.e., the phase mismatch F r 0
regardless initial F.

Conclusion B.—Later, as the system passes through the linear
resonance, i.e., t becomes positive, the phase locking F ≈ 0
continues, provided the driving parameter e exceeds a threshold:

3/4 21/2e 1 e p (4/3) p . (6)th

Below this threshold, the phase locking discontinues. In the
present case, where is given, equation (6) trans-21/2e p qh ( jA)j

lates into the condition on A to be less than some critical value
for capture into resonance:

th 4/3A ! A p (3.93/j)[q( j 1 1)h ] . (7)j j

Here the coefficients are evaluated at the linear resonance, i.e.,hj

using . The theory leading to the threshold2/3a p [ j/( j 1 1)]
(eq. [6]) is simple, and we present it below for completeness.

Let us assume a continuing phase locking in the systemF ≈ 0
as it passes the linear resonance point and, consequently, replace

in equation (5) by unity. Then let us differentiate thecos F
resulting equation in time and substitute equation (4) for

, yieldingdD/dt

2 2d F/dt p 1 2 eS sin F, (8)

where Equation (8) describes a quasi-particle2S { pD/4 1 e/D .
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Fig. 2.—Threshold timescale for capture into and resonancestht 2 : 1 3 : 21, 2

vs. . Open circles: Results from exact equations of the adiabatic-q p m /m2 1

restricted three-body problem. Open triangles: Same for the resonance,2 : 1
but neglecting rotation of . The solid lines represent the scalings (eq. [10]).m1

The dashed line is (Ida et al. 2000), while the plus sign is the24/3t p 9.5qmig

shortest in earlier simulations (Malhotra 1995).tmig

in the tilted cosine potential:

V (F) p 2F 2 eS cos F, (9)eff

where parameter S is a function of time via slowly varying D
in S. The quasi-potential possesses minima only if theV (F)eff

tilting is not too large, i.e., when OtherwiseeS 1 1. V (F)eff

decreases monotonically. The existence of the potential minima
is necessary for having trapped solutions, i.e., phase locking
in our real problem, where F describes the phase mismatch
between the driving perturbation and the test particle. On the
other hand, has a minimum at3 1/3 2/3S S p e p D p D pm m4

Substitution of into yields the threshold1/32(e/p) . S eS 1 1m

condition (6). Finally, because of the assumed smallness of
, is small, justifying our weakly nonlinear treatment ofe/p Dm

the resonant trapping problem.
Now we use equation (7) to find the threshold timescales

for capture into , , and resonances ( , 2, and2 : 1 3 : 2 4 : 3 j p 1
3). The coefficients are evaluated numerically, yieldinghj

, 2.48, and 3.28. Then , whereth 4/3h p 0.43 A p k q1, 2, 3 j j

, 28.5, and 40.5. Note that is almost 10 timesthk p 3.2 A1, 2, 3 1

smaller than . This difference is caused by the inclusion ofthA2

the primary mass rotation around the center of mass (e.g.,m1

the Sun’s motion in the Plutino problem). If one neglects this
rotation, one obtains and , i.e., much largerh p 1.69 k p 19.91 1

. Now we use in calculating the minimum migrationth thA A m1 j 2

timescale (dimensional) for resonant capture of the test particle:

r 3q 3( j 1 1)2th 24/3t { p p q . (10)j (dr /dt) 2Fdq/dtF 2jk q2 th th j 0

This expression applied to the Plutino problem ( pq p m /m2 1

, and, say, rad yr21) yields25 th5.13 # 10 q p 0.025 t p0 1, 2, 3

, 1.7, and 1.0 Myr for capture into , , and19.7 2 : 1 3 : 2 4 : 3
resonances, respectively. The dependence yr for24/3t p 9.5qmig

the migration timescale , yielding high capture prob-r /(dr /dt)2 2

ability into resonance and low capture probability into3 : 2
resonance, was suggested by Ida et al. (2000) on the basis2 : 1

of simulations. In the Plutino case, this formula yields t pmig

Myr, in full agreement with the present theory, since th5 t !2

(see our thresholds above). Earlier simulations (Mal-tht ! tmig 1

hotra 1995) used a progressively slowed down migration model.
The shortest was 6.6 Myr, but after 2 Myr of migration intmig

these runs, exceeded 21 Myr and continued to increase.tmig

Therefore, was longer than at later times, and efficienttht tmig 1, 2

capture was observed at both and resonances.3 : 2 2 : 1
At this stage, we present numerical results illustrating our

theory. The open circles in Figure 2 show the threshold migration
timescales for trapping into and resonances versustht 2 : 1 3 : 21, 2

q, as found by integrating the full set of evolution equations
of the adiabatic-restricted three-body problem. We also show

(Fig. 2, open triangles) the results of the same calculations for
resonance, but we neglect the rotation of the primary mass.2 : 1

One observes a factor of 6 decrease of in this case, illustratingtht1

the main reason for a large difference between the timescales
for trapping into and resonances. The solid lines in2 : 1 3 : 2
Figure 2 represent the theoretical scalings (eq. [10]) in all the
cases. One can see that, generally, the theoretical curves are only
10%–20% higher than the numerical results, while the scal-24/3q
ing is in very good agreement with the calculations. Finally, the
dashed line in the Figure 2 is yr from Ida et al.24/3t p 9.5qmig

(2000), representing their regime of high capture probability into
resonance and low capture probability into resonance,3 : 2 2 : 1

while the plus sign in Figure 2 show the shortest in simu-tmig

lations by Malhotra (1995).
We have studied the capture into resonances in the adiabatic-

restricted three-body problem. In conclusion, the theory yields
analytic thresholds on the migration timescales and the order-
of-magnitude difference in the thresholds for capture into 3 : 2
and resonances, providing an explanation for the small2 : 1
observed abundance of KBOs in the resonance. Inclusion2 : 1
of finite inclination, its excitation via frequency sweeping mech-
anism, and studying the associated migration rate thresholds
comprise interesting extensions of the theory in the future.

The author is grateful to G. Tracy for drawing his attention
to the subject and to M. Lecar for encouragement and valuable
comments.

APPENDIX

REDUCED ACTION-ANGLE FORMULATION

Here we present the details of the reduction procedure yielding equations (4) and (5) for studying capture into resonance in the
adiabatic-restricted three-body problem. We transform to dimensionless radial and azimuthal action-angle variables ( , ) andJ Vr r

( , ) associated with the unperturbed Hamiltonian . It is well known that under the canonical transformation, becomesJ V H HJ J 0 0

. The capture into resonance in our case is a weakly nonlinear effect in terms of when starting on a circular1 22H p 2 (J 1 J ) J0 r J r2

orbit ( ), so we shall use a small approximation. Furthermore, since in the Hamiltonian already involves small parameterJ p 0 J qV1 r 1
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q, we shall approximate to first order in the amplitude of radial oscillations. Thus, we write , and expand inV r p 1 1 d d K 11

equation (3) to first order in d:

`

V r (C 1 dB ) cos ( jV), (A1)O1 j j
jp0

where and are and 2 evaluated at (i.e., ).21C B a f ­f /­a r p 1 a p rj j j j 2

Next we express d and J in terms of the action-angle variables (using linear approximation for the radial oscillations):

1/2d p (2J ) cos V , J p V 1 R(V , J , J ), (A2)r r J r r J

where is associated with the generating function of the canonical transformation:R(V , J , J )r r J

r

∗ ′R p 2 (­p /­J )dr . (A3)E r J

Here is the solution of for (recall that ); i.e.,1 1∗ 2 2 2p (J , J , r) H (J , J ) p (p 1 J /r ) 2 p J p pr r J 0 r J r J r J J2 r

∗ 2 1/2p (J , J , r) p 5[2H 1 2/r 2 (J /r) ] . (A4)r r J 0 J

Thus,

′2R p (J /r 2 ­H /­J )dt, (A5)E J 0 J

with integration in time along the unperturbed motion. Since, to lowest order, and whileJ p 1 ­H /­J p dV /dt p 1, r pJ 0 J, r J, r

, we have . This allows us to approximate #1/2 1/21 1 d R ≈ 22 d dt p 22(2J ) sin V cos ( jV) ≈ cos [ j(V 2 w)] 1 2(2J ) j∫ r r J r

in equation (A1):sin V sin [ j(V 2 w)]r J

`

1/2V p V 1 (2J ) {B cos V cos [ j(V 2 w)] 1 2C j sin V sin [ j(V 2 w)]},O1 10 r j r J j r J
jp0

where Finally, we leave one resonant term in and write the single resonance Hamiltonian`V p O C cos [ j(V 2 w)]. V10 jp0 j J 1

1
22 1/2H p 2 (J 1 J ) 1 q(2J ) h cos [ j(V 2 w) 1 V ], (A6)j r J r j J r2

where .h p B /2 2 jCj j j

The Hamiltonian yieldsHj

1/2dJ /dt p qh (2J ) sin F, (A7)r j r

1/2dJ /dt p jqh (2J ) sin F, (A8)J j r

21/2dF/dt p ( j 1 1)Q 2 jq 1 qh (2J ) cos F, (A9)j r

where and are the phase mismatch and the Keplerian frequency of the test particle,23F { jV 1 V 2 jw(t) Q p (J 1 J )J r r J

respectively. These evolution equations are the same as in the system with fixed parameters, but now and are slow functionsq(t) hj

of time. Nevertheless, equations (A7) and (A8) still yield the conservation law or which, to lowestJ 2 jJ p J p 1, J p 1 1 jJ ,J r J0 J r

order in , givesJr

23Q p [1 1 ( j 1 1)J ] ≈ 1 2 3( j 1 1)J . (A10)r r

Thus, there remain only two independent variables (say, and F) in the problem. Finally, by assuming linear frequency sweepingJr

through resonance and introducing , , , and1/2 1/2 2 21/2q(t) p ( j 1 1)/j 2 At j 1 1 : j D { (2J ) t { ( jA) t p p 12( j 1 1) ( jA) e pr

, one obtains the reduced system (eqs. [4] and [5]) introduced in § 2.21/2qh ( jA)j
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